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INTRODUCTION 
 

Prostate cancer ranks as the second most common 

cancer in men after lung cancer, posing a serious threat 

to the life and health of middle-aged and elderly men 

[1]. And, it is one of the leading causes of cancer-

related deaths in men. Early symptoms of prostate 

cancer are not obvious, and most early diagnoses of 

prostate cancer are detected by prostate-specific antigen 

(PSA) screening and magnetic resonance imaging (MRI) 

[2]. The symptoms present in each patient are variable, 

due to the heterogeneity of prostate cancer, in which, 

the size of the tumor, the degree of malignancy, and 

metastatic ability are different [3]. Also, the high 

tumour heterogeneity in prostate cancer was a challenge 

for clinical disease management and a serious problem 

for molecular stratification of patients [4]. Single-cell 

RNA sequencing (scRNA-seq) method can analyze 

tumor tissue heterogeneity on a large scale and at the 

level of individual cells, allowing for more precise 
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ABSTRACT 
 

Prostate cancer is one of the serious health problems of older male, about 13% of male was affected by prostate 
cancer. Prostate cancer is highly heterogeneity disease with complex molecular and genetic alterations. So, 
targeting the gene candidates in prostate cancer in single-cell level can be a promising approach for treating 
prostate cancer. In the present study, we analyzed the single cell sequencing data obtained from 2 previous 
reports to determine the differential gene expression of prostate cancer in single-cell level. By using the network 
pharmacology analysis, we identified the therapeutic targets of formononetin in immune cells and tissue cells of 
prostate cancer. We then applied molecular docking to determine the possible direct binding of formononetin to 
its target proteins. Our result identified a cluster of differential gene expression in prostate cancer which can serve 
as novel biomarkers such as immunoglobulin kappa C for prostate cancer prognosis. The result of network 
pharmacology delineated the roles of formononetin’s targets such CD74 and THBS1 in immune cells’ function of 
prostate cancer. Also, formononetin targeted insulin receptor and zinc-alpha-2-glycoprotein which play important 
roles in metabolisms of tissue cells of prostate cancer. The result of molecular docking suggested the direct 
binding of formononetin to its target proteins including INSR, TNF, and CXCR4. Finally, we validated our findings 
by using formononetin-treated human prostate cancer cell DU145. For the first time, our result suggested the use 
of formononetin for treating prostate cancer through targeting different cell types in a single-cell level. 
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detection of changes during tumor development [5]. 

Furthermore, scRNA-seq can show the differential gene 

expression in individual cells which help to understand 

the detail process of disease development [6]. The  

stage of prostate cancer is determined using Gleason 

score, the higher the Gleason score, the more malignant 

the prostate cancer is, the more likely it is to progress 

and metastasize [7]. The main options for the treatment 

of prostate cancer are surgery, chemotherapy, and 

radiotherapy [8]. There is an urgent need to discover 

new prostate cancer treatment methods. 

 
Estrogen receptors (ERs) include ERα and ERβ 

expressed predominantly in prostate stromal cells and 

prostate epithelial cells, respectively [9]. They were 

reported to play important roles in prostate cancer 

tumorigenicity. For instance, the activation of ERα and 

ERβ promoted the migration, cell invasion and colony 

formation abilities in hormone-independent prostate 

cancer cells [10]. In addition, the development of 

prostate cancer into denuded resistant prostate cancer 

is mediated by ERα and ERβ [11]. So, targeting ER 

could be an option for discovery of novel compound 

for treating prostate cancer. Formononetin, a natural 

isoflavone phytoestrogen, was mainly extracted from 

the Chinese herbs Astragalus membranaceus and  

Red Clover [12]. Formononetin exhibits estrogen-like 

effects through its interaction with ER, especially ERβ 

[13]. It has been reported that formononetin could be a 

promising anticancer drug. For instance, formononetin 

can inhibit cancer cell growth, promote cancer cell 

apoptosis and activate tumor suppressor genes to inhibit 

cancer development and progression [14]. It has been 

shown the anti-tumoral effects of formononetin on 

bladder cancer [15], prostate cancer [16], ovarian cancer 

[17], and non-small cell lung cancer [18]. However,  

the detail molecular mechanisms underlying the anti-

prostate cancer roles of formononetin, especially in 

single-cell level, is still largely unknown. 

 
In the present study, we analyzed the singe-cell 

sequencing data of prostate cancer obtained from 2 

previous reports to determine the differential gene 

expression in single-cell level [19, 20]. Then  

we applied network pharmacology followed by 

systematic bioinformatics analysis including Gene 

Ontology (GO), Kyoto Encyclopedia of Genes and 

Genomes (KEGG), and molecular docking analysis  

to investigate the targets and molecular mechanisms  

of formononetin for treating prostate cancer. Our 

results showed that formononetin could target  

genes associated with the immune responses and 

metabolisms. Our data, for the first time, suggested 

that formononetin could be a novel compound for 

treating prostate cancer through targeting immune  

cell and tissue cell clusters. The results of this study 

provide ground information of formononetin against 

prostate cancer in single-cell level. 

 

MATERIALS AND METHODS 
 

Single cell sequencing data download and analysis 

 

By searching with the keywords “prostate cancer”  

and “single cell”, the gene expression datasets 

GSE193337 and GSE153892 of prostate cancer single 

cell data were downloaded from the GEO database 

(https://www.ncbi.nlm.nih.gov/geo/). 4 sets of prostate 

cancer tissue and normal tissue were extracted from the 

GSE193337 data [19], and 3 sets of prostate cancer 

tissue and normal tissue were extracted from the 

GSE153892 data [20]. Single cell data were analyzed 

using R packages including “Seurat”, “cowplot”, 

“BiocManager”, “SingleR”, “dplyr”, “tidyverse”, and 

“patchwork”. The data were merged into a catalogue 

vector and a Seurat analysis object was created with  

the filtering criteria of fewer than genes expressed  

in 3 cells and fewer than 200 genes expressed in cells, 

the PercentageFeatureSet function was used to calculate 

the percentage of mitochondria-related genes in the 

data, and the data were quality controlled with the 

criteria of more than 200 genes per cell, less than 3,000 

genes per cell, and less than 20% mitochondria,  

the cells that failed to pass the criteria were eliminated 

[19]. The data were normalized to extract the 2000 

genes with high coefficients of variation between cells, 

and the data were merged with canonical correlation 

analysis anchors to eliminate the batch effect between 

two different sets of data from different sources. PCA 

principal component analysis was performed on the 

data, and the cells were classified into different clusters 

by Umap cluster analysis. Cell type annotation for each 

cluster was completed by SingleR automated annotation 

package [21]. The data were grouped according to  

their origin, with those derived from normal tissues 

named “N” and those derived from cancerous tissues 

named “T”, and then “N” and “T” were combined  

with different cell types separately. The FindMarkers 

function was used to obtain the differential gene 

expression between the same cell types from cancerous 

tissue and normal tissue, and the gene with adjusted p-

value < 0.05 were considered as differentially expressed 

genes (DEGs). 

 

Identification of formononetin’s targets to prostate 

cancer in single-cell level 

 

The Swiss Target Prediction database [22], 

PharmMapper database [23] and SuperPred database 

[24] were used to obtain the formononetin associated 

genes, which were corrected by the UniprotKB database 

[25]. The genes were overlapped with the DEGs of the 
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prostate cancer to determine the targets of formononetin 

for treating prostate cancer in single-cell level. 

 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathway enrichment analysis 

 

The targets were imported into the “ClusterProfiler” 

package [26] and “GOplot” package [27] in R  

language for GO and KEGG enrichment analysis and 

visualization, the processes and pathways with p-value 

< 0.05 were considered as statistically significant. The 

results were presented as bubble plots and Circos plot. 

 
Molecular docking 

 

The chemical structure of formononetin was obtained 

from PubChem database [28]. The protein structures  

of CD74, INSR, TNF, and CXCR4 were obtained  

from Protein Data Bank (PDB) database [29]. The 

corresponding proteins were processed using AutoDock 

Tools 1.5.6, of the AutoDock Vina software [30], to add 

hydrogen, Gasteiger charges, and merge non-polar 

hydrogens from the original pdb file format to the pdbqt 

file format recognized by the AutoDock program, to 

provide a ligand basis for subsequent docking. The 

reasonableness of the docking parameter settings was 

judged based on the magnitude of the root mean square 

deviation (RMSD) of the docked ligand molecules from 

the original ligand molecules. RMSD ≤ 4 Å was used  

as the threshold value for the conformational match of 

the docked ligand with the original ligand. 

 
Prostate cancer cell culture and treatment 

 

Human prostate cancer cell DU145 (Wuhan Pricella 

Biotechnology Co., Ltd., China) was cultured in Eagle’s 

Minimum Essential Medium supplemented (Solarbio, 

China) with 10% fetal bovine serum and 1% Penicillin/ 

Streptomycin/Amphotericin B, sterile solution (Solarbio) 

at 37°C in 5% CO2. DU145 cells were seeded into 6-

well plates at 3 × 105 cells per well, and were treated 

with 0 and 100 μM of formononetin (Shanghai Yuanye 

Bio-Technology Co., Ltd., China) for 48 hrs. Then  

the cells were harvested for quantitative-PCR (qPCR) 

analysis and Western blotting (WB). 

 
Quantitative PCR (qPCR) analysis 

 

Total RNA was isolated from the cells using the  

RNA simple Total RNA Kit (Tiangen, China) and was  

reverse transcribed according to the manufacturer’s 

protocol. Gene expression was quantified using 

MonAmpTMSYBR Green qPCR Mix (Low ROX, 

Monad) and expression level was calculated using the 

2−ΔΔCT method. GAPDH was used as internal reference 

for normalization. 

Western blotting 

 

Protein was extracted from the cells using RIPA lysis 

buffer (Solarbio) and was quantified by using the 

BCA protein assay kit (Beyotime, China). 20 g of 

protein was separated by using SDS PAGE and 

electro-transferred onto PVDF membranes (Merck, 

Germany). The membrane was then incubated with 

specific primary antibodies CD74 (Bioss, USA) and 

TNF (Bioss) overnight at 4°C. The membrane was 

washed with TBST thrice for 10 min. After washing, 

the membrane was incubated with HRP anti-coupling 

secondary antibody for 1 hour. The membrane was 

washed with TBST thrice for 10 min. Finally, the 

expression of protein was assessed by exposing to 

ECL kit (Affinity, USA), and the gel imaging system 

(Invitrogen, USA). 

 

RESULTS 
 

Differential gene expression in prostate cancer in 

single-cell level 

 

When we combined and analyzed the 2 datasets of 

prostate cancer single cell data, we identified the 

number of genes measured per cell, the sum of the 

gene expression measured per cell and the percentage 

of mitochondria-related genes (Figure 1A). The 

distribution of each cell in different samples was 

shown in the PCA plot, and it can be found that there 

is no significant batch effect among the 14 samples 

under canonical correlation analysis (Figure 1B). In 

the uniform manifold approximation and projection 

(Umap) cluster analysis, 19 cell clusters were identified 

(Figure 1C). Each cluster was attributed to different 

cell type using SingleR automatic annotation package, 

in which clusters 0, 8, 13, 15, 16, and 18 belong to 

natural killer cell; clusters 1, 2, 4, 6, and 11 belong to 

T cell; clusters 7 and 19 belong to B cell; clusters 5, 9, 

17, belong to monocyte; clusters 3 and 12 belong to 

epithelial cell; cluster 10 belongs to endothelial cells; 

and cluster 14 belongs to smooth muscle cells (Figure 

1D). It should be noted that the automated annotation 

package annotated the clustering 14 as chondrocytes, 

in which, it should not be in the prostate tissue. So, we 

redid the analysis manually to analyze the top 10 

expressed genes in the cluster 14, including TAGLN, 

RGS5, IGFBP5, ACTA2, IGFBP7, CALD1, MYL9, 

TPM2, TIMP3, NR2F2 through the online website Cell 

Taxonomy (https://ngdc.cncb.ac.cn/celltaxonomy/), we 

found that TAGLN, MYL9, and TPM2 genes indeed 

highly expressed in smooth muscle cell. Then we 

compared the gene expression profile between  
cancer tissues (named “T”) and the adjacent normal 

tissues (named “N”) to determine the DEGs in 

prostate cancer in single-cell level, in which there were 
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28 DEGs in B cell (Table 1); 31 DEGs in NK cell 

(Table 2); 31 DEGs in T cell (Table 3); 44 DEGs in 

monocyte (Table 4); 257 DEGs in epithelial cells 

(Supplementary Table 1); 30 DEGs in endothelial cells 

(Table 5); and 37 DEGs in smooth muscle cells 

(Table 6). 

 

 
 

Figure 1. Differential gene expression in prostate cancer in single-cell level. (A) Single cell sequencing analysis using the 
downloaded dataset showed the number of genes measured per cell, the sum of the gene expression measured per cell, and the percentage 
of mitochondria-related genes in the prostate cancer in single-cell level. N represented adjacent normal tissues; T represented prostate 
cancerous tissues. (B) Principal component analysis (PCA) showed the similarity of the samples. (C) Uniform manifold approximation and 
projection (Umap) classified the single cell into 19 cell clusters. (D) Each cluster was classified into different cell type using SingleR automatic 
annotation package, including B cell, NK cell, T cell, monocyte, epithelial cells, endothelial cells, and smooth muscle cells. 
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Table 1. DEGs in B cell. 

Gene symbol log2 fold change (cancer/normal) adjusted p-value 

KLF2 −0.39 2.57E-08 

HLA-DRB5 −0.31 2.70E-12 

NR4A1 −0.31 0.0045 

HLA-DRA −0.30 2.23E-11 

CD74 −0.29 9.07E-12 

CD79A −0.29 1.49E-07 

HLA-DQA2 −0.29 1.54E-10 

RALGPS2 −0.28 4.08E-07 

MEF2C −0.28 0.0033 

HLA-DQB1 −0.28 5.23E-06 

XCL2 0.25 1.62E-23 

DUSP4 0.25 0.037 

CTSW 0.29 2.29E-16 

CCL20 0.30 0.0044 

IGHGP 0.32 0.00056 

ANKRD28 0.32 1.62E-10 

GZMA 0.32 2.17E-21 

IFNG 0.35 0.0011 

XBP1 0.35 5.19E-15 

XCL1 0.37 8.20E-14 

PRDM1 0.38 1.55E-08 

IGHA2 0.39 2.73E-09 

GNLY 0.43 3.13E-08 

ITM2A 0.43 0.0038 

CD7 0.50 1.01E-08 

CYTOR 0.53 3.16E-05 

CXCL8 0.67 0.015 

TNFAIP3 0.68 5.58E-12 

 

 

Table 2. DEGs in NK cell. 

Gene symbol log2 fold change (cancer/normal) adjusted p-value 

CCL4 −0.30 1.59E-08 

CXCR4 −0.27 0.017 

HSPA1A −0.27 5.30E-06 

NKG7 −0.25 6.97E-24 

BAG3 0.25 5.11E-39 

CTSS 0.26 0.0021 

HLA-DRB5 0.27 0.031 

FCGRT 0.28 1.41E-40 

INSR 0.31 9.56E-31 

ATF3 0.31 5.83E-15 

OLR1 0.31 1.56E-07 

IGKC 0.35 3.24E-16 

HLA-DMB 0.35 3.87E-05 

CD14 0.36 5.10E-23 
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CD83 0.36 0.00032 

PHACTR1 0.37 4.22E-08 

MARCKS 0.39 1.91E-41 

IER3 0.40 1.08E-07 

LYZ 0.41 9.52E-06 

CTSB 0.44 5.44E-13 

C15orf48 0.47 1.44E-27 

AIF1 0.47 5.96E-06 

CST3 0.48 9.02E-27 

CCL20 0.51 5.30E-51 

C1QB 0.51 1.10E-05 

CXCL8 0.53 2.29E-09 

C1QC 0.56 1.33E-13 

MS4A6A 0.58 2.21E-31 

IL1B 0.60 4.80E-21 

G0S2 0.61 1.28E-10 

CD74 0.61 4.78E-11 

 

 

Table 3. DEGs in T cell. 

Gene symbol log2 fold change (cancer/normal) adjusted p-value 

CCL4 −0.59 9.15E-15 

HBA2 −0.59 2.93E-29 

TNF −0.49 6.88E-10 

CCL5 −0.48 2.79E-47 

HSPA1B −0.41 2.50E-09 

IGFBP7 −0.41 3.79E-67 

RGS5 −0.39 1.63E-40 

CALD1 −0.38 1.83E-84 

HSP90AA1 −0.37 6.19E-26 

DNAJB1 −0.34 1.78E-12 

TAGLN −0.34 2.49E-29 

GZMK −0.28 2.30E-11 

XCL2 −0.28 2.53E-29 

JUN −0.27 1.12E-21 

SCGB1A1 −0.27 5.61E-32 

FOS −0.26 4.79E-14 

XCL1 −0.26 1.26E-47 

PLCG2 −0.26 8.57E-58 

PLIN2 0.25 5.25E-11 

PMAIP1 0.26 1.70E-27 

ZFAND2A 0.26 0.0010 

GNLY 0.26 3.07E-26 

FABP5 0.26 0.018 

PLAUR 0.27 9.52E-08 

AC020916.1 0.27 2.68E-07 

IL1B 0.30 2.88E-26 

HLA-DRB1 0.31 5.49E-10 
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G0S2 0.34 0.021 

GZMB 0.37 4.76E-36 

B4GALT1 0.38 6.12E-10 

CXCL8 0.46 9.82E-35 

 

 

Table 4. DEGs in monocyte. 

Gene symbol log2 fold change (cancer/normal) adjusted p-value 

HBB −1.40 1.19E-05 

HBA2 −1.09 5.07E-49 

HLA-DRB5 −0.41 0.00039 

CD14 −0.41 1.08E-11 

LYVE1 −0.40 4.15E-07 

CEBPD −0.39 6.45E-07 

FRMD4A −0.36 0.0010 

S100A8 −0.34 0.00124 

PLCG2 −0.33 7.55E-09 

THBS1 −0.32 0.00021 

VCAN −0.32 2.84E-09 

EPB41L2 −0.31 0.00010 

CYBB −0.30 3.35E-05 

AQP9 −0.30 0.020 

HLA-DRA −0.29 3.63E-08 

DST −0.29 7.68E-06 

C1QB −0.29 0.0044 

NRP1 −0.28 0.0021 

HLA-DPA1 −0.28 4.23E-05 

SAT1 −0.27 3.29E-07 

CCL8 −0.27 0.00060 

C1QC −0.26 0.050 

FCN1 −0.26 4.12E-07 

CD74 −0.26 2.81E-07 

TRAC 0.26 0.0010 

DUSP4 0.28 5.05E-06 

GPNMB 0.28 0.0019 

ANKRD28 0.30 0.047 

GEM 0.31 0.0027 

CCR7 0.34 8.48E-05 

MT1H 0.35 1.26E-24 

CCL5 0.36 7.74E-05 

PRDM1 0.37 0.022 

TRBC1 0.37 0.00022 

KLRB1 0.37 8.11E-13 

IL32 0.38 4.51E-07 

ATF3 0.38 0.013 

PIM2 0.39 3.08E-10 

SDS 0.41 1.94E-12 

MT1F 0.48 0.014 
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GZMB 0.50 4.01E-15 

CXCL10 0.53 7.68E-15 

FABP5 0.55 3.04E-06 

MT1E 0.77 0.022 

 

 

Table 5. DEGs in endothelial cell. 

Gene symbol log2 fold change (cancer/normal) adjusted p-value 

HBB −0.91 3.25E-15 

CXCL9 −0.89 2.85E-11 

HBA2 −0.83 1.55E-36 

HBA1 −0.41 9.42E-16 

ESM1 −0.40 0.00023 

DSP −0.39 3.79E-15 

PDK4 −0.38 0.00012 

PIGR −0.36 4.92E-67 

WFDC2 −0.34 1.39E-55 

FAM13C −0.31 9.99E-06 

KRT19 −0.31 4.04E-40 

LEF1 −0.30 0.0034 

TGFB2 −0.30 4.42E-06 

SCGB1A1 −0.30 1.69E-42 

TSHZ2 −0.29 0.019 

FN1 −0.29 0.033 

KCNQ1OT1 −0.28 0.0042 

NRN1 −0.28 0.00058 

DNASE1L3 −0.28 0.0016 

RARRES1 −0.28 9.01E-38 

MALL −0.27 0.011 

GPIHBP1 −0.27 3.01E-12 

FOLH1 0.27 0.021 

TPSAB1 0.29 2.19E-12 

C1QA 0.33 1.98E-07 

C15orf48 0.35 4.49E-26 

SPP1 0.38 9.47E-05 

IL1B 0.39 1.03E-09 

AIF1 0.41 0.00011 

POSTN 0.44 7.20E-15 

 

 

Table 6. DEGs in smooth muscle cell. 

Gene symbol log2 fold change (cancer/normal) adjusted p-value 

CFD −1.42 0.0478 

PTGDS −1.37 0.0071 

APOD −1.01 0.0038 

LUM −1.00 0.0014 

PTGS2 −0.86 1.73E-08 

CCL4L2 −0.75 0.00035 
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SCGB1A1 −0.59 7.41E-36 

RARRES1 −0.58 8.77E-15 

VCAN −0.49 6.95E-08 

SERPINF1 −0.48 4.62E-05 

MGST1 −0.45 4.40E-06 

XCL2 −0.44 0.020 

TNFAIP2 −0.43 1.22E-13 

LEPR −0.43 6.47E-08 

TCIM −0.41 0.0033 

KRT17 −0.41 7.40E-05 

ID1 −0.41 1.61E-07 

KCNQ1OT1 −0.37 8.30E-14 

SFRP1 −0.37 2.79E-05 

TSHZ2 −0.35 5.06E-06 

EFEMP1 −0.31 0.00099 

TNFSF10 −0.31 3.93E-10 

GEM −0.31 0.013 

NINJ1 −0.30 0.00023 

TSC22D2 −0.29 0.0013 

AC020916.1 −0.29 1.74E-09 

TNXB −0.29 2.02E-21 

TSPYL2 −0.27 0.0024 

IRS2 −0.27 0.00011 

C1orf56 −0.27 2.61E-10 

CXCL9 −0.27 3.91E-16 

RGS16 −0.27 0.0067 

GATA2 −0.27 0.00036 

CST7 −0.26 7.85E-12 

TRIB1 −0.26 8.24E-15 

TGM2 −0.26 1.44E-07 

CASQ2 0.31 9.06E-10 

 

 

Identification of formononetin’s targets for treating 

prostate cancer in single-cell level 

 

By searching the databases including Swiss Target 

Prediction database, PharmMapper database and 

SuperPred database, we identified 387 formononetin-

associated genes after correction by using UniprotKB 

database. We then compared the formononetin-

associated genes with the DEGs obtained from  

each cell type of prostate cancer. We found that 

formononetin could target DEGs in B cells included 

cluster of differentiation 74 (CD74) (Figure 2A); 

DEGs in T cell included heat shock protein 90 alpha 

family class A member 1 (HSP90AA1) and tumor 

necrosis factor (TNF) (Figure 2B); DEGs in NK cell 

included insulin receptor (INSR), CD74, and C-X-C 

motif chemokine receptor 4 (CXCR4) (Figure 2C); 

DEGs in monocyte included CD74, hemoglobin 

subunit beta (HBB), and thrombospondin 1  

(THBS1) (Figure 2D); DEGs in epithelial cell  

included CXCR4, lactotransferrin (LTF), retinoic acid  

receptor-related orphan receptor alpha (RORA),  

Kruppel-like Factor 5 (KLF5), sorbitol dehydrogenase  

(SORD), alpha-2-glycoprotein 1, zinc-binding (AZGP1),  

INSR, argininosuccinate synthase 1 (ASS1), HBB, 

HSP90AA1, and histamine N-methyltransferase 

(HNMT) (Figure 2E); DEGs in endothelial cell included 

HBB and pyruvate dehydrogenase kinase 4 (PDK4) 

(Figure 2F); and DEGs in smooth muscle cell included 

and transglutaminase 2 (TGM2) (Figure 2G). Then, we 

grouped the immune cells including B cell, T cell, 

monocyte, and NK cell as cluster 1 (Table 7), giving 7 

formononetin’s targets; and the tissue cells including 

epithelial cell, endothelial cell, and smooth muscle cell 

as cluster 2 (Table 7), giving 13 formononetin’s targets 

for further GO and KEGG analysis. 
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Formononetin mediated immune response-related 

biological process and signaling pathways in the 

immune cell types of prostate cancer 

 

The result of GO analysis using the formononetin’s 

targets on the immune cell of prostate cancer 

highlighted the biological processes related to immune 

response (Figure 3A). It was regulated by different 

cytokines and interleukins production such as 

interleukin (IL)-1, IL-6, IL-12, and IL-18 (Figure 3B), 

leading to mediate the functions of different leukocytes 

such as lymphocyte mediated immunity, B cell 

 

 
 

Figure 2. Identification of formononetin’s targets against prostate cancer in single-cell level. Venn diagram showed the number 

and gene symbol of common genes between formononetin and (A) B cell, (B) T cell, (C) NK cell, (D) monocyte, (E) epithelial cell, (F) 
endothelial cell, and (G) smooth muscle cell. 
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Table 7. Formononetin’s targets in immune cells and tissue cells. 

Immune cells Tissue cells 

CD74 TGM2 

HBB HBB 

THBS1 PDK4 

INSR CXCR4 

CXCR4 LTF 

HSP90AA1 RORA 

TNF KLF5 
 SORD 
 AZGP1 
 INSR 
 ASS1 
 HSP90AA1 
 HNMT 

 

mediated immunity, and macrophage activation (Figure 

3C). KEGG pathway analysis further suggested the  

role of the formononetin’s targets in cell apoptosis  

and immune functions for treating prostate cancer 

(Figure 3D). All these functions were controlled by 

different cell signaling pathways such as PI3K-Akt 

signaling, TGF-beta signaling, mTOR signaling, and 

p53 signaling. 

 

Formononetin mediated metabolic process and 

signaling pathways in the tissue cell types of prostate 

cancer 

 

In the tissue cell, formononetin’s targets mainly 

contributed to the metabolisms such as glucose 

metabolic process, monosaccharide metabolic process, 

and cellular response to fatty acid (Figure 4A). 

Furthermore, the KEGG analysis highlighted the 

importance of formononetin’s targets in insulin 

resistance, adherens junction, cytokine-cytokine receptor 

interaction, and necroptosis via the regulation of cell 

signaling pathways (Figure 4B). 

 

Possible direct binding of formononetin with its 

target proteins CD74, INSR, TNF, and CXCR4 

 

The PDB database was searched for the protein 

structure of CD74, INSR, TNF, and CXCR4, and we 

found 4P01 [31], 5E1S [32], 6X86 [33], and 3OE0 

[34] for docking analysis, respectively. An active 

cavity box model was established using PyMOL 

(version 2.5). For CD74 protein (PDB ID: 4P01), the 

active cavity box model was set at center x, y, z to 

−38.654, −14.151, 5.771, size x, y, z to 15.0, 15.0, 

15.0, and the RMSD of the proto-ligand to 1.7 Å. We 

found that the formononetin could bind the CD74 

protein (PDB ID: 4P01) through the formation of 

hydrogen bonds with the amino acid residues TYR-36 

(3.5 Å), ILE-64 (3.2 Å), PRO-1 (3.2 Å) and its free 

docking energy with the protein was −6.8 Kcal/mol 

(Figure 5A). For INSR protein (PDB ID: 5E1S), the 

active cavity box model was set to center x, y, z of 

3.538, 19.827, 21.984, size x, y, z of 15.0, 15.0, 15.0, 

and RMSD of the proto-ligand of 2.1 Å. Formononetin 

formed a hydrogen bond with amino acid residue  

ASP-1150 (2.2 Å) of INSR protein (PDB ID: 5E1S), 

and its free docking energy with the protein was −8.2 

Kcal/mol (Figure 5B). For TNF protein (PDB ID: 

6X86), the active cavity box model was set with center 

x, y, z of 55.474, −6.73, 9.924, size x, y, z of 15.0, 

15.0, 15.0, the RMSD of the proto-ligand was only one 

and calculated to be 0.000 Å. Formononetin formed 

hydrogen bond with amino acid residue TYR-151 (2.9 

Å) of TNF protein (PDB ID:6X86) and its free 

docking energy with the protein was −9.8 Kcal/mol 

(Figure 5C). For CXCR4 protein (PDB ID: 3ODU), 

the active cavity box model was set with center x, y, z 

of −13.203, 15.376, 71.731, size x, y, z of 15.0, 15.0, 

18.75, and RMSD of the proto-ligand of 2.1 Å. 

Formononetin formed hydrogen bond with amino acid 

residue TYR-225 (3.4 Å), ARG-188 (3.2 Å) of 

CXCR4 protein (PDB ID: 3ODU) and its free docking 

energy with the protein was −8.4 Kcal/mol (Figure 

5D). Taken together, our results suggested a possible 

direct binding of formononetin with its target proteins 

CD74, INSR, TNF, and CXCR4. 

 

Validation of network pharmacology’s result 

 

In order to validate the finding of network 

pharmacology, we treated the human prostate cancer 

cell DU145 with formononetin, followed by qPCR 

analysis and WB. The result of qPCR analysis showed 

that the treatment of formononetin could induce the 
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mRNA expression of TNF, THBS1, HSP90AA1, and 

HBB (Figure 6A). To further validate the effect of 

formononetin on the stability of its target proteins, 

Western blotting was performed. The result showed that 

treatment of formononetin could increase the protein 

level of TNF, but decrease the protein level of CD74 

(Figure 6B), suggesting the binding of formononetin 

may regulate the stability of its target proteins. 

 

 
 

Figure 3. Formononetin targeted genes related to immune responses in immune cells of prostate cancer. Gene Ontology (GO) 

enrichment analysis showed the biological roles of formononetin in (A) immune response, (B) interleukins and cytokines production, and 
(C) leukocyte of immune cell cluster of prostate cancer. (D) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment 
analysis showed the roles of formononetin’s targets in apoptosis, and antigen presentation through the regulation of cell signaling 
pathways of immune cells. Lower panel of each figure was the Circos plot to show the involvement of gene in each item. The size of bubble 
represented the number of gene. The color of bubble represented the significance of the biological processes and pathways. 
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DISCUSSION 
 

Formononetin, a natural flavonoid with antioxidant and 

cellular therapeutic properties, is a potential drug for 

treating prostate cancer. In vitro studies demonstrated 

that formononetin inhibited the proliferation and 

induced apoptosis of prostate cancer cell PC-3 through 

the induction of Bax/Bcl-2 ratio and regulation of 

 

 
 

Figure 4. Formononetin targeted genes related to metabolisms in tissue cells of prostate cancer. (A) GO enrichment analysis 

showed the biological roles of formononetin in metabolisms of tissue cells cluster of prostate cancer. (B) KEGG enrichment analysis showed 
the roles of formononetin’s targets in insulin resistance, cell adhesion, and necroptosis through the regulation of cell signaling pathways of 
tissue cells. Lower panel of each figure was the Circos plot to show the involvement of gene in each item. The size of bubble represented 
the number of gene. The color of bubble represented the significance of the biological processes and pathways. 
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p38/Akt pathway [35]. Also, formononetin was  

reported to induce the early apoptosis of prostate  

cancer cell DU145 via the regulation of mitochondrial 

apoptotic pathway and downregulation of IGF-1/IGF-

1R signaling pathway [16, 36]. The results of a clinical 

intervention study carried out by Jarred et al. showed 

that dietary isoflavones supplement formononetin 

increased apoptosis in low and intermediate prostate 

cancer with minimal adverse effects [37]. In addition, 

Dong et al. found that the combined use of docetaxel 

and formononetin nanoparticles could effectively reduce 

side effects during the prostate cancer treatment [38]. 

So, formononetin should be a promising drug with 

potential anti-prostate cancer properties. 

 

In order to understand the detail anti-prostate cancer 

effect of formononetin in single-cell level, we combined 

and analyzed the single cell sequencing data of prostate 

 

 
 

Figure 5. Potential binding of formononetin with its target proteins TP53 and CDK1. Molecular docking showed the binding of 

formononetin with (A) CD74 protein (PDB ID: 4P01), (B) INSR protein (PDB ID: 5E1S), (C) TNF protein (PDB ID: 6X86), and (D) CXCR4 protein 
(PDB ID: 3ODU). 
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cancer obtained from 2 studies [19, 20]. When we 

compared the expression profile between tumoral and 

adjacent normal tissue in single-cell level, we identified 

the DEGs in 2 cell clusters, including immune cells  

(B cell, T cell, monocyte, and NK cell) and tissue cell 

(endothelial cell, epithelial cell, and smooth muscle cell). 

 

 
 

Figure 6. Formononetin altered the expression of its targets in prostate cancer cell line. (A) qPCR analysis showed that 

formononetin induced the expression of mRNA of TNF, THBS1, HSP90AA1, and HBB in prostate cancer cell. (B) Formononetin treatment 
also induced the protein level of TNF and reduced the protein level of CD74 in prostate cancer cell. 
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The identification of these DEGs could be served  

as prognostic marker in prostate cancer. Indeed,  

some of the identified genes were reported to be 

associated with other cancer types, but not prostate 

cancer. For instance, we found the overexpression of 

immunoglobulin kappa C (IGKC) in NK cell (Table 2). 

A study of non-small cell lung cancer patient showed 

the overexpression of IGKC in stroma-infiltrating 

plasma cells [39]. Another study conducted by Schmidt 

et al. evaluating the expression of IGKC in 909 early 

breast cancer demonstrated its association with distant 

disease-free survival of patients [40]. Similar findings 

were observed in node-negative breast cancer that the 

overexpression of IGKC was significantly associated 

with DFS, especially in ER negative and in luminal  

B carcinomas [41]. Our data suggested that IGKC 

could be a potential biomarker for prognosis of prostate 

cancer. 

 

In the later part of study, we aimed to determine the 

possible use of formononetin for treating prostate 

cancer in single-cell level. By using the network 

pharmacology, we found the formononetin could target 

different cell types specifically. In the immune cell 

cluster of prostate cancer, formononetin targeted CD74, 

TNF, HBB, THBS1, INSR, CXCR4, and HSP90AA1. 

Some of them were reported to play important roles in 

tumorigenesis. Our result showed that formononetin 

could target and reduce the expression of CD74, which 

is a cell surface membrane receptor of cytokine 

macrophage migration inhibitory factor (MIF) [42]. 

CD74 play multiple roles in the immune system such  

as antigen presentation and B cell differentiation [43], 

and cumulating studies demonstrated the roles of CD74 

in tumorigenesis. Xu et al. showed the association of 

CD74 with malignancies and immune microenvironment 

in gliomas [44]. A study of human breast cancer  

showed that CD74 interacted with CD44 to promote 

tumorigenesis and metastasis of MDA-MB-231 cell 

through the regulation of RHOA [45]. In addition, over-

expressed CD74 was reported to interplay with MIF  

to promote the tumor growth in advanced melanoma 

patients, and its elevated expression was associated with 

the poorer patient survival [46]. A similar result was 

observed in the study of hepatocellular carcinoma 

(HCC) conducted by Xiao et al. that stromal CD74+ 

macrophages enrichment was associated with favorable 

prognosis in patients with HCC [47]. CD74 was found 

to be overexpressed in prostate cancer cell DU145, as 

compared with normal prostate cells, and blocking 

interaction of MIF with CD74 selectively inactivated 

ERK1/2, leading to reduced prostate cancer cell 

proliferation and increased apoptosis [48]. On the other 
hand, overexpression of the receptor CD74 was closely 

associated with growth and migration of prostate cancer 

cells [49]. These studies suggested that formononetin 

targeting CD74 could be effective strategies for prostate 

cancer therapy. 

 

In addition, our result showed that formononetin could 

target and induce the expression of TNF in prostate 

cancer cell. TNF is an inflammatory cytokine that play 

dual roles in cancer, however its role in prostate cancer 

is still largely unknown. But TNF was reported to be 

cytotoxic to tumour cells and destroy tumour blood 

vessels [50]. In addition, the combined effect of TNF 

and ionising radiation on the induction of apoptosis in 

bladder cancer cells was demonstrated [51]. On the other 

hands, we found that formononetin could target THBS1 

and HBB. THBS1, an adhesive glycoprotein, played 

roles in anti-angiogenesis and anti-tumorigenesis [52]. 

In prostate cancer, THBS1 inhibited neovascularization 

and tumor growth [53]. Also, THBS1 played a key role 

in the regulation of prostate epithelial and stromal 

growth by inhibiting angiogenesis and activating latent 

TGF-beta [54]. Jin et al. demonstrated that over-

expression of THBS1 inhibited the growth of DU145 

tumors in Balb/c mice [55]. Vice versa, the knockdown 

of THBS1 increased the growth and colony forming 

ability of prostate cancer cell [56]. HBB is one of the 

components of the bead protein chain of haemoglobin 

A, and its basic function is oxygen transport. A study  

on gene expression profile of anaplastic thyroid cancer 

cell lines (ACL) showed significant reduced expression 

of HBB in ACL [57]. Functionally, overexpression of 

HBB could suppress the growth of ACL. A similar 

result was observed that induced HBB expression 

inhibited growth and metastasis of neuroblastoma [58], 

suggesting the anti-tumor roles of HBB. 

 

In our analysis, we also predicted the formononetin’s 

targets such as INSR and AZGP1 to control the 

metabolisms in the tissue cell of prostate cancer. And 

they were reported to play roles in tumorigenesis. For 

instance, a study using a genomic screen of the tumour 

vasculature showed the involvement of INSR in tumour 

angiogenesis [59]. INSR was found to be overexpressed 

in angiogenic vasculature of human tumors and the  

was correlated to shorter survival of cancer patient. In 

prostate cancer, the induced expression of INSR could 

increase cell proliferation, colony formation, migration, 

invasion and resistance to apoptosis in prostate cancer 

cells through the cooperation with IGF1R [60]. A similar 

finding from Ofer’s group demonstrated that knockdown 

of INSR reduced cell growth and proliferation of 

prostate cancer cell, as well as driving cells into 

apoptosis [61]. Other than INSR, our result highlighted 

that AZGP1 was targeted by formononetin and played 

major role in lipid metabolism. A tissue microarray 
containing 11,152 prostate cancers showed that the 

reduced AZGP1 expression was associated with adverse 

prostate cancer prognosis through the regulation of 
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PTEN [62]. A similar result was obtained from a Chip-

Seq study that AZGP1 acted as an androgen-responsive 

gene to mediate proliferation and metastasis of prostate 

cancer cell via the contribution of androgen receptor 

[63]. In addition, a clinical study included 191 patients 

who underwent androgen deprivation therapy showed 

that low AZGP1 expression was associated with a 

shorter survival time in prostate cancer patients [64]. 

Also, the low expression of AZGP1 could be used to 

predict the recurrence of margin-positive, localized 

prostate cancer [65]. 

 
For the limitation of the study, our results were mainly 

obtained from the in silico analysis. Although the 

findings were validated by using prostate cancer cell line, 

the involvement of formononetin’s targets in prostate 

cancer in single-cell level was still difficult to confirm. In 

addition, there were many challenges in translating these 

findings to clinical applications. For instance, the single 

use of formononetin may be not effective to treat the 

cancer. So, future study could focus on the combined 

therapy using formononetin. In addition, further clinical 

trials exploring the use of formononetin in prostate 

cancer are essential. Moreover, further biochemistry 

experiments should be carried out to confirm the binding 

of formononetin to its target proteins. In conclusion, for 

the first time, our result suggested that formononetin 

could target the candidates involved in the tumorigenesis 

of prostate cancer in single-cell level. It provided a 

ground information for further study on formononetin  

for treating prostate cancer. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 
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