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INTRODUCTION 
 

As one of the most common malignancies, renal cell 

carcinoma (RCC) is accounting for 4.2% of newly 

diagnosed cancer cases. In 2019, there were about 

73820 new cases with 14770 deaths from RCC in the 

United States [1, 2]. As the most common pathological 

type in RCC, kidney renal clear cell carcinoma (KIRC) 

represents 75–80% of all renal cancers and accounts  

for the majority of deaths from RCC [3]. Currently, 

there are about 30% of patients with distant metastasis 

when they are diagnosed [4]. Meanwhile, up to 30% of 

patients with localized tumor will continue to progress 

to metastasis [5]. These characteristics determine that 

KIRC has a poor prognosis. At present, robust and 

effective biomarkers to predict the prognosis of KIRC 

are still unavailable. 

 
As a crucial post-transcriptional regulatory step, 

alternative splicing (AS) includes excision of introns 

and linking together of exons, which results in distinct 

mature mRNA transcript, and then translate into 

different proteins with different structures or functions 

[6]. It is reported that AS is responsible for 40% of 
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ABSTRACT 
 

A growing number of studies reveal that alternative splicing (AS) is associated with tumorigenesis, progression, 
and metastasis. Systematic analysis of alternative splicing signatures in renal cancer is lacking. In our study, we 
investigated the AS landscape of kidney renal clear cell carcinoma (KIRC) and identified AS predictive model to 
improve the prognostic prediction of KIRC. We obtained clinical data and gene expression profiles of KIRC 
patients from the TCGA database to evaluate AS events. The calculation results for seven types of AS events 
indicated that 46276 AS events from 10577 genes were identified. Next, we applied Cox regression analysis to 
identify 5864 prognostic-associated AS events. We used the Metascape database to verify the potential 
pathways of prognostic-associated AS. Moreover, we constructed KIRC prediction systems with prognostic-
associated AS events by the LASSO Cox regression model. AUCs demonstrated that these prediction systems 
had excellent prognostic accuracy simultaneously. We identified 34 prognostic associated splicing factors (SFs) 
and constructed homologous regulatory networks. Furthermore, in vitro experiments were performed to 
validate the favorable effect of SFs FMR1 in KIRC. In conclusion, we overviewed AS events in KIRC and identified 
AS-based prognostic models to assist the survival prediction of KIRC patients. Our study may provide a novel 
predictive signature to improve the prognostic prediction of KIRC, which might facilitate KIRC patient 
counseling and individualized management. 
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protein modifications, and more than 95% of pre-

mRNAs are alternatively spliced in mammals [7, 8]. 

Accumulating results show that AS is associated with 

carcinogenesis and tumor progression and provides 

effective prognostic value in various cancers [9–11]. 

For instance, as an important prognostic factor in  

early NSCLC, hMENA splice isoforms combined with 

clinical parameters could predict individual patient  

risk accurately [12]. P53δ is a novel p53 splice variant, 

which can predict the prognosis as a prognostic marker 

in ovarian cancer independently [13]. CDK12 modulates 

ALE splicing of ATM and a DNAJB6 isoform that 

promotes breast cancer cell invasion [14]. TGLI1, AS 

variant of GLI1, promotes glioblastoma angiogenesis 

and growth by targeting heparinase [15]. 

 

In our study, we tried to gain a deep insight into  

the AS landscape of KIRC and develop AS-associated 

prognostic signatures to improve the prognostic prediction 

of KIRC. 

 

RESULTS 
 

Landscape of AS events profiles in TCGA-KIRC 

cohort 

 

Comprehensive AS events profilings of 533 KIRC 

patients were obtained from TCGA-KIRC cohort. All 

AS events were divided into seven types, which are ES, 

AP, AT, AA, AD, RI, and ME. Separately, the seven 

types of special splicing patterns were shown in Figure 

1A. According to integrated analysis of SpliceSeq tool, 

we identified 46276 AS events from 10577 genes, 

comprising of 18062 ESs in 6899 genes, 9472 APs in 

3793 genes, 8611 ATs in 3762 genes, 3810 AAs in 2676 

genes, 3265 ADs in 2295 genes, 2821 RIs in 1897 genes, 

and 235 MEs in 227 genes (Figure 1B). As a result, we 

have known that each gene may account for more than 

one AS event. And the results showed that ES ranks first 

in all AS events, then comes the AP and AT. 

 

Prognostic-associated AS events in TCGA-KIRC 

cohort 

 

AS events were related to carcinogenesis, progression 

and prognosis in a variety of tumors. Therefore,  

we conducted Cox regression analysis to identify 

prognostic-associated AS events of KIRC. As a result, 

3823 ES events in 2504 genes, 3587 AP events in 1853 

genes, 3048 AT events in 1546 genes, 1002 AA events 

in 866 genes, 887 AD events in 755 genes, 1186 RI 

events in 868 genes, and 75 ME events in 72 genes were 

associated with KIRC prognosis. ES was the most 
frequent AS event related to OS, followed by AP and 

AT. Among them, more than half were unfavorable 

predictors, and the others were favorable. The result 

was shown as an upset plot (Figure 2A). According to 

the results, we found that one single gene had more than 

one AS type. The ES was also the most common 

prognostic AS type. The top 20 prognostic AS events 

related genes of seven AS patterns were visualized in 

forest plots (Figure 2B–2H). 

 

Pathway and functional enrichment analysis 

 

We utilized Metascape to identify the enriched 

pathways of prognostic associated AS to conduct a  

deep investigation of the underlying mechanism of 

prognostic associated AS genes in KIRC. The pathway 

and functional enrichment analysis indicated that 

metabolism related pathways were the most frequently 

involved, including “Metabolism of amino acids and 

derivatives”, “nucleobase-containing compound catabolic 

process”, “peptide biosynthetic process”, etc. (Figure 

3A). Protein-protein interaction network analysis 

revealed that these AS genes were concentrated in 

twenty MCODE components (Figure 3B). 

 

Development of AS-based predictive model 

 

Because of the high mortality of KIRC, we aimed  

to develop an AS-associated prediction model to 

improve prognostic prediction of KIRC. To construct 

the prediction model precisely, we performed LASSO 

Cox regression analysis to identify the most optimal 

prognostic AS model of seven types of AS patterns. As 

shown in Figure 4, we figured out the optical lambda 

(Figure 4A–4H) from the seven types of AS and 

established clinical prediction models. Then, according 

to the median risk score of prediction models, patients 

were divided into either low or high-risk groups. And 

those in the high-risk group had poorer survival 

compared with the ones in the low-risk group from  

the Kaplan–Meier survival analysis (Figure 5A–5H).  

By using time-dependent ROC analysis, we evaluated 

the predictive accuracy of AS signatures. The time-

dependent ROC analysis results showed that integrated 

AS signatures, AD predictive signatures, and AT 

predictive signatures had better performance than other 

AS signatures (Figure 5I). All these results showed that 

these AS signatures could be a reliable and robust 

predictor of prognosis for KIRC patients. 

 
Network of prognostic-associated alternative splicing 

events 

 
Given all AS alteration patterns were broadly 

regulated by critical splicing factors (SFs), thus, we 

identified the prognostic-related SFs and explored the 

correlations between prognostic-related SFs and AS 

events. Univariate Cox regression analysis showed that 

30 SFs were related to the survival of KIRC patients 
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significantly (Supplementary Table 1). Most of the  

SFs predicted good outcomes of patients, such as  

FMR1 and HNRNPU (Figure 6B, 6E). Furthermore, 

analysis of correlation revealed that a total of 1369  

prognostic-associated AS events were correlated to 23  

prognostic-associated SFs significantly in KIRC patients 

 

 
 

Figure 1. Landscapes of AS events profiles in TCGA-KIRC dataset. (A) Schematic diagram of seven types of AS events, that is AA 
(Alternate Acceptor site), AD (Alternate Donor site), AP (Alternate Promoter), AT (Alternate Terminator), ES (Exon Skip), ME (Mutually 
Exclusive Exons) and RI (Retained Intron). (B) Overview of AS events in TCGA-KIRC dataset. 
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(Supplementary Table 2). The results of correlation 

analyses were visualized with a splicing regulatory 

network (Figure 6A). Interestingly, we found that most 

of the prognostic-related SFs were positively (red lines) 

related to the adverse prognostic AS events (green  

dots) and negatively (green lines) related to favorable 

 

 
 

Figure 2. Prognosis-related AS events profiles. (A) Intersection UpSet plot of seven types of prognosis-related AS events in KIRC. (B–H) 

Forest plots of HRs of the top 20 prognostic-associated seven types of AS events. The color scale on the right side indicates the P-value. 
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prognostic AS events (red dots), Representative 

correlations between SFs and specific AS events were 

presented in dot plots. For example, expression of 

FMR1 was positively correlated with AT of RBM15 

(Figure 6C), and negatively correlated with AT of 

EIF4E2 (Figure 6D), while expression of HNRNPU was 

 

 
 

Figure 3. Pathway and functional enrichment analysis. (A) Top 20 pathways and functional enrichment clusters. (B) The 20 MCODE 

of genes from prognostic-related AS events. 
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positively correlated with AP of NUMB (Figure 6F), and 

negatively correlated with AT of SAMD4B (Figure 6G). 

 

Favorable effect of FMR1 on KIRC 

 

To further validate the good outcomes of SFs in KIRC, 

we conducted in vitro experiments with KIRC tissues 

and cell lines. The results from TCGA and CPTAC 

databases indicated that FMR1 is downregulated in 

KIRC tissues compared to normal tissues both at  

protein and gene levels, and the expression of FMR1 is 

negatively related to stage and grade of KIRC (Figure 

7A). Consistently, our clinical samples also verified that 

FMR1 expression is reduced in KIRC tissues compared 

 

 
 

Figure 4. LASSO Cox model to construct prognostic-related AS signatures. (A–H) Indicated constructions of the most valuable 

prognostic-related AS signatures and the LASSO coefficients profiles of seven types of AS events. The vertical lines were drawn at the 
optimal values by the minimum criteria and the 1-SE criteria. 
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to paracancerous tissues (Figure 7B). So, we chose FMR1 

for the next experiments. FMR1 was overexpressed by 

transfecting FMR1 plasmid, and was knockdown by 

transfecting FMR1-target-siRNAs separately in ACHN 

cell. The overexpression and knockdown efficiency 

were confirmed by qRT-PCR (Figure 7C) and WB  

(Figure 7D). After overexpression of FMR1, the cell 

proliferation was significantly suppressed (Figure 7E). 

Furthermore, clonogenic survival ability of ACHN was 

also inhibited by FMR1 (Figure 7F). On the contrary, 

 

 
 

Figure 5. Kaplan-Meier survival analysis of prognostic-related AS signature. (A–H) Survival analysis of seven types of prognostic-

related AS signature. (I) Time-dependent ROC for different survival prediction models. 
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FMR1 knockdown promoted ACHN cells proliferation 

and clonogenic formation efficiency (Figure 7E, 7F). 

Cell migration contributed to tumor progression.  

Then, we conducted transwell migration assay, which 

showed that FMR1 overexpression could reduce 

ACHN cell migration rate, while FMR1 knockdown 

 

 
 

Figure 6. AS correlation network in KIRC. (A) Splicing correlation network in KIRC. The expression of all the prognostic-related splicing 
factors (blue dots) was negatively (green line) or positively (red line) associated with PSI value of all the favorable prognosis and adverse AS 
events (red dots and green dots, respectively). (B, E) Using the GEPIA tool to analyze the prognosis of splicing factors FMR1 and HNRNPU, 
respectively. (C, D, F, G) Representative dot plots of correlations between expression of SFs FMR1 or HNRNPU and PSI value of AS events  
(P < 0.001). 
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promoted the migration, compared to corresponding 

control group (Figure 7G). Statistical analysis of 3 

independent experiments confirmed the results (Figure 

7H). Afterall, our results revealed the favorable effect 

of SFs FMR1 on KIRC, but the underlying genetic 

mechanisms still need to be further explored. 

 

 
 

Figure 7. Protective effect of FMR1 in KIRC. (A) The expressing level of FMR1 in KIRC and normal tissues. (B) The qRT-PCR detects 

FMR1 expression of paired paracancerous tissues and KIRC cancer tissues from Zhongnan Hospital. (C) Overexpression and knockdown 
efficiency in ACHN cells. (D) WB confirmed the overexpression and knockdown of FMR1 in ACHN cells. (E) MTT assay to investigate the 
proliferation of ACHN cells. (F) Clonogenic formation results from three independent experiments. (G) Transwell migration assay to 
investigate cell migration ability, scale bar = 100 μm. (H) Confirmed by statistical analysis. *p < 0.05, **p < 0.01, ***p < 0.001. 
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DISCUSSION 
 
AS variants play key roles in tumor progression and 

oncogenesis [12–15]. In the current study, we deeply 

explored alternative mRNA splicing events based on 

TCGA-KIRC database. In total, we detected 46276  

AS events from 10577 genes. Among them, the most 

common AS type was ES, then comes the AP, AT, AA, 

AD, RI and ME. Owing to the high mortality of KIRC, 

we determined to figure out prognosis-related AS 

events. Through pathway enrichment analysis, we found 

that metabolism pathways were the most enriched 

pathways in these genes of prognosis-related AS events. 

Furthermore, AS-based prognostic signatures were 

carried out, and we found that AS events have great 

value in assessing the prognosis in KIRC patients.  

AS is a critical component of the regulation of gene 

expression pathways in multicellular organisms, and it 

is strictly regulated by SFs. Previous researches based 

on the TCGA database have revealed that mutations in 

gene-encoding SFs were extensively related to specific 

cancer types [16–18]. We developed a network of 

prognostic-associated alternative splicing events. As a 

result, we can see that AS-SFs networks indeed exert a 

key effect in the regulation of the occurrence of KIRC. 

 
AS patterns are dramatically different and  

contribute significantly to the identity, development, 

and diversity of cells, tissue, and organs. Besides, AS 

events are involved in many life processes, including 

cellular proliferation, differentiation, necrosis and tissue 

formation [18, 19]. In cancer, AS could promote the 

progression of primary tumor cells in many aspects, 

including greater proliferation capacity, stronger invasive 

property, and appearance of drug resistance, which 

could lead to tumor heterogeneity that is a tricky tissue 

for cancer treatment [20–23]. Meanwhile, growing 

evidence revealed that AS plays a vital role in the 

progression and initiation of KIRC. For instance, 

pVHL172 is translated from variant 2 by AS of exon 2. 

Instead of acting as a tumor suppressor compared to 

other isoforms, pVHL172 induces the aggressiveness of 

renal tumors [24]. PTBP1 promotes KIRC proliferation, 

migration and invasion through regulating AS of PKM 

[25]. EZH2 exon 14, which is alternatively spliced by 

SF3B3, inhibits cell growth, proliferation, migration, 

and tumorigenicity in a KIRC xenograft model, while 

EZH2 has the opposite effect [26]. There are many 

other cases showing the oncogenic effects of AS  

events in KIRC. In the current research, we also found 

that more than half of AS events were unfavorable 

predictors in KIRC. In all, we explored the correlations 

of AS and SFs and developed AS-based prognostic 
signatures in KIRC, which provides the implications 

of potential cancer biomarkers and potential therapeutic 

targets. 

To significantly reduce KIRC mortality, more 

prognostic biomarkers are urgently needed. The results 

from some previous researches indicated some novel 

prognostic kinds of signatures for KIRC, including 

exosomes and some kinds of non-coding RNAs  

[27–30]. Benefiting from great achievements of next-

generation sequencing techniques, the access to genome 

and cDNA sequences, microarrays, and high-throughput 

cDNA sequencing leads to the genome-wide assessment 

of transcripts, which can provide further insights into 

expressions and patterns of the genome [31, 32]. TCGA 

database provides us with a diversity of resources for 

cancer biomarkers search at the genomic level. We  

also chose one of the SFs FMR1, which is positively 

related to the survival rate of KIRC patients, negatively 

related to the proliferation and migration of KIRC cell 

ACHN, and downregulated in KIRC tissues. Our results 

indicated that FMR1 or other SFs could be potential 

biomarkers in future researches. But the mechanisms  

of how FMR1 or other SFs regulate or interact with  

AS genes and event still need to be further explored. 

Our splicing regulation network between AS events and 

SFs may give us a new insight into underlying genetic 

mechanisms of oncogenesis and progression of KIRC. 

 

However, this study has some limitations. Firstly, all the 

data of this study were obtained from publicly available 

database. Some important clinical information was not 

available to us, which might serve to bias our results. 

Second, this is a retrospective study, a multicenter  

and prospective study is needed to validate our results. 

Finally, further research is needed to elucidate molecular 

mechanisms of AS regulation. 

 

In conclusion, we proved that prognostic-associated AS 

events could be applied to predict the survival risks in 

KIRC patients. It may possess great potential value in 

clinical practice. AS-SFs system is complex, and deep 

researches should be carried out to comprehensively 

analyze the interaction networks of AS. 

 

CONCLUSIONS 
 

In conclusion, we overviewed AS events in KIRC and 

identified AS-based prognostic models to assist the 

survival prediction of KIRC patients. Our study may 

provide a novel predictive signature to improve the 

prognostic prediction of KIRC, which might facilitate 

KIRC patients counseling and individualized management. 

 

METHODS 
 

Data acquisition and curation process 

 

RNA-seq raw counts of kidney renal clear cell carcinoma 

(KIRC) and corresponding clinical data were achieved 
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from The Cancer Genome Atlas (TCGA) (https://tcga-

data.nci.nih.gov/tcga/). Then, SpliceSeq tool, a Java 

application, was used to analyze the mRNA splicing 

patterns of KIRC patients. Rating from zero to one, the 

Percent Spliced In (PSI) value was employed to evaluate 

AS events and calculate for seven types of alternative 

splicing events: Exon Skip (ES), Alternate Promoter 

(AP), Alternate Terminator (AT), Alternate Acceptor site 

(AA), Alternate Donor site (AD), Retained Intron (RI) 

and Mutually Exclusive Exons (ME). AS events with PSI 

value >75% were included for all analysis. 

 
Prognostic associated AS events identification 

 

To identify all prognostic AS events in KIRC, 537 

KIRC patients in total with overall survival (OS) data 

were collected. The corresponding clinical information 

was extracted and summarized. Then, the univariate 

Cox regression was taken to identify prognostic factors 

of seven types of AS patterns. We used a novel 

visualization tool UpSet plot [33] to quantitatively 

analyze the interactive sets, to visualize intersections  

of seven types of prognostic associated AS events. 

 
Gene functional enrichment analysis 

 

We conducted pathway enrichment analysis of genes  

of survival-associated AS to detect the underlying 

mechanisms of survival associated alternative splicing 

genes in KIRC. Metascape (http://metascape.org/) is a 

web portal for gene analysis and annotation. We used 

the tools in this portal to search for deep insight into the 

biological functions of survival-associated AS genes 

[34]. The automated meta-analysis tool provided in  

this portal could be used to detect unique and common 

pathways within a group of orthogonal target-discovery 

studies. And the protein-protein interaction (PPI) analysis 

was also accessible based on BioGrid, enrichment 

heatmaps generation and interactive visualization of 

Gene Ontology (GO) networks. 

 
Establishment of predictive models by LASSO Cox 

regression 

 

By conducting Cox regression model with LASSO (least 

absolute shrinkage and selection operator) penalty, the 

LASSO Cox regression analysis could simultaneously 

achieve shrinkage and variable selection. We used 

LASSO Cox regression model to establish the most 

predictive models of KIRC based on AS events. To 

prove if the predictive models can make a difference 

between the long OS patients and the shorter OS ones, 

Kaplan–Meier curves were performed. And the receiver 

operator characteristic curves were performed to further 

evaluate the efficiencies of each predictive model by 

running survivalROC package in R. 

Construction of splicing factor regulatory network 

 

All the human splicing factors (SFs) were achieved 

from the SpliceAid database (http://www.introni.it/ 

splicing.html) [35]. EdgeR package in R software was 

performed for normalized expression profiles of SFs in 

TCGA-KIRC dataset [36]. The expression values of SFs 

were log2(* + 1)-transformed for further analysis. We 

then conducted univariate Cox regression analysis to 

determine SFs associated with survival. Next, Pearson 

correlation analysis was conducted between the PSI 

value of AS events, which were obtained from previous 

prognostic signature construction, and the expression 

level of prognosis-associated SFs. Then, with a criterion 

of adjusted p < 0.05, we selected the significant 

correlation pairs and used Cytoscape (version 3.5.1) to 

construct the potential SF-AS regulatory network. 

 

Ethical statement of KIRC tissues 

 

Ten paired KIRC tumor and paracancerous tissues  

were obtained through surgery in Zhongnan Hospital  

of Wuhan University, and patients’ clinicopathological 

characteristics are detailed in Supplementary Table  

3. The fresh tumors and paracancerous tissues were 

immediately immersed in liquid nitrogen for subsequent 

experiments. The pathological diagnosis of KIRC  

tumor tissues specimens were independently validated 

by two pathologists. All patients had signed informed 

consents before the study. Using of human KIRC 

tissues was approved by the Ethics Committee of 

Zhongnan Hospital of Wuhan University (Approval No. 

2020102). 

 

Cell culture and transfections 

 

Human KIRC cell lines ACHN was provided  

by Chinese Academy of Sciences, China. MEM 

supplemented with 10% fetal bovine serum was used to 

cultivate the cells. We purchased siRNA and plasmid 

from GenePharma (China). The sense sequences were 

as follows: FMR1-si1, 5′-GTGTTAGTGGCTTCAT 

CAGTT-3′; FMR1-si2, 5′-GCCTGATAGGCAGATTC 

CATT-3′; Control-siFMR1, 5′-UUCUCCGAACGUGU 

CACGUTT-3′. Cell transfection was mediated by 

Lipofectamine 2000 with either plasmid or siRNA. 

 
RNA extraction and qRT-PCR 

 

Human KIRC tumor and paracancerous tissues, and 

ACHN cells were taken to extract cell total RNA  

by following the instruction manual of Qiagen  

RNeasy Kit (Cat. #74101). The RNA was quality 

controlled and reverse transcribed to cDNA. qRT-PCR 

was then conducted using iQ™ SYBR®-Green Supermix  

(Bio-Rad, USA). The primer sequences were as 
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follows: FMR1 forward primer, 5′-

CCAACAAACCTGCCACAAAAG-3′, reverse primer, 

5′-GCACACATTTGCCGTAAGTCTT-3′; GAPDH 

forward primer, 5′-TGCACCACCAACTGCTTAG-3′, 

reverse primer, 5′-GATGCAGGGATGATGTTC-3′. 

 
Protein extraction and WB 

 
ACHN cells were lysed in RIPA buffer for 30 minutes 

on ice. After spinning for 15 minutes at 4°C, the total 

protein included in the supernatant was collected and 

boiled in water bath for denaturation. Then, the protein 

band was separated and detected as we previously 

described [37]. 

 
Cell phenotype experiment 

 
After transfected with plasmid or siRNA, 3000/well 

cells were seeded into 96-well plates. Cell absorbance at 

490 nm was measured every single day after treated with 

MTT and DMSO to evaluate cell viability. Similarly, 

1000/well cells were seeded into 6-well plates for  

10–14 days to perform clonogenic formation assay. The 

clone number was counted after the colony get fixed 

and stained with crystal violet. 

 
For transwell migration assay, 3 × 104 cells were seeded 

into the upper chamber with serum-free medium. Cells 

migrated to the lower chamber containing serum medium 

from the upper chamber after 24 hours incubating. Then, 

the cells were fixed, stained and counted for statistical 

analysis. 

 
Statistical analysis 

 
R software 3.5.0 was used to conduct all the statistical 

analyses. Two-tailed Student’s t-test was chosen to 

investigate if there is a statistical difference between 

two groups. The cutoff probability value was set at P < 

0.05. χ2 test was used to analyze correlations between 

AS events and clinicopathological parameters. As to  

the survival differences, we performed Kaplan-Meier 

survival analysis between the low-/high-risk groups.  

By running survival package in R, we conducted a  

two-sided log-rank test. And by running survivalROC 

package in R, the time-dependent receiver operating 

characteristic (ROC) analysis was conducted to detect 

the prediction accuracy of the predictive model. 

 
Availability of data and materials 

 
Raw data were deposited in The Cancer Genome  

Atlas (TCGA) (https://tcga-data.nci.nih.gov/tcga/). The 

data are available from the corresponding author upon 

reasonable request. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 2. 

 

Supplementary Table 1. Univariate Cox regression analysis of 30 prognosis-associated SFs in KIRC. 

Gene HR Z p-value Lower Upper 

FMR1 0.621467917 −2.732589657 0.006283857 0.441821883 0.874158538 

SRSF11 1.685010272 3.632577011 0.000280605 1.271565409 2.232885227 

HNRNPL 4.007894656 3.844879191 0.000120612 1.975031114 8.133147602 

HNRNPU 0.514504213 −3.357625669 0.00078615 0.349073214 0.758335429 

HNRNPM 0.556213478 −3.307673673 0.000940744 0.392901976 0.78740615 

HNRNPF 0.609952908 −2.425104282 0.01530399 0.409047036 0.909534888 

RBFOX2 0.692545956 −2.488846599 0.012815825 0.518563616 0.924900796 

SF1 0.634492442 −2.465594068 0.013678625 0.441946981 0.910925238 

DAZAP1 2.954170151 5.746926637 9.09E-09 2.04171703 4.274402943 

HNRNPH2 0.567871474 −2.84005707 0.004510546 0.384285946 0.839161604 

HNRNPA0 0.477406745 −3.581171098 0.000342058 0.318526256 0.715536619 

NOVA2 0.772336454 −3.713899717 0.00020409 0.673903698 0.885146646 

TRA2A 2.282696947 5.001379783 5.69E-07 1.651877685 3.154413548 

RBM5 1.497541895 3.025403637 0.002483015 1.152821971 1.945340898 

RBM4 0.581450677 −2.257988013 0.023946407 0.363167429 0.930933952 

RBMX 0.473821151 −3.514962026 0.000439817 0.312417321 0.71861087 

KHDRBS1 0.436892796 −4.195827154 2.72E-05 0.296746777 0.643226246 

KHDRBS3 0.673100149 −4.188333841 2.81E-05 0.559278616 0.810086059 

KHDRBS2 1.12877534 2.156502266 0.031044467 1.01110095 1.260144963 

SRSF4 2.198858748 3.49531939 0.000473495 1.413558342 3.420431722 

SRSF7 2.195549812 3.600427916 0.000317694 1.430926947 3.368752673 

SRSF6 1.406302941 2.136616065 0.032629232 1.0285915 1.922714667 

SRSF1 2.321532401 2.906359483 0.003656611 1.315548722 4.096779236 

SRSF3 0.570910124 −2.194755494 0.028181142 0.346080788 0.941798508 

ZRANB2 1.741171224 3.581635277 0.00034145 1.285425047 2.358501757 

ELAVL2 0.841793727 −3.315809252 0.000913782 0.760317542 0.93200096 

HNRNPA2B1 3.20577654 4.615325615 3.92E-06 1.954706074 5.257569596 

PCBP1 0.741119454 −3.985142818 6.74E-05 0.639583023 0.858775211 

HNRNPLL 0.581399495 −3.05077438 0.00228252 0.410357007 0.823734862 

TIA1 1.809131386 4.769843249 1.84E-06 1.417991835 2.308163059 

 

 

Supplementary Table 2. Correlation analysis of prognostic-associated AS events and prognostic-associated SFs. 
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Supplementary Table 3. Clinicopathological characteristics of ten KIRC samples. 

Sample Age Gender Grade Stage 

1 54 Female 3 I 

2 56 Male 3 III 

3 62 Male 3 II 

4 59 Male 3 I 

5 72 Male 2 I 

6 65 Female 2 I 

7 57 Male 2 II 

8 46 Male 2 II 

9 84 Female 2 I 

10 56 Male 2 I 
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