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INTRODUCTION 
 

Primary hepatocellular carcinoma (HCC) is a highly 

invasive malignant tumor posing a significant burden 

on healthcare globally. Its 5-year survival rate is less 

than 21% [1]. HCC is the main type of liver cancer, 

accounting for 90% of all reported liver cancer cases 

and the fourth leading cause of cancer deaths 

worldwide [2]. The development of HCC is driven by 

several factors, among which angiogenesis is the most 

important biological feature considered to be a key 
treatment target [3]. Angiogenesis is a process in 

which new blood vessels are formed from existing 

ones to build new vascular networks. Angiogenesis 

have been implicated in numerous physiological 

processes, like the tissue repair, embryonic 

development and inflammatory response. However, in 

pathological situations, such as tumors, excessive 

angiogenesis provides nutrients and oxygen to tumor 

cells thereby promoting tumor growth, invasion, and 

metastasis [4–7]. HCC is a highly angiogenic tumor, 

and the level of its angiogenesis correlates with the 

degree of the tumor stage, grade, prognosis, and 

therapeutic efficacy [8]. 

 

Angiogenesis is a complex process involving multiple 

cellular and molecular interactions. In this process, 

vascular endothelial growth factor (VEGF) functions 
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ABSTRACT 
 

Microangiogenesis is an important prognostic factor in various cancers, including hepatocellular carcinoma 
(HCC). The Vascular Endothelial Growth Factor (VEGF) has been shown to contribute to tumor angiogenesis. 
Recently, several studies have investigated the regulation of VEGF production by a single gene, with few 
researchers exploring all genes that affect VEGF production. In this study, we comprehensively analyzed all 
genes affecting VEGF production in HCC and developed a risk model and gene-based risk score based on VEGF 
production. Moreover, the model’s predictive capacity on prognosis of HCCs was verified using training and 
validation datasets. The developed model showed good prediction of the overall survival rate. Patients with a 
higher risk score experienced poor outcomes compared to those with a lower risk score. Furthermore, we 
identified the immunological causes of the poor prognosis of patients with high-risk scores comparing with 
those with low-risk scores. 
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as a crucial role, which can bind to its receptor 

(VEGFR), thereby activating multiple signaling 

pathways to regulate the functions of vascular 

endothelial cells, such as proliferation, migration, 

lumen formation, and vascular permeability, etc. [9–

12]. VEGF expression in HCC is modulated by 

various factors, such as hypoxia, inflammation, tumor 

microenvironment, and gene mutations [13–15]. 

VEGF is the dominant factor influencing HCC 

angiogenesis, and its level is closely associated with 

the degree of malignancy, metastatic ability and 

prognosis of HCC [3, 16, 17]. In addition, VEGF not 

only regulates HCC angiogenesis, but also affects the 

biological characteristics of HCC cells, like the 

proliferation, apoptosis, invasion and metastasis [18, 

19]. Therefore, VEGF is an important molecular 

marker and therapeutic target for HCC, and drugs 

targeting VEGF or VEGFR have shown promising 

potential in the clinical treatment of HCC [20–23]. 

 
To date, several prognostic prediction models based on 

angiogenesis-related genes have been developed for 

HCC, but no study has investigated this key factor of 

HCC angiogenesis in detail. Moreover, the role of 

VEGF in hepatocellular carcinoma angiogenesis is not 

fully understood [24– 27]. Moreover, considering the 

heterogeneity and complexity of hepatocellular 

carcinoma, the detection and inhibition of VEGF or 

VEGFR alone may not be sufficient to reflect and 

predict the angiogenic status and therapeutic efficacy 

of HCC [28]. Therefore, it is necessary to explore the 

gene expression profiles of VEGF from a global 

perspective to build a gene signature that might 

comprehensively assess and predict microangiogenesis 

and prognosis of HCC patients. For our design, we 

constructed a gene signature capable of predicting 

microangiogenesis and prognosis of HCC by screening 

genes associated with VEGF production. Its clinical 

significance and biological function in HCC were 

validated. 

 

MATERIALS AND METHODS 
 

Public data and collection of samples  

 

Clinical, molecular, and whole-genome RNA-seq 

expression data were downloaded from TCGA database 

(https://portal.gdc.cancer.gov/). After exclusion of 

samples without prognostic information or incomplete 

clinical information, 374 HCC samples were included. 

In addition, the TCGA database was used to obtain 

whole-genome RNA-seq expression data of 50 normal 

liver samples. A total of 232 HCC patient samples were 
retrieved from International Cancer Genome 

Consortium (ICGC) database (https://dcc.icgc.org/). 

Moreover, the GSE76427, which includes the 

expression and corresponding clinical data of another 

114 HCC patient samples, was gained from the  

Gene Expression Omnibus (GEO) database (https:// 

www.ncbi.nlm.nih.gov/geo/). The samples were merged 

and standardized to create validation sets. We excluded 

cases with less than or exactly 10 days of survival or 

patients without survival data since they could have 

died from unrelated complications. In such cases, 50 

normal liver samples and 310 HCC samples from 

TCGA, 231 HCC samples from ICGC, and 114 HCC 

samples from GSE76427, were selected for subsequent 

analyses. Furthermore, we considered the possibility of 

batch effects present among different databases as well 

as within the same database. To address this issue, 

“normalize between arrays” function [29, 30] of R 

package “limma” was utilized to remove multiple batch 

influences when merging the mRNA_seq data of ICGC, 

TCGA and GSE76427. 

 

Patient samples 

 

The tissues were obtained with informed consent from 

all participating patients. Six control samples were 

collected between September 2019 and June 2022, five 

samples from patients with HCC and five samples 

from non-tumor liver tissues. Preoperative chemo-

therapy or radiotherapy was not used to treat any of 

the HCCs. Independent samples from our hospital 

were verified by the hub genes of GSRS mRNA levels 

in HCC. 

 

Obtaining vascular endothelial growth factor 

production-related gene sets  

 

Gene sets, “GOBP_VASCULAR_ENDOTHELIAL_ 

GROWTH_FACTOR_PRODUCTION”, were obtained 

from the Molecular Signatures Database (http://www. 

gsea-msigdb.org/gsea/index.jsp). 

 

Identifying differentially expressed genes between 

normal liver tissues and hepatocellular carcinoma 

 

The training set was established using HCC and 

correlated normal liver samples from TCGA databases. 

DEGs were identified from Vascular endothelial growth 

factor Production-RGlated genes (VPRGs) using the R 

package “limma” [30]. The criterion set for this study 

was a p-value less than 0.05, with an abs value of logFC 

greater than 0.585.  

 

Protein-protein interaction network analysis  

 

The STRING database (https://cn.string-db.org/) was 
used to construct the PPI network containing 34 

VPRGs. Nodes with interaction confidences greater 

than 0.4 were displayed.  
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Genomic alterations of 34 vascular endothelial 

growth factor production-related genes  

 

The cBioPortal dataset (http://www.cbioportal.org/) was 

utilized to explore the CNV amplification, truncating 

mutation, in-frame mutation, missense mutation, CNV 

deep deletion, and fusions involving the 34 genes.  

 

Construction of vascular endothelial growth factor 

production-related risk signature  

 

To assess the prognostic value of VPRGs in HCC, we 

conducted univariate Cox regression analysis with the 

“survival” R package. Genes with a p-value < 0.05 were 

selected for analysis. Related risk signature was then 

developed for HCC by incorporating survival status, 

survival time, and expression levels of prognosis-related 

genes. The Least Absolute Shrinkage and Selection 

Operator (LASSO) regression algorithm [31] was 

utilized, with the penalty parameter λ determined 

through 10-fold cross-validation. By identifying the 

genes and their respective regression coefficients, we 

determined the most appropriate λ value. A formula 

applied for this purpose was as follows: Riskscore = 

exprgene (1) × coefficient gene (1) + coefficient gene 

(2) × exprgene (2) + · · · + coefficient gene (n) 

×exprgene (n)  

 

here, n represents the prognostic genes, exprgene 

represents the coefficient gene. The coefficient of the 

gene in the risk signature represents the expression 

value of the gene. 

 

Principal components analysis  

 

The samples were divided into low and high-risk groups 

based on the median risk scores. The Principal 

Component Analysis (PCA) was employed to clarify 

the variances among these two groups. The variation in 

mRNA expression data among the high and low-risk 

groups in TCGA-, ICGC- and GSE76427-HCC datasets 

were observed using dimensionality reduction.  

 

Prognostic analysis of vascular endothelial growth 

factor production-related risk signature  

 

Both Kaplan–Meier survival curves and Cox regression 

analysis were applied to evaluate the prognostic 

significance of vascular endothelial growth factor 

production-related risk signature (VPRS) in HCC in 

training and verification datasets. The area under the 

ROC curves (AUC) was calculated for the predictive 

value of VPRS for the 1-, 3-, and 5-year Overall 
Survival (OS) in HCC patients. The diagnostic 

procedure’s precision was evaluated with the AUC-

ROC (Area Under the Receiver Operating 

Characteristic curve), employing three defined 

categories based on [32]: low accuracy (0.5 < AUC-

ROC ≤ 0.7), moderate accuracy (0.7 < AUC-ROC ≤ 

0.9), and high accuracy (0.9 < AUC-ROC ≤ 1).  

 

Clinicopathological importance of the vascular 

endothelial growth factor production-related risk 

signature  

 

Patients in both training and verification sets were 

classified as low and high-risk sets. The chi-square  

test was performed to investigate the correlation 

among the clinicopathological features and risk score, 

among them, age, gender, N classification, T 

classification, M classification, Eastern Cancer 

Oncology Group (ECOG), vascular invasion, tumor 

grade, and stage.  

 

Tumor-infiltrating immune cells profiles 

 

The population of immune cells in low-risk and high-

risk groups was estimated using the CIBERSORT 

computational method. In both the TCGA and ICGC-

HCC cohorts, we utilized Pearson correlation analysis 

and the Wilcoxon test to examine the association 

between the fraction of Tumor-Infiltrating Immune 

Cells (TIICs) and the risk score. We then utilized the 

ESTIMATE algorithm, specifically the “estimate” 

package, to calculate the immune score, stromal score 

and tumor purity for each HCC sample [33].  

 

Single-sample gene sets enrichment analysis  

 

All significant genes of the 29 immune-related 

pathways were obtained from a previous study [34]. 

The TIICs level was estimated by the single-sample 

GSEA (ssGSEA; [35]) using melanoma mRNA Tumor 

Mutation Burden (TMB) data. Moreover, the 

enrichment level of gene hallmarks for 29 hallmarks 

related to immune was analyzed in the training and 

verification cohorts, among the low and high-risk 

groups, with a significance threshold of p-value < 0.05. 

Additionally, given the significance of Immune 

Checkpoints (ICPs) and Immunogenic Cell Death (ICD) 

modulators in cancer immunity, the expression levels of 

these proteins were compared among the high and low-

risk groups.  

 
Analysis of tumor mutational load  

 

In the TCGA-HCC dataset, total tumor somatic 

mutations detected in each sample was used for 

computation. The prognostic value of TMB in HCC was 

also analyzed. The R package “maftools” was applied to 

calculate and compare the mutational status in high and 

low-risk groups. 
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Analysis of hallmark gene sets  

 

Further analysis focused on hallmark gene sets derived 

from the Molecular Signatures Database. These sets 

represent and summarize explicit, well-defined 

biological states or displays and processes that are 

coherently expressed. The R package “GSVA” was 

applied on low and high-risk groups in TCGA-HCC to 

implement GSVA of hallmark gene sets [36].  

 

Verification of hub genes of vascular endothelial 

growth factor production-related risk signature  

 

In both training and validation datasets, the genes 

correlated with the prognosis of VPRS were evaluated 

with the Kaplan-Meier survival curves. For further 

investigation, the Human Protein Atlas (HPA) database 

(https://www.proteinatlas.org/) was adopted to assess 

the gene protein level identified in both normal liver 

and HCC tissues.  

 

Quantitative real-time PCR (qRT-PCR)  

 

RNA was extracted from liver tissues using the TRIzol 

reagent (as described in [37]) for qRT-PCR analysis. 

SYBR Green assays and specific primers were used to 

quantify gene expression. Relative Ct values, 

normalized to GAPDH, were employed to compare 

gene expression between the experimental and control 

groups.  

 

Data availability statement 

 

The authors will unreservedly share raw data that 

support the conclusions of this article. 

 

RESULTS 
 

Genetic alterations of vascular endothelial growth 

factor production-related genes in hepatocellular 

carcinoma 

 

We performed a differential analysis of 34 VPRGs in 

the training group and identified 22 DEGs between 

normal and HCC cases (Figure 1A, 1B). Supplementary 

Table 1 shows the upregulated and downregulated 

VPRGs with their analogous logFC values. In addition, 

Spearman’s correlation analysis was performed to 

characterize the expression correlations among the 

VPRGs and the results were presented in Figure 1C.  

A PPI network analysis also revealed a substantial  

co-expression correlation among the VPRGs, as 

demonstrated in Supplementary Figure 1A. 

Additionally, for further understanding of the genomic 

characteristics of VPRGs in HCC, we analyzed somatic 

mutational status and the copy number variation of 

GSRGs using the cBioPortal database (Supplementary 

Figure 1B). 

 

Construction and verification of vascular endothelial 

growth factor production-related risk signature 

 

From 34 VPRGs, univariate Cox analysis identified 7 

genes significantly correlated with prognosis (p < 0.05) 

(Figure 2A). LASSO regression further narrowed this 

down to 4 key genes: ADAMTS3, CCR2, NDRG2, and 

NODAL (Supplementary Figure 2A, 2B). A risk score 

was then calculated for each patient based on the 

expression levels and coefficients of these 4 genes 

(Figure 2B). The PCA results further revealed significant 

separation between high- and low-risk groups based on 

the median VPRS in both training and validation sets 

(Figure 2C, 2D and Supplementary Figure 2C). 

 

Survival analysis demonstrated significantly different 

clinical outcomes between the high- and low-risk 

groups in both training and validation sets (Figure 2E, 

2F and Supplementary Figure 2D). Notably, the VPRS 

across TCGA, ICGC, and GSE76427-HCC datasets 

exhibited distinct patterns in risk gene expression, risk 

scores, and survival states, highlighting the VPRS’s 

potential as a valuable prognostic predictor compared to 

other clinical factors (Supplementary Figure 2E–2G). 

Supplementary Table 2 summarizes the 4 genes and 

their corresponding coefficients in the optimal model. 

Altogether, above results demonstrated that the risk 

score based on VPRS could be a better indicator for 

predicting the prognosis of HCC compared with other 

clinical factors. 

 

The risk score acts as an independent factor for 

predicting overall survival of hepatocellular 

carcinoma patients 

 

We conducted both univariate and multivariate COX 

analysis to assess the independent prognostic value of 

the VPRS to predict the outcomes of HCC patients. In 

the TCGA-HCC group, the risk score independently 

predicted the OS (overall survival) (HR = 2.137, p = 

0.002) (Figure 3A, 3B). Additionally, the risk score 

exhibited a higher AUC-ROC unlike additional clinical 

features, including age, gender, ECOG, vascular 

invasion, tumor grade, and stage. The AUC of the risk 

score in the training group was 0.679, 0.753, and 0.684 

for 1-, 3-, and 5-year OS of patients, respectively 

(Figure 3C–3E). The findings were also validated in the 

ICGC- and GSE76427-HCC cohort. In multivariate 

COX regression, the risk score had an HR of 1.320 in 

ICGC (Figure 3F, 3G, p = 0.031), while it was 1.226 in 
GSE76427 (Supplementary Figure 3A, 3B, p = 0.039). 

Moreover, the AUC values of 1-, 3-, and 5-year OS of 

patients in ICGC-HCC were 0.692, 0.591, and 0.539, 
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respectively (Figure 3H–3J), while there were 0.474, 

0.419, and 0.473 in GSE76427-HCC, respectively 

(Supplementary Figure 3C–3E). 

 

Relationship between vascular endothelial growth 

factor production-related risk signature and the 

features of clinicopathology  

 

During the training phase, we identified a total of 310 

cases that included clinical data such as age, gender, T 

classification, N classification, M classification, ECOG, 

vascular invasion, tumor grade, and stage (Figure 4A). 

In the ICGC sets, we narrowed down the cases to 231 

by considering only those with clinical features of age, 

gender, and tumor stage (Figure 4B). To compare the 

distribution of clinical characteristics among different 

risk groups, we utilized the “chisq.test” function in R to 

conduct Chi-square tests. The results of these tests for 

both the TCGA and ICGC cohorts can be found in 

Table 1. Based on VPRS, the risk scores substantially 

correlated with age, tumor grade, and T classification in 

TCGA cohorts (Figure 4C–4F). Furthermore, we noted 

a major correlation between the risk scores and tumor 

stage in ICGC groups (Figure 4G). HCC samples with 

higher age, T classification, tumor grade, and stage 

specifically exhibited markedly higher risk scores than 

those with lower values, with risk score and vascular 

invasion also showing a significant correlation. Thus, 

the risk score values were significantly correlated with 

age, T classification, vascular invasion, tumor grade, 

and stage of HCC. 

 

Tumor-infiltrating immune cells profiles  

 

TIICs are essential components of the TME. This study 

examined the relative fraction of 22 immune cell types 

before computing using the “CIBERSORT” algorithm. 

The boxplots display the differences in fractions among 

low and high-risk sets (Figure 5A, 5D). Notably, the high-

risk group had substantially higher proportions of M2, 

 

 
 

Figure 1. The genomic characterization of VPRGs. (A) Boxplot for differentially expressed VPRGs. (B) Heatmap for differentially 

expressed VPRGs; genes with red color are significantly differently expressed between normal liver tissues and HCC tissues. (C) Correlation 
plot for VPRGs; red and green squares indicate positive and inverse correlation respectively. ***p < 0.001, **p < 0.001, *p < 0.05.  
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Figure 2. Construction of 4-genes VPRS. (A) Forest plot for the survival analysis of HCC patients with a univariate Cox model after adjustment 

for VPRGs; red color represents p < 0.05. (B) Radar diagram of efficiency of the 4 genes in VPRS; the closer the red dot is to the outside, the 
greater the value it represents. (C) PCA of HCC samples in TCGA; dots in red and green represent samples in high-risk and low-risk groups 
respectively. (D) Overall survival analysis of risk score for HCC patients in TCGA. (E) PCA in ICGC-HCC. (F) Survival analysis in ICGC-HCC.  
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Figure 3. The prognostic value of VPRS. In the training set, forest plot on the left for the univariate Cox test (A) evaluating the correlation 
of the risk score and clinical factors with OS of patients, and forest plot on the right for the multivariate Cox analysis (B) identifying 
independent risk factors for the OS of patients. The ROC curve of risk score and clinical factors to predict 1- (C), 3- (D), and 5-year (E) OS. In 
the validation set, univariate (F) and multivariate (G) COX analysis of risk score and clinical factors. ROC curve of risk score compared with 
other clinical factors to predict 1- (H), 3- (I), and 5-year (J) OS.  
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M1, and M0 macrophages, and regulatory T cells 

(Tregs) than the low-risk group. Additionally, M1 

macrophages and risk scores had a significant 

negative correlation (Figure 5B, 5E), whereas M2 

macrophages positively correlated to risk scores 

(Figure 5C, 5F) in TCGA and ICGC cohorts, 

respectively. Consequently, it is suggested that the 

risk scores associated with the decreased M1 

macrophage and increased M2 macrophages may alter 

the prognosis of HCC patients. The ssGSEA scores 

were used to quantify the abundances and activities of 

various pathways, immunocytes, or functions. Higher 

ssGSEA scores revealed significant infiltration of 

immune cells and more active immune-related 

pathways. The heatmaps (Figure 6A, 6C) and 

boxplots (Figure 6B, 6D) revealed that the high-risk 

group had higher ssGSEA scores for various immune 

cell types, such as checkpoint, macrophages, and 

Tregs. Furthermore, we evaluated the stromal and 

immunological scores, which represent the presence 

of stromal cells and infiltration of immune cells in the 

tumor microenvironment, respectively. The analysis 

revealed that samples in the high-risk group exhibited 

significantly higher immune and stromal scores unlike 

those in the low-risk set (Figure 6B, 6D). The HCC 

samples with elevated risk scores exhibited higher 

levels of infiltrating stromal and immune cells. The 

TIICs and immune-related pathways were not 

substantially distinct among high and low-risk groups. 

In the high-risk group, the levels of immuno-

suppressive TIICs like M2 and Tregs were 

substantially higher than the baseline. 

 

 
 

Figure 4. The correlation between clinicopathological factors and risk score. Heatmap of the correlations between 
clinicopathological characteristics of HCC and risk score in the TCGA (A) and ICGC (B) cohorts. Distribution of vascular endothelial growth 
factor production-related risk signature within HCC patients stratified by age, tumor grade, T classification, and vascular invasion in TCGA  
(C–F) and tumor stage in ICGC (G) cohorts.  
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Table 1. Correlation between clinicopathological factors of hepatocellular carcinoma patients and 
4-VPRS genes risk scores in the two cohorts. 

Features 

Training set TCGA RNA-seq  

cohort (n = 310) 

Validation set ICGC RNA-seq  

cohort (n = 231) 

Low-risk score High-risk score P-value Low-risk score High-risk score P-value 

(n = 155) (n = 155)  (n = 124) (n = 107)  

Age   0.025   0.778 

  ≤ 45 14 24  3 3  

  > 45 141 131  121 104  

Gender   0.963   0.375 

  Female 51 48  35 26  

  Male 104 107  89 81  

Grade   <0.001   - 

  G1 30 16  - -  

  G2 82 64  - -  

  G3 32 69  - -  

  G4 7 5  - -  

  unknow 4 1  - -  

Stage   0.06   <0.001 

  Stage I 87 75  19 17  

  Stage II 34 37  70 36  

  Stage III 21 29  26 44  

  Stage IV 1 2  9 10  

  unknow 12 12  0 0  

T   0.034   - 

  T1 92 79  - -  

  T2 34 41  - -  

  T3 22 30  - -  

  T4 4 5  - -  

  unknow 3 0  - -  

N   0.109   - 

  N0 97 109  - -  

  N1 0 3  - -  

  unknow 58 43  - -  

M   0.918   - 

  M0 99 114  - -  

  M1 1 2  - -  

  unknow 55 39  - -  

ECOG   0.623   - 

  0 77 82  - -  

  1 42 40  - -  

  2 8 6  - -  

  unknow 28 27  - -  

vascular invasion   0.016   - 

  Yes 39 50  - -  

  No 97 95  - -  

  unknow 19 10  - -  
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Correlation between immune modulators and risk 

score 

 

The levels of genes related to ICD and ICPs were 

analyzed to explore the potential impact of these 

modulators on anticancer immunity. All 20 genes, 

related with ICPs, showed differential expression 

among the different risk groups in the TCGA and ICGC 

cohort (Figure 7A, 7C). The expressions of key ICPs 

including CTLA4, CD274 (PD-L1), and PDCD1 (PD-1)

 

 
 

Figure 5. The association between TIICs and VPRS. (A) Differential analysis of 22 kinds of TIICs in the low and high-risk groups in 
training sets. (B, C) Spearman’s correlation analysis for risk score and M1 and M2 macrophages in TCGA cohorts, each dot plot represents a 
subject, and the correlation is fitted into a straight blue line. (D) Differential analysis of 22 kinds of TIICs in the low and high-risk groups 
invalidation sets. (E, F) Spearman’s correlation analysis for risk score and M1 and M2 macrophages in ICGC cohorts, each dot plot represents 
a subject, and the correlation is fitted into a straight blue line. R, rho; ***p < 0.001, **p < 0.001, *p < 0.05. 
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were significantly elevated in the high-risk group. 

Moreover, both in TCGA and ICGC cohorts, all  

12 ICD genes had differential expression among  

the low and high-risk groups (Figure 7B, 7D). These 

findings imply that the risk score value, which  

reflects the expression levels of ICD and ICPs 

modulators, could be a promising immune treatment 

biomarker. 

 

The correlation of risk score with somatic mutation 

rates and gene set variation analysis 

 

The mutation landscape of both groups was analyzed. 

Results showed that the top 20 frequently mutated 

genes in each subtype included PCLO, ALB, MUC16, 

TTN, TP53, and CTNNB1 (Figure 8A, 8B). These 

suggests that the VPRS-based risk score in HCC 

patients can predict the somatic mutation rate. 

Moreover, patients with higher risk scores showed 

good response to anticancer immunity. Using the 

GSVA, the pathway activities were compared between 

the low and high-risk groups. Signaling pathways 

associated with cell cycle, tumor proliferation, tumor 

invasion, angiogenesis, and tumorigenesis were 

significantly enriched in the high-risk groups (Figure 

8C). The pathways included MYC target v1 and v2, 

E2F target, G2M checkpoint, MTORC1 signaling, 

epithelial-mesenchymal transition, and others. 

Collectively, these findings showed that the VPRS-

based risk score can be used as a novel biomarker of 

HCC, associated with the signaling pathways involved 

in angiogenesis and tumor invasion. 

 

Identification of hub genes of vascular endothelial 

growth factor production-related risk signature 

 

The prognostic value of the 4-gene VPRS was evaluated 

in the training and validation groups (Figure 9A–9H). 

Analysis of the effect of the 4 genes on the survival 

outcomes (Table 2) revealed that CCR2, NDRG2, and 

 

 
 

Figure 6. ssGSEA of immune hallmarks. (A) Heatmap of ssGSEA scores among high- and low-risk groups in training sets (green = 

negative, red = positive). (B) Boxplot of ssGSEA scores, immune score, stromal score, ESTIMATE score, and tumor purity among high- and low-
risk groups in TCGA cohorts. (C) Heatmap of ssGSEA scores among high- and low-risk groups in validation sets (green = negative, red = 
positive). (D) Boxplot of ssGSEA scores, immune score, stromal score, ESTIMATE score, and tumor purity among high- and low-risk groups in 
ICGC cohorts. ***p < 0.001, **p < 0.001, *p < 0.05. 
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NODAL levels were positively correlated to the OS of 

HCC patients. On the other hand, those with higher 

ADAMTS3 levels predicted poor OS. Given the 

significant correlation between these four genes and the 

prognosis of HCC patients, ADAMTS3, CCR2, NDRG2 

and NODAL were considered as hub genes. Next, we 

explored the protein expression of related hub genes 

utilizing the HPA database. Consequently, the  

expression of ADAMTS3 (liver#img/ENSG00000156140-

ADAMTS3/HPA021369 available from v22.0. 

proteinatlas.org; liver+cancer#img/ENSG00000156140-

ADAMTS3/HPA021369 available from v22.0. 

proteinatlas.org) and NODAL (liver#img/ENSG00000156 

574-NODAL/HPA045201 available from v22.0. 

proteinatlas.org; liver+cancer#img/ENSG00000156574-

NODAL/HPA045201 available from v22.0.proteinatlas 

.org) were significantly higher in HCC tissues compared 

with the normal liver tissues, whereas NDRG2 (liver#img/ 

ENSG00000165795-NDRG2/HPA002896 available from 

v22.0.proteinatlas.org; liver+cancer#img/ENSG0000016 

5795-NDRG2/HPA002896 available from v22.0. 

proteinatlas.org) expression was lower in HCC tissues. 

The CCR2 protein (liver#img/ENSG00000121807-

CCR2/CAB003793 available from v22.0.proteinatlas.org; 

liver+cancer#img/ENSG00000121807-CCR2/CAB00379 

3 available from v22.0.proteinatlas.org) expression was 

not detected neither in HCC nor normal tissue (Figure 9I–

9L). Furthermore, the expression levels of the four hub 

genes in our hospital samples were measured using the 

real-time PCR technique (Figure 9M). Supplementary 

Table 3 shows the primer sequences of 4 hub genes. The 

mRNA expression of ADAMTS3, CCR2, NDRG2, and 

NODAL was significantly higher in HCC than in normal 

liver tissues, similar to the documented results in the 

public database. 

 

Establishing a prognostic nomogram 

 

A new prognosis nomogram was developed by 

combining risk score and tumor stage to predict the 

survival of HCC patients (Figure 10A). The nomogram 

predicted the OS of patients at 1, 3, and 5 years, with 

higher scores indicating lower survival probability. 

The results were comparable with the tumor stage, as 

higher stage status corresponded to a worse prognosis. 

To assess the effectiveness of the nomogram in 

predicting patient survival rates, we performed ROC 

curve analyses for 1-, 3-, and 5-year survival 

predictions in both training and validation sets. In the 

training set, the AUC values indicating the model’s 

 

 
 

Figure 7. Correlation between risk subtypes and ICPs and ICD modulators. (A) Differential expression of ICP genes among the risk 

subtypes in TCGA cohorts. (B) Differential expression of ICD modulator genes among the risk subtypes in TCGA cohorts. (C) Differential 
expression of ICP genes among the risk subtypes in ICGC cohorts. (D) Differential expression of ICD modulator genes among the risk subtypes 
in ICGC cohorts. 

10332



www.aging-us.com 13 AGING 

discriminatory power was 0.619, 0.693, and 0.698 for  

1-, 3-, and 5-year survival outcomes, respectively 

(Figure 10B). In the validation set, AUC values were 

0.844, 0.638, and 0.634 for the same prediction periods 

(Figure 10C).  

DISCUSSION 
 

HCC is characterized by high vascularity and degree of 

malignancy due to impaired angiogenesis [38, 39]. This 

is because the tumor vascular network determines the 

 

 
 

Figure 8. Gene set variation analysis and correlation between mutation and risk subtype. (A) Top 20 highly mutated genes in HCC 

high-risk group. (B) Top 20 highly mutated genes in HCC low-risk group. (C) Heatmap for the contribution of GSVA scores of hallmarks in high- 
and low-risk groups. The red color represents up-regulated terms in the high-risk group, green color shows the down-regulated terms in the 
low-risk group.  
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Figure 9. Verification of the prognostic value and expression of hub genes of VPRS. Survival analysis of ADAMTS3, CCR2, NDRG2, 
and NODAL for patients in TCGA (A–D) and ICGC (E–H) cohorts. The protein expression level of ADAMTS3 (I), CCR2 (J), NDRG2 (K), and NODAL 
(L) in normal and HCC tissues based on the HPA database. (M) The relative mRNA expression levels of ADAMTS3, CCR2, NDRG2, and NODAL 
are compared between HCC and non-tumor tissues with real-time PCR results. ***p < 0.001, **p < 0.001, *p < 0.05. 
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Table 2. 4 VPRS genes related K–M survival analysis in ICGC and 
TCGA. 

Gene 
TCGA ICGC 

HR(high) Log-rank P HR(high) Log-rank P 

ADAMTS3 1.438 p<0.05 1.069 p<0.05 

CCR2 0.858 p<0.05 0.868 p<0.05 

NDRG2 0.784 p<0.05 0.864 p<0.05 

NODAL 0.752 p<0.05 0.82 p<0.05 

 

 
 

Figure 10. Prognostic nomogram was established by combining risk score and tumor stage characters. (A) Nomogram for assessing 
the 1-, 3-, and 5-year OS for HCC patients in the TCGA dataset. ROC curves of 1-, 3-, and 5-year in the TCGA (B) and ICGC (C) datasets. 
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supply of oxygen and nutrients to the growing tumor 

cells [40, 41]. Existing blood vessels are transformed 

into new ones through a process referred to as 

angiogenesis [42]. The process of angiogenesis has been 

shown to modulate cancer progression [43]. Anti-

angiogenic therapy is now recognized as an effective 

strategy for treating cancers. Numerous retrospective 

studies have shown that microangiogenesis can 

contribute to the early recurrence and prognosis of HCC 

[44, 45]. Microangiogenesis levels are often linked to a 

higher probability of recurrence even poorer survival 

outcomes [46]. Given the negative prognostic 

implications of microangiogenesis in recurrent HCC, 

clinicians should consider whether more aggressive 

treatment options are necessary for such patients, 

particularly those experiencing recurrence within two 

years of their initial curative hepatectomy. This is 

because HCCs that recur within this time frame are 

assumed to arise from residual microscopic lesions. 

However, this issue has not been investigated. Limited 

research has explored this topic [45]. VEGF functions 

as an irreplaceable role in the angiogenesis of HCC 

tissues which is bound up with its tumorigenesis. 

Although some studies have constructed predictive 

models of angiogenesis in HCC, none of them has 

involved VEGF as an important factor in promoting 

angiogenesis in HCC. 

 

For our study, we first obtained the VPRGs from the 

Molecular Signatures Database, and found the 

expression levels of most VPRGs substantially 

fluctuated among HCC and normal tissues. In addition, 

these genes had lower CNV and SNP in HCC tissues, 

implying that these genes are associated with HCC 

progression. Similarly, it suggested that they had high 

genetic stability and could inhibit the gene mutations. 

Through single-factor analysis, we identified prognostic 

genes in HCC. Using Lasso regression, we built a risk 

model based on four vascular pattern regulatory genes 

(VPRGs): ADAMTS3, CCR2, NDRG2, and NODAL. 

This model outperformed other clinical factors in 

predicting patient prognosis significantly. Furthermore, 

this signature showed better predictive performance for 

HCC prognosis compared to other clinical factors. A 

positive correlation was observed between the 

constructed risk score and the grade, stage, and T stage 

of the tumor, demonstrating a substantial positive 

correlation between the risk model we constructed and 

the HCC progression. Moreover, there was a significant 

association of our risk score with the clinical 

characteristic of vascular invasion. Specifically, the risk 

of significant vascular invasion increases with score, 

confirming the correlation between our constructed risk 
model and angiogenesis. We further investigated the 

validity of our risk model by examining its correlations 

with clinical features of HCC patients. Through GSVA 

analysis, the potential mechanisms driving the model’s 

predictive power were also explored. Furthermore, 

experiments were conducted to validate the aberrant 

expression of four key model-related genes identified as 

VPRGs in HCC tissues. The results showed significant 

upregulation of ADAMTS3 and NODAL, while CCR2 
and NDRG2 were downregulated. A Disintegrin and 

Metalloproteinase with Thrombospondin Motifs 3 

(ADAMTS3) is a metalloproteinase, belonging to the 

ADAMTS family, which is capable of degrading 

components of the extracellular matrix, like the elastic 

fibers, collagen and proteoglycans [47]. ADAMTS3 

participates in normal physiological processes, like the 

embryonic development, tissue remodeling and wound 

healing [48]. A study by Kim et al. reported that 

ADAMTS3 was highly expressed in glioma stem cells 

and significantly correlated with its tumorigenic and 

proliferative activities [49]. However, at present, no 

study has reported the correlation between ADAMTS3 

and HCC. We found, for the first time, that ADAMTS3 

was highly expressed in HCC samples in our study. 

Based on these findings, future mechanistic studies 

should investigate the role of ADAMTS3 in 

hepatocarcinogenesis. C-C motif chemokine receptor 2 

(CCR2), a C-C chemokine receptor, is mainly expressed 

on immune cells, like the monocytes, macrophages, and 

T-cells, and can recognize and bind to chemokines, such 

as CCL2, as well as modulate the migration of immune 

cells to inflammatory and tumor sites [50]. In the 

advanced stage of HCC, CCR2 inhibits anti-tumor 

immune responses by recruiting and activating 

immunosuppressive cells, such as the macrophages, 

myeloid-derived suppressor cells, and regulatory T 

cells, thereby promoting immune escape of HCC cells 

[51]. In addition, CCR2 promotes HCC development by 

modulating fibrosis and inflammatory responses in the 

liver [52]. In contrast, in the early stages of HCC, 

immune cells such as macrophages recruited by CCR2 

can prevent early tumor formation by eliminating 

senescent hepatocytes [53]. This intricate observation 

suggests that CCR2 plays a multifaceted role in HCC 

progression. It can promote and suppress cancer, which 

need to be further investigated to clarify the 

mechanisms governing its divergent effects [54, 55]. 

NDRG2, a tumor suppressor gene, has been shown to 

inhibit the growth and metastasis of many malignant 

tumors, including HCC, and its expression level is 

positively associated with the prognosis and survival 

outcomes of cancer patients [56–58]. In HCC, the 

expression of NDRG2 is downregulated, which is 

consistent with our findings, and down-regulation of 

NDRG2 expression can significantly increase tumor 

angiogenesis via the VEGFA pathway [59]. Nodal 
Growth Differentiation Factor (NODAL) is a secreted 

protein belonging to the transforming growth factor β 

(TGF-β) superfamily. It plays a role in physiological 
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processes such as embryonic development, tissue 

remodeling and stem cell maintenance [60]. However, 

NODAL are highly expressed in several malignant 

tumors, such as melanoma, breast cancer, gastric 

cancer, HCC, etc., and negatively correlates with the 

degree of differentiation, clinical stage, metastasis, and 

prognosis of the tumors [61–63]. NODAL is an 

important component of the TGF-β signaling pathway 

which enhances the proliferation, migration, and 

invasion of HCC cells by promoting the phospho-

rylation of Smad3 and the expression of Snail, drug 

resistance, and epithelial-mesenchymal transition 

(EMT) [64]. In addition, NODAL has been shown to 

modulate tumor cell plasticity by promoting the 

formation of angiogenic mimetic structures [7]. These 

results suggest that these signature-associated VPRGs 

contribute to HCC development and progression, and 

further studies are advocated to explore their 

mechanisms and identify potential therapeutic targets. 

 

Immune cells determine response to immunotherapy 

and tumor survival as the primary component of TIME. 

For example, clinical research confirms that the immune 

cell composition of tumors in HCC is strongly 

associated with patient prognosis and affects therapeutic 

response [65–67]. Individuals in the low-risk group 

experienced intense immune cell infiltration compared 

to their counterparts in the high-risk group. High-

density Tumor-Associated Macrophages (TAM) 

infiltration in HCC is a poor prognosis marker, and 

TAM is primarily M2 macrophages [68, 69]. M2 

macrophages can up-regulate the PDL1 expression in 

HCC, limiting the activity of CD8+ T cells [70]. In our 

study, high-risk patients exhibited higher levels of M2 

macrophage and Treg cell infiltration, but M1 

macrophage infiltration was minimal. Our results 

strongly demonstrated that the risk scores were 

negatively correlated with the degree of M1 

macrophage infiltration and positively associated with 

the degree of M2 macrophage infiltration. In our 

analysis, the high-risk group exhibited higher immune 

and interstitial scores unlike the low-risk group, 

although the tumor purity was lower, suggesting better 

response to immunotherapy. Therefore, boosting anti-

tumor immune responses is critical for effective clinical 

treatment. 

 

Cancer immunotherapy is a new treatment approach for 

tumors which aims to restart the tumor immune cycle 

and reestablish the normal anti-tumor immune response 

[71, 72]. Several studies have investigated the effect of 

tumor immunotherapy on the TIME [73, 74]. The ICP 

is an effective approach for stimulating the anti-tumor 

immune response. The PD-1-and CTLA-4-activated 

immune T cells are the reliable point for the treatment. 

Substances that suppress PD-1 and CTLA-4 could 

significantly enhance the treatment for advanced 

cancers [75]. Chemokines can also influence cancer 

migration and progression [76, 77]. Specifically, several 

key immune checkpoints (e.g., PD-1, CTLA-4) and 

genes involved in immunogenic cell death pathways 

(e.g., ERp5, CRTL) were upregulated in the high-risk 

group. Therefore, higher gene expression levels are 

more sensitive to ICIs and immunotherapy. Thus, our 

risk-scoring model is expected to improve 

individualized treatment of HCC patients. 

 

The intricacy of HCC pathogenesis pathways leads to 

variation across diverse populations in various countries 

and regions, posing a significant challenge to 

customized therapy [78, 79]. Therefore, the use of a 

single DEG as a biomarker for customized HCC 

patients is not reliable. Moreover, it is difficult to 

identify and characterize the immune properties of 

HCC. In our study, we developed a new prognostic 

biomarker of HCC that can differentiate the immune 

status and the malignancy of HCC as well as predict the 

efficacy of immune checkpoint blockade (ICB) 

treatment in HCC patients. In addition, a micro-

angiogenesis prediction model for HCC prognosis was 

developed and validated. Nevertheless, we acknowledge 

that our study has certain limitations. Firstly, the 

retrospective nature of our study, although validated 

with diverse datasets to assess performance, limits the 

application of our model. Secondly, the TIME exhibited 

significant heterogeneity, making it difficult to perform 

precise evaluation. Despite efforts to minimize biases 

by leveraging the relative order of immune cell 

infiltration, residual biases may persist. Future 

biological analyses are advocated to expand our 

understanding of survival outcomes.  
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. The relationships and characters of VEGF production-related genes (VPRGs). (A) The PPI network of 
VPRGs in STRING database. (B) The copy number variation and somatic mutational status of GSRGs. 
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Supplementary Figure 2. LASSO regression analysis. (A) Partial likelihood deviance as a function of regularization parameter λ in the 

training dataset. Each red point marks a λ value along regularization paths, and gray error bars represent confidence intervals for the cross-
validated error rate. The left vertical dotted line indicates the minimum error, whereas the right vertical dotted line represents the most 
significant λ value, the error of which is within 1 SD of the minimum. The horizontal row of numbers above the plot shows the gene number 
in each condition upon shrinkage and selection as determined by the linear regression. (B) The craft plot for partial likelihood deviance in 
LASSO, different colors represent different genes associated with the VEGF production-related signature (VPRS). (C) PCA of HCC samples from 
the TCGA; dots in red and green represent samples in high-risk and low-risk groups, respectively. (D) Overall survival analysis of the risk score 
of HCC patients in TCGA. The distribution of risk score, corresponding OS, and gene expression based on the TCGA (E), ICGC (F), and 
GSE76247 (G) sets. 
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Supplementary Figure 3. The prognostic value of VPRS. In the GSE76427, forest plot on the left for the univariate Cox test  
(A) displaying the correlation of the risk score and clinical factors with patient OS, and forest plot on the right for the multivariate Cox analysis 
(B) used to identify independent risk factors associated with the OS. The ROC curve of clinical factors and risk score for predicting the 1- (C), 
3- (D), and 5-year (E) OS. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. The upregulated and downregulated VEGF production-related genes (VPRGs) and their 
analogous logFC values. 

 

Supplementary Table 2. 4 risk model 
genes and their related coefficients. 

Id Coef 

NODAL -0.247060124481458 

NDRG2 -0.272265942986441 

CCR2 -0.213931600877348 

ADAMTS3 0.115299796358193 

 

Supplementary Table 3. PCR primers sequences. 

ADAMTS3 
Forward 5’ACTGCACCAAAACCTGTGGA 3’ 

Reverse 5’CCGACTCAGGCTTTTCACCA 3’ 

CCR2 
Forward 5’AGAGGTCTCGGTTGGGTTGT 3’ 

Reverse 5’ATCATAACGTTCTGGGCACC 3’ 

NDRG2 
Forward 5’TACGTCGGCCGTGTCTAT3’ 

Reverse 5’GAACTGTGATCCGTGTAGG3’ 

NODAL 
Forward 5’CTGGGAGAACAGGGTACGATAACC5’ 

Reverse 5’CGTAGAAGAGGAGGGTCGGG5’ 

β-Actin gene 
Forward 5’TTCCTGGGCATGGAGTCCT3’ 

Reverse 5’AGGAGGAGCAATGATCTTGATC3’ 
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