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INTRODUCTION 
 

Liver cancer is the sixth most commonly diagnosed 

cancer and the third deadliest [1, 2]. There are 

approximately 906,000 new cases of liver cancer and 

830,000 deaths globally every year [3]. Primary liver 

cancer is the fifth most common cancer globally and 

a leading cause of cancer-related deaths. Asian 
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ABSTRACT 
 

HCC, also known as hepatocellular carcinoma, is a frequently occurring form of cancer with an unfavorable 
prognosis. This research constructed a prognostic signature related to ubiquitination and investigated its 
correlation with the response to immunotherapy in HCC. The Molecular Signatures Database provided a 
compilation of genes associated with ubiquitination. A gene signature related to ubiquitination was obtained 
through Cox regression using the Least Absolute Shrinkage and Selection Operator method. The genetic factors 
CPY26B1, MCM10, SPINK4, and TRIM54 notably impacted the outcomes of HCC. The patients were divided into 
two groups: one group had a high risk of poor survival while the other had a low risk but a greater chance of 
controlling HCC progression. Both univariate and multivariate analyses using Cox regression found the risk 
score to be an independent predictor of HCC prognosis. Gene set enrichment analysis (GSEA) indicated 
enrichment in cell cycle and cancer-related microRNAs in high-risk groups. The tumor microenvironment (TME), 
response to immunotherapy, and effectiveness of chemotherapy medications positively correlated with the risk 
score. In the high-risk group, erlotinib showed higher IC50 values compared to the low-risk group which 
exhibited higher IC50 values for VX-11e, AKT inhibitor VIII, AT-7519, BMS345541, Bortezomib, CP466722, FMK, 
and JNK-9L. The results of RT-qPCR revealed that the expression of four UEGs was higher in tumor tissue as 
compared to normal tissue. Based on the genes that were expressed differently and associated with 
ubiquitination-related tumor categorization, we have developed a pattern of four genes and a strong 
nomogram that can predict the prognosis of HCC, which could be useful in identifying and managing HCC. 
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countries have the highest incidence rates [4]. 

Hepatocellular carcinoma (HCC) is the most common 

type of liver cancer, and it is responsible for the 

majority of liver cancer cases. As a result, the 

incidence and mortality rates of liver cancer are high 

[5, 6]. However, over the last twenty years, there has 

been significant progress in the management of HCC 

in mainland China [7, 8]. In China, a meta-analysis of 

11 studies found a 5-year survival rate of 14.8% [9]. 

A retrospective study of 2887 HCC cases diagnosed 

between 2002 and 2015 indicated a median survival 

time of 9.0 months [10]. 

 

The process of ubiquitination involves attaching a 

ubiquitin molecule to the substrate and plays a crucial 

role in the adaptive mechanisms of highly-invasive, 

rapidly-multiplying cancer cells [11–13]. E3 ligase is 

necessary for ubiquitination, as it controls a wide range 

of cellular functions by transferring ubiquitin (Ub) to 

the substrate. The control mechanism that determines 

the exactness of the procedure is strongly linked to  

the development of cancer and the advancement of 

tumors [14]. Furthermore, the ubiquitination process 

could indicate the breakdown through proteasomes 

(degradative ubiquitination) or modification of function 

(regulatory ubiquitination) [15]. The previous studies 

extensively explored the incorporation of trans-

criptomics and ubiquitination, using statistical testing 

and machine learning. This led to significant 

advancements and established ubiquitination as a 

crucial characteristic of cancer [13, 16, 17]. Aberrations 

in the ubiquitination process may contribute to the 

diverse nature of lung cancer. Targeting ubiquitin could 

lead to innovative and effective cancer treatments [18, 

19]. Therefore, it is crucial to detect resilient tumor-

related ubiquitination biomarkers, which have the 

potential to enhance the detection and prediction of 

HCC and aid in the advancement of novel therapeutic 

approaches. 

 

METHODS 
 

Data profiles 

 

The transcription statistics data, which is measured in 

fragments per kilobase of exon model per million reads 

mapped (FPKM), along with important clinical 

information such as age, sex, clinic grade, pathological 

stage, and T stage, were obtained from the Cancer 

Genome Atlas (TCGA) LIHC project. If the clinical 

grade cannot be determined as GX, it is highly 

differentiated as G1, moderately differentiated as G2, 

poorly differentiated as G3, and undifferentiated as G4. 

Pathological stage I refers to tumors that exceed 2 cm, 

but none of them affect blood vessels in the liver. They 

can spread to veins, arteries, and bile ducts. Stage II 

refers to tumors with a size exceeding 2 cm but not 

exceeding 5 cm, which have spread to blood vessels, 

veins, and arteries without lymph nodes or distant 

metastasis. Phase III tumors have a diameter greater 

than 5 cm and have not spread to lymph nodes, but may 

have spread to nearby organs or peritoneum without 

distant metastasis. Phase IV tumors have already shown 

intrahepatic metastasis or spread to surrounding organs 

and lymph nodes, or distant organ metastasis. You can 

find the relevant details in Supplementary Table 1.  

To validate the signature, we obtained an additional 

microarray dataset from the database of the 

International Cancer Genome Consortium (ICGC). We 

utilized the HCC models proposed by Liu et al., Zhang 

et al., Xie et al., and Li et al. to test and demonstrate the 

advantages of our prognostic signature related to 

ubiquitination. [20–23]. 

 

Analysis of genes related to ubiquitination using 

consensus clustering 

 

A set of 79 genes related to ubiquitination (URGs) 

was obtained from the MSigDB database. You can 

find these genes listed in Supplementary Table 2. To 

categorize HCCs based on the expression of URGs, 

an unsupervised clustering analysis was performed 

using the ConsensusClusterPlus R package. This 

analysis aimed to separate the HCCs into distinct 

clusters [24]. 

 

The correlation among molecular subtypes, clinical 

characteristics, and prognosis of HCC 

 

To determine the medical relevance of the two 

subcategories discovered through harmony gathering, 

we examined the relationships among the different 

molecular subtypes, clinicopathological characteristics, 

and prognostic outcomes. The patient’s attributes 

included age, sex, clinic grade, pathological stage, and 

T stage. To assess the differences in overall survival 

(OS) between various subtypes, we used Kaplan-Meier 

curves generated by the R packages ‘survminer’ and 

‘survival’ [25]. 

 

Clusters associated with ubiquitination in the tumor 

microenvironment 

 

The presence of immune cell infiltration in the tumor 

microenvironment (TME) of ubiquitination-associated 

clusters was determined using the CIBERSORT 

algorithm. Next, the limma algorithm was used to 

identify differences in immune and stromal cell 

categories, which were then presented through violin 
plots [26]. The R software packages, limma, and 

CIBERSORT, were utilized to display this 

information. 
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Creating and verifying a prognostic marker for 

HCC 

 

We received raw mRNA expression data from the 

TCGA-LIHC project, which we then normalized. To 

identify the downstream genes affected by URGs, we 

analyzed the ubiquitination-related clusters using the R 

limma package. We considered statistical significance 

with p-values less than 0.05 and absolute log2 fold 

change greater than 1 [26]. Univariate Cox regression 

analyses were used to classify prognostic DEGs at p < 

0.05. Then, LASSO regression and multiCox analysis 

were performed to establish a predictive signature for 

HCC [27]. 

1
prognosis index (PI) = Coe ( ) Expr( )

n

i
f i i

=
  

Patients from TCGA-LIHC were divided into low and 

high-risk subgroups based on their median risk score. 

The training set was randomly selected from half of the 

TCGA-LIHC dataset, while the other half of the 

patients were assigned as the internal test set. We 

acquired an extra microarray dataset (ICGC-LIRI-JP) 

from the ICGC database to validate the ubiquitination-

related signature as the external test set. To compare the 

survival between two groups in the training and test 

sets, we utilized the Kaplan-Meier plotter from the R 

survival package. Receiver operating characteristic 

(ROC) curves were used to assess the prognostic 

capability of the ubiquitination-associated pattern for 

hepatocellular carcinoma (HCC) survival at 1-, 3-, and 

5-year intervals with area under the curve (AUC) 

benchmarks [28]. The TCGA-LIHC dataset was used to 

present the survival outcome of individuals with HCC. 

To differentiate between low- and high-risk HCC 

patients, their separation was assessed using principal 

component analysis (PCA) and t-distributed stochastic 

neighbor embedding (t-SNE) analysis [29, 30]. To 

better understand the predictive properties of the 

signature, we performed univariate and multivariate 

Cox regression analyses to identify the independent risk 

factors for HCC. The variables taken into account in the 

analysis were the risk score, age, gender, clinical grade, 

pathological stage, and T stage. 

 

Creating and validating the nomogram 

 

To improve the predictive significance, we constructed 

a nomogram using ubiquitination-associated genes and 

novel features. We used the R packages ‘rms’ and 

‘regplot’ for this purpose [31]. To predict patient 

survival rates at 1, 3, and 5 years, the nomogram was 

utilized. The accuracy of the nomogram was assessed 
using calibration curves [32]. To evaluate the robustness 

of the predictive nomogram, we conducted ROC 

analyses [33]. 

Identification and annotation of DEG functions 

 

To investigate the possible cellular roles and enriched 

pathways of downstream genes of URGs, analyses of 

functional enrichment were conducted on the DEGs 

using the ‘cluster profiler’ R package [34], which 

included GO and KEGG. By utilizing GSEA, we were 

able to identify pathways that exhibited differential 

enrichment in low- and high-risk HCC. 

 

Analysis of subgroups with low and high risk of 

HCC 

 

By examining the link between ubiquitination-related 

patterns and clinical characteristics, we could gain 

valuable insight into the risk disparities among 

subgroups of HCC patients. To achieve this, we 

thoroughly evaluated age, gender, clinic grade, 

pathological stage, and T stage. With this information, 

we could better understand the factors that contribute to 

risk. The Kaplan-Meier method was utilized to 

investigate the differences in survival rates among HCC 

patients with varying risk levels across different 

subcategories. The results provided valuable insights 

into the disparities in HCC patient outcomes. 

 

Analysis of TME and the response to 

immunotherapy in HCC with varying risk levels 

 

Pearson’s coefficient was utilized to assess the 

relationship between the ubiquitination-associated pattern 

and genes involved in immune regulation, immune 

checkpoint, and diverse immune cell types. Timer, Xcell, 

Quantiseq, MCPcounter, EPIC, and Cibersort procedures 

[35–39] were utilized to create a bubble chart illustrating 

the infiltration of immune cells in low- and high-risk 

HCC. The calculation of TIDE scores was performed  

to forecast the response to immunotherapy. The 

effectiveness of a possible anti-PD-1 treatment was 

assessed by analyzing the IMvigor 210 cohort [40]. 

 

Assessment of the susceptibility to drugs in 

hepatocellular carcinoma (HCC) with varying levels 

of risk 

 

To forecast the sensitivity of drugs in HCC patients 

with varying risks, the R package called ‘pRRophetic’ 

was utilized [41]. The raw dataset was obtained from 

the GDSC database, with the half-maximal inhibitory 

concentration (IC50) serving as the reference point. 

 

RT-qPCR 

 
TRIzol was utilized to extract Total RNA from both 

Tumor tissue and normal tissue, which was then 

reverse-transcribed into cDNA. The qPCR master mix 
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was utilized for RT-qPCR. The experiments were 

repeated three times at least, and the Ct values were 

standardized to the internal reference gene, GAPDH, 

using the 2−ΔΔCT technique. 

 

The following primer sequences were used: 5′-GGAG 

CGAGATCCCTCCAAAAT-3′ (forward) and 5′-GGCT 

GTTGTCATACTTCTCATGG-3′ (reverse) for GAPDH; 

5′-GGCAACGTGTTCAAGACGC-3′ (forward) and  

5′- TGCTCGCCCATGAGGATCT-3′ (reverse) for 

CYP26B1; 5′-TGTCCCTGCGCTACCAAGA-3′ 

(forward) and 5′-GATGAGCTTTTGGGATCTGGAG-

3′ (reverse) for MCM10; 5′-CAGTGGGTAATCGCC 

CTGG-3′ (forward) and 5′-CACAGATGGGCATTCT 

TGAGAAA-3′ (reverse) for SPINK4; and 5′-ATC 

GTGCAGGCATGAGGTTG-3′ (forward) and 5′-CCTC 

GCACATGAGGTGCTG-3′ (reverse) for TRIM54. 

 

 Immunohistochemistry 

 

Immunohistochemistry was utilized to investigate the 

expression of CYP26B1, MCM10, SPINK4, and 

TRIM54 in liver tissue. Tumor tissues were collected 

from patients after surgery confirmed HCC by pathology. 

Normal tissues were collected from patients after surgery 

confirmed not HCC by pathology. All patients were 

informed consent before surgery. Formalin-fixed, 

paraffin-embedded sections (5 μm) were treated with 

xylene to remove the wax and subsequently rehydrated in 

a descending gradient of alcohol solutions. Sections were 

then incubated with sodium citrate (0.01 mol/L, pH 6.0) 

at 100°C for 15 minutes to repair the antigen. To 

eliminate the influence of endogenous peroxidases, 3% 

hydrogen peroxide was used. The sections were then 

blocked and incubated with antibodies overnight at 4°C. 

Following this, the sections were washed and incubated 

with secondary antibodies for 2 hours at 37°C. The 

immunocomplexes were visualized as brown pigments 

using diaminobenzidine. After staining with hematoxylin, 

the slides were dehydrated with alcohol and cleared in 

xylene. Representative images were captured with light 

microscopy. 

 

Statistical analysis 

 

All calculations and statistical data were generated with 

the R software (version 4.0.3). p < 0.05 was deemed to 

be statistically significant. 

 

RESULTS 
 

Detecting clusters associated with ubiquitination in 

HCC 

 

To comprehend the importance of URGs in the process 

of tumor development, we employed a consensus 

clustering algorithm to categorize HCC based on the 

mRNA expression of 79 URGs. Figure 1A, 1B 

displayed the agreement cumulative distribution 

function (CDF) of reliable clustering for values of k 

ranging from 2 to 9. The cohort in our dataset was 

organized into clusters 1 and 2 (Figure 1C), with k = 2 

being deemed the optimal selection. We separated the 

HCCs from the TCGA-LIHC project into two clusters. 

Compared with cluster 1, cluster 2 has a better 

prognosis. Cluster 1 showed higher clinical grade, 

pathological stage, and T-stage, indicating a possible 

association between cluster 1 and increased tumor 

stage in HCC. According to the data presented in 

Figure 1D–1F, cluster 2 exhibited a stronger 

association with a lower T stage, pathological stage, 

and clinic grade compared to cluster 1. Cluster 2 

exhibited a greater survival rate than cluster 1 based on 

the Kaplan–Meier curve (p = 0.006; Figure 1G), 

indicating that lower T staging, pathological staging, 

and clinical grading are associated with good 

prognosis. Furthermore, the clinicopathological 

distributions of the various HCC subtypes 

demonstrated significant variations in URG expression 

and clinicopathological features (Figure 1H), which 

reminded us to further study the relationship between 

URG expression and the prognosis of HCCs. 

 

According to the CIBERSORT algorithm, cluster 2 

exhibited a notable increase in immune cell infiltration, 

specifically M1 macrophages, masting cells, M2 

macrophages, Monocytes, and resting CD4 memory 

T cells, in comparison to cluster 1 (Figure 2). 

 

Identification and validation of a prognostic 

signature related to ubiquitination in HCC 

 

Limma, a preset program of R, was utilized to identify 

ubiquitination-related DEGs to understand the 

biological function of the ubiquitination process. To 

understand the potential interrelation between survival 

rate and gene expression of patients, we analyzed the 

prognostic significance of DEGs during the progression 

of HCC. Univariate Cox regression analysis was 

utilized to examine the correlation between two survival 

clusters and gene expression levels. The analysis of 

LASSO Cox regression confirmed the strong gene 

signature associated with ubiquitination. Through 

LASSO analysis, a set of 7 genes was identified (Figure 

3A, 3B) that can be utilized for the development of  

a prognostic model. Subsequently, a 4-gene signature 

(CYP26B1, MCM10, SPINK4, and TRIM54) was 

obtained by conducting a multiCox analysis. Based on 

Figure 3C, HCC patients were categorized into low- and 
high-risk groups using the median value. According to 

our maps indicating survival and risk status, the groups 

classified as high-risk experienced a higher number of 
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fatalities compared to the low-risk groups. Figure 3D 

shows a heatmap that was created to exhibit the levels 

of expression of different expressed URGs in both 

groups. Furthermore, a significant distinction was noted 

between the two groups via t-SNE and PCA 

examination (Figure 3E, 3F). According to Figure 3G, 

the curve of Kaplan–Meier showed a notable variation 

in OS between the low- and high-risk groups 

(p < 0.001). To assess the predictiveness of the HCC 

signature, we generated ROC curves. The analysis of 

the ROC curve showed a notable prognostic impact for 

HCC using the risk model, with AUC values of 0.784, 

0.730, and 0.773 for 1-, 3-, and 5-year survival, 

respectively (Figure 3H), indicating that patients who 

had low risk experienced better prognosis compared to 

those with high risk. 

 

 

 
Figure 1. Clinical pathology and prognostic value of two distinct subgroups of patients divided by consistent clustering.  

(A) Consensus CDF in consistent clustering (k = 2–9). (B) Delta area curve of consensus clustering. (C) Consensus clustering matrix. (D–F) 
Differences in clinical pathology features between the two clusters. C1, cluster 1; C2, cluster 2. (G) Kaplan–Meier (K–M) survival analysis of 
the three subgroups. (H) Heatmap of DEG expression profiles in three subgroups. 
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The construction and verification of the risk 

signature 

 

To ensure the stability and precision of the prediction 

signature, we evenly split all HCC patients in TCGA-

LIHC into the internal training and test set. We 

obtained an additional microarray dataset (ICGC-

LIRI-JP) from the ICGC database as an external test 

set for validating the risk-related signature. Survival 

analysis using the K-M method was performed on the 

internal-test set, internal-all set, and external-test set. 

We found that low-risk HCC patients had a 

considerably more favorable prognosis compared to 

high-risk HCC patients (p = 0.010, p < 0.001, and  

p < 0.001, respectively) (Figure 4A–4C). The analysis 

of the ROC curve demonstrated that the AUCs  

of survival rate in the internal-test set were 0.753  

(1-year), 0.706 (3-year), and 0.681 (5-year). In the 

internal-all set, the AUCs were 0.762 (1-year), 0.702 

(3-year), and 0.673 (5-year). Furthermore, in the 

external-test set, the AUCs were 0.736 (1-year), 0.716 

(3-years), and 0.856 (5-years), indicating the 

consistent and reliable predictive ability of the 

signature (Figure 4D, 4E). These results further 

confirmed that the prognosis of high-risk patients was 

worse than low-risk patients. 

 

 

 
Figure 2. Infiltration of immune cells in the two groups. The two clusters display a violin plot illustrating dendritic cells, M0 

macrophages, M1 macrophages, M2 macrophages, resting mast cells, monocytes, CD4 memory-activated T cells, CD4 memory resting 
T cells, and regulatory T cells (Tregs). Cluster 1 is referred to as C1, while Cluster 2 is known as C2. 
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Evaluation of the practical usefulness of the 

prognostic indicator 

 

Afterward, an examination was conducted to explore 

the correlation between the clinical attributes and risk 

scores. Subgroup analysis was conducted to validate the 

trustworthiness of the risk model. We confirmed the 

variations in survival rates among different cancer 

subgroups, such as age, gender, Grade stage, T stage, 

and clinic stage (Figure 5). The results indicate that 

 

 
 

Figure 3. Creation of a signature related to ubiquitination from four genes in various clusters of HCC patients.  LASSO Cox 

regression analysis penalizes genes that are expressed differentially (DEGs). (A, B) Cross-validation of potential genes using the lowest 
lambda value. (C) The risk score determines the survival time and status of every patient with HCC. (D) The expression of the four URGs in 
the low- and high-risk groups can be visualized through a heatmap. (E, F) Analysis of the signature using principal component analysis (PCA) 
and t-distributed stochastic neighbor embedding (t-SNE) was performed. (G) Comparative analysis of survival rates in two different risk 
subcategories. (H) The accuracy of the signature can be evaluated by analyzing the ROC curves for 1, 3, and 5 years. 
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compared to the low-risk group, the high-risk group had 

a more unfavorable prognosis. Multivariate Cox 

analysis demonstrated that our risk-related signature 

possessed autonomous predictive significance. The 

existing analysis of additional stratification for different 

clinical features had also established robust prediction 

capabilities for signature. 

The construction and verification of the prognostic 

nomogram 

 

Compared to another four published signatures for 

HCC, our signature had more advantages. To assess the 

precision and consistency of the predictive signature, 

we discovered that our signature had a concordance 

 

 
 

Figure 4. Validation of the risk signature. Survival analysis using the K-M method was performed on three different sets: the TCGA-test 

set (A, D), the TCGA-all set (B, E), and the ICGC-LIRI-JP set (C, F). To assess the precision of the signature, we utilized ROC curves for 1-, 3-, 
and 5-year intervals. 
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index (C-index) of 0.7, which outperformed the C-index 

values of the other four predictive signatures for HCC 

(0.631, 0.658, 0.624, 0.641, respectively) as shown in 

Figure 6A. Risk scores were considered as independent 

analytical indicators by using analyses of multivariate 

and univariate Cox regression (Figure 6B, 6C). A 

prognostic nomogram was utilized to generate distinct 

numerical probabilities for OS (Figure 6D), with 

considering various risk scores and clinical characters. 

We generated the calibration curve of the nomogram, 

and accurately predicted the 1, 3, and 5-year OS in 

comparison to the ideal model (Figure 6E). ROC curves 

were employed to assess the accuracy of the prognostic 

of the nomogram and the other signatures. As was 

shown in Figure 6F–6H, the AUC values for survival 

were 0.649 (1-year), 0.744 (3-year), and 0.811 (5-year). 

The nomogram had a stronger long-term predictive 

ability for prognosis than risk scores and other clinical 

characters. 

 

Analyzing the immune response variations within 

different subcategories 

 

Prior research has indicated that tumor micro-

environment (TME) plays an important role in the 

progression of tumors. To examine the variations  

in immune-related annotations and immune cell 

infiltration among subtypes, we conducted ssGSEA. 

Using seven distinct algorithms, we estimated the 

variances in infiltration of immune cells among 

subtypes, as depicted in Figure 7A. The bubble chart 

demonstrated the correlation between the immune cells 

and risk score. According to the prior investigation, we 

categorized individuals with HCC into four subtypes of 

 

 
 

Figure 5. Comparative survival analysis among high- and low-risk groups across various clinical subgroups. 
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tumor immune microenvironment (TIME), which are 

immune activation (C1), immune suppression (C2), 

immune exclusion (C3), and immune residence (C4) 

phenotypes (as shown in Figure 7B). The C1 and C2 

subtypes have a higher proportion of individuals in the 

group of high-risk, whereas the C3 and C4 subtypes 

have a higher proportion of individuals in the group of 

low-risk. In the low-risk subgroup, B cells, DC, CD8+ 

T cells, neutrophils, mast cells, NK cells, T helper cells, 

pDC, and TIL infiltrated more frequently, whereas 

aDCs, Th1 cells, iDC, Th2 cells, macrophages, Tfh, and 

Tregs infiltrated more frequently in the group of  

high-risk (Figure 7C). The group of low-risk typically 

exhibited greater significance in terms of CCR, 

cytolytic function, promotion of inflammation, response 

to Type I IFN, response to Type II IFN, and co-

stimulation of T cells. Figure 7D demonstrates that the 

high-risk group typically exhibits greater importance in 

terms of other immune-related functions. High TIDE 

was also linked to the low-risk score (Figure 7E). 

Immunotherapy responses were significantly correlated 

with groups containing low- and high-risk samples, and 

it was observed that therapy responses were better in 

HCC patients classified as high-risk (Figure 7F). 

 

Conducting functional enrichment analysis for HCC 

with high and low risk 

 

To further explore the presumed cellular role and 

pathway of HCC patients at high and low risk, the 

 

 
 

Figure 6. Assessing the durability of the gene signature associated with ubiquitination and creating the nomogram.  (A) 

Evaluating four HCC models for comparison. (B) Cox analysis for TCGA-all set, considering only one variable at a time. (C) Cox analysis for 
TCGA-all set, considering multiple variables as independent factors. (D) The risk score and clinicopathological factors were used to create a 
predictive nomogram. (E) Calibration curves were created to compare the suggested nomogram with a perfect model. ROC curve analysis 
using multiple indices was conducted to examine the clinicopathological manifestations and nomogram for survival at 1-, 3-, and 5-year 
intervals (F–H). 
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DEGs between the two subgroups were determined 

using the benchmarks of FDR < 0.05 and p < 0.05. 

According to the BP analysis, the three most enriched 

functions were processes related to the division of 

organelles, processes related to nuclear division, and 

processes related to chromosome segregation (Figure 

8A). According to the CC analysis, the chromosomal 

region, spindle, and microtubule were identified as the 

 

 
 

Figure 7. Evaluation of the infiltration of immune cells. (A) The XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-ABS, 
and CIBERSORT algorithms were utilized to conduct correlation analysis between risk score and various immune cells. (B) The prevalence of 
TIME subtypes among TCGA patients. (C) Graphical representation of the infiltration of immune cells using a boxplot. (D) Boxplot 
illustrating the functionality of the immune system. (E) The TIDE score difference between the high-risk and low-risk groups. (F) Evaluating 
the risk score between the CR/PR and SD/PD groups. CR represents complete response, PR represents partial response, SD represents 
stable disease, and PD represents progressive disease. 
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three most enriched functions (Figure 8A, 8B). 

According to the MF analysis, it was confirmed that the 

functions of binding to tubulin, binding to microtubules, 

and hydrolyzing ATP were the most enriched activities 

(as shown in Figure 8A, 8B). Based on the KEGG 

analysis, the five most enriched pathways were cell 

cycle, microRNAs in cancer, cellular senescence, 

oocyte meiosis, and infection of human T-cell leukemia 

virus 1 (as shown in Figure 8C, 8D). These four URGs 

may utilize the P53 signaling pathway as a potential 

 

 
 

Figure 8. Investigation of the gene signature related to ubiquitination in the entire TCGA dataset using functional analyses.  

(A, B) Performing GO enrichment analysis on differentially expressed genes (DEGs) between the high-risk and low-risk groups. (C, D) 
Performing KEGG enrichment analysis on differentially expressed genes (DEGs) between the high-risk and low-risk groups. (E) Analysis of 
gene set variation (GSVA) in the high-risk and low-risk groups. 
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pathway. Furthermore, as depicted in Figure 8E, the 

GSVA heatmap revealed notable variations in 

enrichment functions between the high and low-risk 

cohorts. 

 

Anticipating responsiveness to chemotherapy 

medications 

 

At present, chemotherapy continues to be the primary 

approach for adjuvant treatment in patients diagnosed 

with HCC. Nevertheless, numerous individuals tend to 

acquire resistance to medications used in chemotherapy. 

In this present investigation, we anticipated the reaction 

of subsets to specific chemotherapy medications 

(Figure 9). The findings indicated that VX-11e, AKT 

inhibitor VIII, AT-7519, BMS345541, Bortezomib, 

CP466722, FMK, and JNK-9L exhibited greater 

effectiveness in treating low-risk HCC patients, 

implying potential benefits for this specific group of 

patients. Furthermore, it was discovered that HCC 

patients at high risk exhibited elevated estimated IC50s 

for erlotinib compared to those at low risk. 

 

Real-time quantitative polymerase chain reaction 

 

Predictive biomarkers for HCC were confirmed to be 

four genes that formed the ubiquitination-related 

signature. As shown in Figure 10, the mRNA 

expression of CYP26B1, MCM10, SPINK4, and 

TRIM54 was compared and measured using RT-qPCR

 

 
 

Figure 9. Prediction of the response to chemotherapy using a gene signature associated with ubiquitination. 
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to determine transcription levels. Tumor tissues 

exhibited elevated expression levels of CYP26B1, 

MCM10, SPINK4, and TRIM54 compared to normal 

liver tissues, as indicated by the results.  

 

 Immunohistochemistry of the UEGs in liver tissue 

 

Immunohistochemistry analysis showed that CYP26B1, 

MCM10, SPINK4, and TRIM54 were highly expressed 

in tumor tissue compared to normal tissue (Figure 11). 

Tumor tissues exhibited high expression levels of 

CYP26B1, MCM10, SPINK4, and TRIM54 in the 

current study. 

 

DISCUSSION 
 

HCC ranked among the most prevalent cancers 

globally, leading to significant mortality rates. It was 

highly significant to identify dependable and efficient 

biomarkers for the prognosis of HCC. Extensive 

research has been conducted on various genes expressed 

in HCC tissues. The growth and spread of tumors can 

be facilitated by cancer cells through the targeted 

inhibition or enhancement of certain mRNA 

translations, ultimately resulting in reduced survival 

rates for individuals with cancer. In a comprehensive 

HCC cohort, consisting of a validation dataset and a 

testing dataset, we discovered a unique signature 

associated with ubiquitination. This signature exhibited 

high levels of sensitivity and specificity. 

 

The process of protein dynamic modulation associated 

with proliferation, cell growth, and survival was 

important for different cellular processes through 

ubiquitination. Prior studies have shown that E3 

ubiquitin ligases and deubiquitinases play an important 

role in regulating tumor spread [42, 43]. Nevertheless, 

the precise function of protein ubiquitination in the 

HCC microenvironment remained unclear. Therefore, 

further investigation on URG in the TME is quite 

important for research on novel clinical treatment 

methods. In our current investigation, it was observed 

that HCC exhibited significant upregulation of 

CYP26B1, MCM10, SPINK4, and TRIM54, which 

were associated with an unfavorable prognosis.  

A novel prognosis prediction method of HCC was 

generated by constructing a 4-gene signature using 

DEGs from ubiquitination-related tumor classification. 

Additionally, a multifactorial analysis was employed to 

assess the signature’s significance in risk stratification, 

immune activity, and chemotherapy response among 

HCC patients. 

 

 
 

Figure 10. Validation of CYP26B1, MCM10, SPINK4, and TRIM54 through prognostic analysis and RT-qPCR. 
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For hepatocellular carcinoma (HCC), we performed a 

tumor classification using a 4-gene signature 

(CYP26B1, MCM10, SPINK4, and TRIM54) derived 

from differentially expressed genes (DEGs) associated 

with ubiquitination. The functions of these genes were 

significant in different types of cancers, including HCC. 

According to Wang and colleagues was discovered that 

CYP26B1 had a significant presence in the retinoic acid 

metabolic process and the retinol metabolism pathway, 

exerting a crucial influence on the advancement of 

cervical cancer across various age brackets [44]. 

According to Chen and colleagues was documented that 

oral squamous cell carcinoma exhibited a notable 

upregulation of CYP26B1 [45]. The overabundance of 

MCM10 was linked to unfavorable outcomes in cases of 

ovarian cancer and prostate cancer [46, 47]. The authors 

Hu et al. SPINK4 was discovered to enhance the growth 

of colorectal cancer cells while suppressing ferroptosis 

[48, 49]. TRIM54 was highly expressed in gastric 

cancer cells and tissues, and high expression of 

TRIM54 was correlated to decreased survival rate of 

patients with gastric cancer [50]. Despite the unknown 

connection between these genes and HCC, we 

showcased their ability to predict the prognosis of HCC 

and verified the unfavorable result of high-risk HCC 

determined by the signature derived from gene 

expression. 

 

Although multiple staging and prognostic systems have 

been developed, none are universally applicable or 

agreed upon for predicting survival, and most of them 

do not include effective biomarkers. As was previously 

published, Liu et al. [20] found that mitophagy was 

closely related to the immune microenvironment, 

immune checkpoint (IC) related genes, Cancer stem 

cells (CSCs), and prognosis in HCC patients. They

 

 
 

Figure 11. Immunohistochemistry of CYP26B1, MCM10, SPINK4, and TRIM54 expression in tumor tissue and normal tissue. 

10156



www.aging-us.com 16 AGING 

constructed a signature containing four mitophagy-

related genes (MRGs) to predict the prognosis of HCC 

patients. However, the results have not been further 

elucidated and validated in vitro and in vivo. Zhang 

et al. [21] constructed and validated a stemness-

hypoxia-related prognostic signature that can be used to 

predict the efficacy of IC inhibitor therapy. They also 

verified that C7, CLEC1B, and CXCL6 were indeed 

associated with stemness and hypoxia through a 

hypoxic cell model. Similarly, there was no result of 

in vitro and in vivo experiments. Xie et al. [22] 

constructed and validated a prognostic risk model based 

on 5 cuproptosis-related immune checkpoint genes 

(CRICGs). In the meantime, they evaluated the 

potential correlation between the signature and 

clinicopathological characteristics, tumor immunity, and 

somatic mutation. In this paper, they applied the cell 

lines for expression level validation. Li et al. [23] 

established a new prediction signature of eight genes 

related to cuproptosis and the tricarboxylic acid cycle 

(TCA) process. These research findings had their 

advantages and disadvantages, but our signature had a 

higher C-index of 0.7, which outperformed the C-index 

values of the other four predictive signatures for HCC 

(0.631, 0.658, 0.624, 0.641, respectively). 

 

Two clusters of ubiquitination were created and 

validated in our research to enhance the prediction of 

HCC outcomes. Cluster 2 had a better prognosis 

compared to Cluster 1. Cluster 1 exhibited higher clinic 

grade, pathological stage, and T stages compared to 

cluster 2, suggesting a potential correlation between 

cluster 1 and an elevated tumor stage of HCC. 

 

Upon comparing the immune cell infiltration in the two 

clusters, it was observed that cluster 2 exhibited 

significant enrichment of M1 macrophages, M2 

macrophages, resting CD4 memory T cells, masting 

cells, and Monocytes. The analysis of LASSO Cox 

regression confirmed the strong gene signature 

associated with ubiquitination. The patients who had 

low risk experienced better prognosis compared to those 

with high risk. The positive performance of the 

signature was confirmed by the ROC curves at 1, 3, and 

5-year intervals. To ensure the stability and precision of 

the prediction signature, we evenly split all HCC 

patients in TCGA-LIHC into the internal training and 

test set. To validate the risk-related signature, we 

obtained an additional microarray dataset (ICGC-LIRI-

JP) from the ICGC database as an external test set. The 

existence analysis of additional stratification for 

different medical subgroups has also established robust 

prediction capabilities for features. Both multivariate 
and univariate Cox analysis demonstrated that our risk-

related signature possessed autonomous predictive 

significance. Compared to another four published 

signatures for HCC, our signature had more advantages. 

Next, we utilized a nomogram approach to enhance the 

effectiveness of the prognostic indicator by taking into 

account clinical characteristics such as age, gender, 

clinical grade, pathological stage, T stages, and risk 

scores. Overall survival of HCC patients was accurately 

predicted by this significant model. 

 

Afterward, we conducted a functional examination of 

DEGs between the low and high-risk groups to 

investigate the potential pathways and functions 

associated with the 4-gene signature. The GO 

enrichment analysis showed that these DEGs were 

associated with the ‘chromosomal region’, ‘organelle 

fission’, and ‘nuclear division’, indicating a correlation 

between these DEGs and cell proliferation. The 

outcome aligned with the KEGG enrichment analysis, 

indicating notable enrichment of terms such as ‘cell 

cycle’, ‘microRNA in cancer’, and ‘P53 signaling 

pathway’. Tumorigenesis is primarily driven by 

abnormalities in the progression of the cell cycle. An 

increasing amount of evidence suggests that the cell 

cycle regulatory pathway connects with other 

characteristics of cancer, such as alterations in 

metabolism and evasion of the immune system. 

Therefore, these four differentially expressed genes 

(DEGs) could potentially serve as viable targets for 

anti-cancer treatment. 

 

The role of TME is crucial in HCC immunotherapy. 

Examining TME can enhance our comprehension of 

how ubiquitination impacts the prognosis of individuals 

with HCC. Consequently, we evaluated the distribution 

of different immune cells in HCC by employing six 

widely utilized algorithms. B cells, DC, CD8+T cells, 

mast cells, NK cells, neutrophils, T helper cells, pDC, 

and TIL significantly infiltrated the TME in patients 

with low risk. Regulating the immune response against 

tumors, these immune cells have the potential to impact 

the development of HCC. Additional investigations 

uncovered that the low-risk group exhibited enrichment 

in CCR, cytolytic function, promotion of inflammation, 

co-stimulation of T cells, response to Type I IFN, and 

response to Type II IFN. Furthermore, we assessed the 

efficacy of specific chemotherapy treatments for various 

subcategories of HCC. The findings indicated that 

patients classified as low-risk exhibited greater 

estimated IC50 values for 8 chemotherapy medications 

(VX-11e, AKT inhibitor VIII, AT-7519, BMS345541, 

Bortezomib, CP466722, FMK, and JNK-9L) compared 

to those classified as high-risk. The potential of these 

findings can help in determining the choice of treatment 

for every patient with HCC. 
 

The diversity of HCC can be observed through our 

distinctive mark in terms of ubiquitination, and we 
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validate its potential as a predictive tool for survival 

rate, immune activity, and treatment response. 

 

To summarize, our research discovered a four-URG 

pattern linked to immune infiltration and responsiveness 

to medication. The accuracy of the prediction model 

was verified by utilizing both training and test sets. The 

findings indicated that this unique marker has the 

potential to serve as a new indicator for predicting 

survival and prognosis, offering an individualized 

approach to treating HCC. Nevertheless, the precise 

mechanism of URG remains undisclosed and 

necessitates further investigation. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Supplementary Table 1. Clinical information such as age, sex, clinic grade, pathological stage, and T stage, were 
obtained from the Cancer Genome Atlas (TCGA) LIHC project. 

Covariates Type Total Test Train P-value 

Age ≤65 232 (62.7%) 105 (56.76%) 127 (68.65%) 
0.024 

Age >65 138 (37.3%) 80 (43.24%) 58 (31.35%) 

Gender FEMALE 121 (32.7%) 61 (32.97%) 60 (32.43%) 
1 

Gender MALE 249 (67.3%) 124 (67.03%) 125 (67.57%) 

Grade G1 55 (14.86%) 23 (12.43%) 32 (17.3%) 

0.2791 

Grade G2 177 (47.84%) 97 (52.43%) 80 (43.24%) 

Grade G3 121 (32.7%) 57 (30.81%) 64 (34.59%) 

Grade G4 12 (3.24%) 5 (2.7%) 7 (3.78%) 

Grade Unknow 5 (1.35%) 3 (1.62%) 2 (1.08%) 

Stage Stage I 171 (46.22%) 85 (45.95%) 86 (46.49%) 

0.5399 

Stage Stage II 85 (22.97%) 44 (23.78%) 41 (22.16%) 

Stage Stage III 85 (22.97%) 45 (24.32%) 40 (21.62%) 

Stage Stage IV 5 (1.35%) 1 (0.54%) 4 (2.16%) 

Stage Unknow 24 (6.49%) 10 (5.41%) 14 (7.57%) 

T T1 181 (48.92%) 89 (48.11%) 92 (49.73%) 

0.8288 

T T2 93 (25.14%) 48 (25.95%) 45 (24.32%) 

T T3 80 (21.62%) 41 (22.16%) 39 (21.08%) 

T T4 13 (3.51%) 5 (2.7%) 8 (4.32%) 

T Unknow 3 (0.81%) 2 (1.08%) 1 (0.54%) 

M M0 266 (71.89%) 135 (72.97%) 131 (70.81%) 

0.1313 M M1 4 (1.08%) 0 (0%) 4 (2.16%) 

M MX 100 (27.03%) 50 (27.03%) 50 (27.03%) 

N N0 252 (68.11%) 121 (65.41%) 131 (70.81%) 

0.5738 
N N1 4 (1.08%) 2 (1.08%) 2 (1.08%) 

N NX 113 (30.54%) 61 (32.97%) 52 (28.11%) 

N Unknow 1 (0.27%) 1 (0.54%) 0 (0%) 
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Supplementary Table 2. A set of 79 genes related to ubiquitination (URGs) was obtained from the MSigDB 
database. 

BCL10 

CDC34 

CDC73 

CTR9 

DERL1 

H2BC1 

H2BC10 

H2BC11 

H2BC12 

H2BC13 

H2BC14 

H2BC15 

H2BC17 

H2BC3 

H2BC4 

H2BC5 

H2BC6 

H2BC7 

H2BC8 

H2BC9 

HLA-A 

HLTF 

LEO1 

OTULIN 

PAF1 

PCNA 

PEX10 

PEX12 

PEX13 

PEX14 

PEX2 

PEX5 

PRKDC 

RAD18 

RNF144A 

RNF152 

RNF181 

RNF20 

RNF40 

RPS27A 

RRAGA 

RTF1 

SELENOS 

SHPRH 

TMEM129 

10163



www.aging-us.com 23 AGING 

UBA1 

UBA52 

UBA6 

UBB 

UBC 

UBE2A 

UBE2B 

UBE2C 

UBE2D1 

UBE2D2 

UBE2D3 

UBE2E1 

UBE2E3 

UBE2G1 

UBE2G2 

UBE2H 

UBE2J2 

UBE2K 

UBE2L3 

UBE2N 

UBE2Q2 

UBE2R2 

UBE2S 

UBE2T 

UBE2V2 

UBE2W 

UBE2Z 

UCHL3 

USP5 

USP7 

USP9X 

VCP 

WAC 

WDR61 
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