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INTRODUCTION 
 

Hundreds of thousands of people are affected by  

renal cell carcinoma (RCC) every year around the  

world [1]. According to its pathological characteristics, 

RCC can be divided into various subtypes, among 

which the kidney renal clear cell carcinoma (KIRC) is 

the most common subtype, accounting for more than 

70% of all cancers [2]. Early stage KIRC is insidious 

and patients have no obvious symptoms, so it often 

leads to the delay in diagnosis and treatment [3]. In 

addition, about 1/3 of early stage KIRC can eventually 

develop metastasis [4]. These characteristics of KIRC 

led to the dilemma of unsatisfactory prognosis in  

KIRC. Therefore, it makes sense to identify meaningful 

biomarkers of KIRC to ameliorate this dilemma. Many 

studies have shown that multi-gene signature allows for 

more accurate risk assessment and prognostic prediction 
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ABSTRACT 
 

Kidney renal clear cell carcinoma (KIRC) is a cancer that is closely associated with epigenetic alterations, and 
histone modifiers (HMs) are closely related to epigenetic regulation. Therefore, this study aimed to 
comprehensively explore the function and prognostic value of HMs-based signature in KIRC. HMs were first 
obtained from top journal. Then, the mRNA expression profiles and clinical information in KIRC samples were 
downloaded from The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) datasets. 
Cox regression analysis and least absolute shrinkage and selection operator (Lasso) analysis were 
implemented to find prognosis-related HMs and construct a risk model related to the prognosis in KIRC. 
Kaplan-Meier analysis was used to determine prognostic differences between high- and low-risk groups. 
Immune infiltration and drug sensitivity analysis were also performed between high- and low-risk groups. 
Eventually, 8 HMs were successfully identified for the construction of a risk model in KIRC. The results of the 
correlation analysis between risk signature and the prognosis showed HMs-based signature has good 
prognostic value in KIRC. Results of immune analysis of risk models showed there were significant differences 
in the level of immune cell infiltration and expression of immune checkpoints between high- and low-risk 
groups. The results of the drug sensitivity analysis showed that the high-risk group was more sensitive to 
several chemotherapeutic agents such as Sunitinib, Tipifarnib, Nilotinib and Bosutinib than the low-risk group. 
In conclusion, we successfully constructed HMs-based prognostic signature that can predict the prognosis of 
KIRC. 
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of cancers [5–8]. Therefore, in this study, a risk model 

of HMs-based signature in KIRC was established to 

predict the prognosis of KIRC. 

 

Histone modifiers (HMs) can code and decode 

modifications of histone residues and are usually further 

divided into readers, writers and erasers [9]. The readers 

usually contain specific domains that identify histone 

residues and determine their modification types and 

states, and writers and erasers often play a role in adding 

and removing modifications to certain histone residues, 

such as acetylation and deacetylation, methylation and 

demethylation, ubiquitination and deubiquitination, etc., 

[10–12]. In addition to being associated with histone 

modifications, HMs can also interact with transcription 

factors or other proteins to form a complex regulatory 

network that ultimately results in a sophisticated 

regulation of gene expression [12]. Although research  

on HMs has been conducted for decades, and some 

results have been achieved in recent years [13–17], a 

comprehensive analysis of the function and its prognostic 

value of HMs in KIRC remains lacking. A focus was 

placed on function and prognostic value of HMs in KIRC 

in the present study. We constructed a risk model for  

the KIRC samples consisting of the expression level of  

8 HMs (C17orf49, GLYATL1, HJURP, KAT2A, NCOA7, 

NEK6, PRDM16, TTK). We examined the correlation 

between HMs-based signature and clinical characteristics 

of KIRC samples and constructed a signature based  

on HMs that could be used to predict prognosis of KIRC. 

To further explore the molecular mechanisms of the 

signature, we also investigated differences in the immune 

characteristics of KIRC samples in the groups at high  

and low risk. We finally also analyzed the sensitivity  

of KIRC samples to chemotherapy drugs between the 

groups at high and low risk to evaluate the value of the 

clinical application of the signature. 

 

METHODS 
 

Data acquisition and acquisition of HMs 

 

MRNA expression profiles, clinicopathological  

data and prognostic information derived from 539 

KIRC samples and 72 normal control samples were 

obtained from The Cancer Genome Atlas (TCGA, 

https://portal.gdc.cancer.gov/) database [18]. A total of 

540 histone modifiers (HMs) were derived from the top 

published journals [19]. 

 

Differential expression analysis and functional 

enrichment analysis of HMs 

 

Differentially expressed HMs in KIRC samples and 

normal control samples were screened out based on the 

screening criteria of |logFC| >1 and false discovery rate 

(FDR) <0.01 by applying the limma R package. To 

mine the underlying molecular mechanisms of HMs, 

GO (Gene Ontology) and KEGG (Kyoto Encyclopedia 

of Genes and Genomes) pathway enrichment analyses 

were implemented by running R. 

 

Cluster analysis 

 

To explore the relationship between the expression of 

differentially expressed HMs and the KIRC, consensus 

clustering analysis was performed in KIRC by applying 

the limma R package and ConsensusClusterPlus R 

package. In addition, survival differences between 

different clusters and clinical characteristics were further 

analyzed by using the survival, survminer and pheatmap 

R packages. 

 

Construction and validation of a risk model of HMs-

based signature 

 

KIRC samples applied in the construction of the risk 

model must meet the following criteria: (1) samples 

have full expression information and (2) the overall 

survival time of the samples were more than 30 days 

from the time of diagnosis of KIRC. Then, by applying 

the caret R package the samples meeting the inclusion 

criteria were divided into a training set and a test set in a 

ratio of 7:3 according to the caret sampling method. 

 
Univariate analysis was implemented to identify HMs 

associated with the prognosis of KIRC in the training 

set by running R. Then, least absolute shrinkage and 

selection operator (LASSO), a regularization method  

in regression analysis, was implemented to eliminate 

HMs that were overfitted with the model by applying 

the glmnet R package. The risk score in the model  

was estimated by the following formula: Risk score = 

(Coef1 × expression of gene1) + (Coef2 × expression of 

gene2) + … + (Coef n × expression of gene3). Based on 

the median risk score of this model, the KIRC samples 

in the training set can be categorised into high- and low-

risk groups. Principal component analysis (PCA) and  

t-distributed stochastic neighbor embedding (t-SNE) 

were used to downscale the expression of all genes  

in the model. The Kaplan–Meier survival curve and 

receiver operating characteristic (ROC) curve of HMs-

based signature were plotted to display the model’s 

ability to predict the prognosis of the sample by running 

R. The test set and the entire set were implemented with 

the same procedures to examine reliability of this risk 

model constructed from the samples in the training set. 

 
Construction of the nomogram 

 

The relationship between clinical variables and  

HMs-based signature was explored. Univariate and 
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multivariate analyses were implemented to find 

independent prognostic factors for KIRC samples. 

Then, independent prognostic factors were included into 

the establishment of nomogram which could forecast 3-

year and 5-year overall survival (OS) in KIRC, and the 

calibration curves visualising the comparison between 

the 3-year and 5-year survival probabilities forecasted 

by the nomogram for KIRC and the observed actual 

survival probabilities were then plotted. 
 

Immune characteristics of the HMs-based signature 
 

KIRC is an immunogenic tumor and its development 

and progression are associated with immune 

characteristics in the tumor microenvironment. Based 

on this basis, the relationship between the expression 

level of 8 HMs in the risk model and the level of 

immune cell infiltration was analysed in the TIMER 

database (https://cistrome.shinyapps.io/timer/) [20]. The 

relationship of HMs with microsatellite instability 

(MSI) and tumor mutation burden (TMB) was further 

analyzed given that MSI and TMB can respond to 

immunotherapy of tumors. Then, the differences in 

tumor microenvironment (TME) between high- and 

low-risk groups in the risk model were explored. Since 

the level of immune checkpoints can reflect the immune 

status in tumor, the characteristics of expression of 

immune checkpoints between high- and low-risk groups 

were further explored. A major cause of immuno-

therapy failure and tumor progression is immune 

escape. The tumor immune dysfunction and exclusion 

(TIDE, http://tide.dfci.harvard.edu/) [21] score is a good 

indicator to evaluate tumor immune escape [21]. 

Therefore, differences in TIDE scores between high- and 

low-risk groups were analyzed to assess the probability 

of immune escape in different KIRC samples. 
 

Correlation between drug sensitivity and risk 

signature 
 

To investigate the sensitivity of KIRC samples to 

common chemotherapy drugs between different risk 

groups, the Genomics of Drug Sensitivity in Cancer 

(GDSC, https://www.cancerrxgene.org/) database [22] 

and the pRRophetic R package were applied to analyze 

differences in IC50 of KIRC samples in chemotherapy 

drugs between different risk groups. 
 

Statistics analysis 
 

All statistical analyses were implemented by  

R (version 4.0.0). Wilcoxon Rank-Sum test was 

implemented to compare gene expression differences 

between KIRC samples and control samples. Pearson’s 

correlation coefficient was applied to estimate the linear 

relationship between the variables. P-values less than 

0.05 were considered significant differences. 

Availability of data and materials 

 

Raw data in this study can be obtained from the GDC 

database (https://portal.gdc.cancer.gov/), TIDE database 

(http://tide.dfci.harvard.edu/) and GDSC database 

(http://www.cancerrxgene.org/). 

 

RESULTS 
 

Identification and functional enrichment of 

differentially expressed HMs 

 

Of the 539 KIRC samples and 72 control normal 

samples, 21 down-regulated and 27 up-regulated HMs 

were identified and the results were presented in 

Figure 1A, 1B. GO analysis (Figure 2A) showed that 

the GO terms with the highest enrichment in the 

biological process (BP) classification were histone 

modification, chromatin organization, peptidyl−lysine 

modification, chromatin remodeling and histone 

methylation. In the cellular component (CC) content, 

condensed chromosome, chromosomal region and 

spindle were the main enriched GO terms. Histone 

binding, methyltransferase activity, transferase activity 

and transferring one−carbon groups were the sig-

nificantly enriched GO terms in the category of 

molecular function (MF). The enrichment analysis of 

KEGG pathways implied that HMs may be closely 

associated with Lysine degradation (Figure 2B). 

 

Classification of KIRC samples-based HMs 

signature 

 

When performing consensus cluster analyses on the 

KIRC samples by clustering variable (k) from 1 to 9, we 

found that the strongest correlations between samples 

within groups were found when k = 2 (Figure 3A). 

Subsequently, the 515 KIRC samples were divided  

into two clusters. Kaplan-meier (KM) survival analysis 

between the two clusters showed that OS of KIRC 

samples in cluster 1 was significantly worse than OS in 

cluster 2 (p < 0.001) (Figure 3B). We present a heat 

map depicting the association between the mRNA 

expression of HMs and the clinical characteristics of 

KIRC samples, including Age, Gender, Grade and Stage 

(Figure 3C). We found significant differences between 

the KIRC samples in Cluster 1 and Cluster 2 in terms  

of Gender (p < 0.05), stage (p < 0.001) and grade (p < 

0.05) of the tumor. 

 
Construction and verification of HMs-based 

signature 

 

In all, 515 samples from the KIRC met the inclusion 

criteria for follow-up research. These KIRC samples 

were further divided into 361 samples as a training set 
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and 154 samples as a test set in a 7:3 ratio by care 

method sampling. Univariate analysis of differentially 

expressed HMs in the training set were performed and 

21 HMs that significantly correlated with the prognosis 

of KIRC were identified (Figure 4A). Those HMs that 

were over-fitted to the model were eliminated, and 

finally 8 HMs (C17orf49, GLYATL1, HJURP, KAT2A, 

NCOA7, NEK6, PRDM16, TTK) were identified to build 

a risk model (Figure 4B, 4C). The risk score can be 

calculated from the mRNA expression of HMs and the

 

 
 

Figure 1. Differential expression analysis of HMs. (A) The heatmap displayed the differential expression of HMs between KIRC 

samples and normal control samples. Red represented up-regulation of HMs expression, green represented down-regulation of HMs 
expression. (B) Volcano displayed the differential expression of HMs in KIRC samples. 
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Figure 2. Enrichment analysis of HMs differentially expressed in KIRC. (A) GO analysis of HMs. (B) KEGG pathway enrichment 

analysis of HMs. 
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relevant coefficients (Table 1) with the following 

equation: riskscore = 0.0280971627824297 × C17orf49 

expression + (−0.107290283832969) × GLYATL1 

expression + 0.520165069344535 × HJURP expression 

+ 0.241951166184651 × KAT2A expression + 

(−0.00243111668616741) × NCOA7 expression + 

(−0.13291750024586) × NEK6 expression + 

(−0.500207346820667) × PRDM16 expression + 

0.209483791892391 × TTK expression. As a cut-off 

value, the median risk score was used to divide the 

 

 
 

Figure 3. Classification of KIRC samples based on HMs. (A) 515 KIRC samples can be divided into two clusters by the consensus 

clustering analysis (k = 2). (B) Kaplan-Meier OS analysis for two clusters. (C) Heatmap of the expression of HMs and clinical characteristics of 
the KIRC samples in two clusters.  
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Table 1. Genes and coefficient in risk models. 

Gene symbol Coefficient 

C17orf49 0.028097 

GLYATL1 −0.10729 

HJURP 0.520165 

KAT2A 0.241951 

NCOA7 −0.00243 

NEK6 −0.13292 

PRDM16 −0.50021 

TTK 0.209484 

 

KIRC samples into high-risk and low-risk categories. In 

the two-dimensional plane, PCA and t-SNE analysis 

(Figure 5) showed significant dispersion between KIRC 

samples of high- and low-risk groups. The mRNA 

expression of the 8 HMs in the high-risk group and the 

low-risk group was shown in Figure 6A. The correlation 

between the risk signature and the survival of the KIRC 

samples were shown in Figure 6B–6D. The KIRC 

samples in the high-risk group had significantly shorter 

survival time and significantly higher mortality rates 

than the samples in the low-risk group. The ROC curve 

showed an accuracy of 0.706 and 0.748 for the risk 

 

 
 

Figure 4. Identification of HMs for construction of risk model. (A) Identification of differentially expressed HMs associated with 

prognosis of KIRC samples by univariate analysis. (B) Elimination of HMs with model overfitting by LASSO analysis. (C) Tenfold cross-
validation for tuning parameter selection in the LASSO analysis. 
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score to predict 3- and 5-year OS for the KIRC samples, 

respectively (Figure 6E). A same analysis was performed 

on the test set as well as the entire set to verify the 

stability and reliability of the risk model derived from 

training set. As shown in Figures 7A, 8A, test and 

overall sets of KIRC samples of high- and low-risk 

groups displayed similar expression level of HMs as the 

training samples. Survival differences between high-risk 

group and low-risk group in the test (Figure 7B–7D) 

and overall set (Figure 8B–8D) were consistent with 

those in the risk model. The accuracy of the test set’s 

risk score in predicting 3- and 5-year OS for KIRC 

 

 
 

Figure 5. PCA and t-SNE analysis of risk model in KIRC. (A) PCA and t-SNE analysis of risk model in training set. (B) PCA and t-SNE 

analysis of risk model in test set. (C) PCA and t-SNE analysis of risk models in entire set. 
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samples was 0.738 and 0.749, respectively (Figure 7E) 

and 0.702 and 0.722, respectively in the entire set 

(Figure 8E). Analyses of the test set and the total set 

showed good stability and reliability of the risk model. 

 

Relationship between HMs-based signature and 

clinical variables 

 

The KIRC samples in the risk model can be divided  

into subgroups based on age, gender, grade, and stage. 

The heatmap displayed a significant difference in grade 

(p < 0.01) and stage (p < 0.001) between high- and low-

risk groups (Figure 9A). The KM survival curves in 

each subgroup (age ≤65 or >65, gender = FEMALE or 

MALE, grade = G1−2 or G3−4, stage = I−II or III−IV) 

showed that each subgroup of KIRC samples with a 

high risk score had a worse OS than those with a low 

risk score (Figure 9B–9E). 

Construction of prognostic models 

 

A univariate Cox analysis was conducted using 

variables including age, gender, grade, stage, and risk 

score (Figure 10A). Univariate Cox analysis revealed 

close correlations between age (p < 0.001), grade  

(p < 0.001), stage and risk score (p < 0.001) for the 

prognosis of KIRC samples. Further multivariate Cox 

analyses were implemented using age, grade, stage,  

and risk score. Cox analysis of the KIRC samples 

revealed that age (p < 0.001), grade (p = 0.053), stage  

(p < 0.001), and risk score (p < 0.001) influenced 

prognosis independently (Figure 10B). In addition, 

ROC curves of several clinical variables and risk score 

predicting the OS of KIRC samples shown that risk 

score (AUC = 0.768) can be as accurate as or better than 

some traditional clinical variables in predicting KIRC 

samples’ prognosis (Figure 10C). 

 

 
 

Figure 6. Prognostic analysis of HMs-based signature in the training set. (A) Expression of HMs of KIRC samples between high- and 

low-risk groups. (B) Kaplan-Meier survival analysis of KIRC samples between high- and low-risk groups. (C, D) Analysis of differences in 
survival status of KIRC samples between high- and low-risk groups. (E) Time-dependent ROC curve analysis of risk scores predicting 3- and 
5- year OS in the KIRC samples. 
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As a result of the univariate and multivariate analyses, 

independent prognostic factors of the KIRC samples 

were incorporated into the prognostic model. By 

transforming complex regression equations into visual 

graphs, nomograms make the results of predictive 

models more understandable [23]. A nomogram 

predicting the probability of 3- and 5-year OS was 

plotted on the basis of this advantage (Figure 11A). 

The concordance index (C-index) = 0.754 reflected the 

decent accuracy of the nomogram in predicting the 3- 

and 5-year OS of KIRC. The calibration curves further 

showed the consistency between the nomogram-

predicted OS probabilities for the KIRC samples and 

the actual OS for the KIRC samples at 3- and 5-year 

(Figure 11B, 11C). 

 

Immune characteristics 

 

By searching the TIMER database, we found 

correlations between expression level of these 8 HMs 

(C17orf49, GLYATL1, HJURP, KAT2A, NCOA7, 
NEK6, PRDM16, TTK) and the infiltration level of  

six common immune cells (B Cell, CD8+ T Cell,  

CD4+ T Cell, Macrophage, Neutrophil and Dendritic 

Cell) (Figure 12). The expression of C17orf49 closely 

correlated with the infiltration of CD8+ T Cell (cor = 

0.35, p = 4.32e−14), CD4+ T Cell (cor = 0.295,  

p = 1.15e−10), Neutrophil (cor = 0.16, p = 5.76e−04), 

and Dendritic Cell (cor = 0.289, p = 3.34e−10). The 

expression of GLYATL1 significantly correlated with 

the infiltration of B Cell (cor = 0.161, p = 5.29e−04) 

and CD8+ T Cell (cor = 0.152, p = 1.44e−03) only. 

HJURP showed a close association with immune 

infiltration, and its expression level significantly 

correlated with B Cells (cor = 0.261, p = 1.32e−08), 

CD8+ T Cell (cor = 0.187, p = 8.21e−05), CD4+ T Cell 

(cor = 0.19, p = 4.27e−05), Macrophage (cor = 0.146,  

p = 1.88e−03), Neutrophil (cor = 0.281, p = 9.02e−10) 

and Dendritic Cell (cor = 0.347, p = 2.40e−14). The 

expression level of KAT2A had significantly negative 

 

 
 

Figure 7. Prognostic analysis of HMs-based signature in the test set. (A) Expression of HMs of KIRC samples between high- and 

low-risk groups. (B) Kaplan-Meier survival analysis of KIRC samples between high- and low-risk groups. (C, D) Analysis of differences in 
survival status of KIRC samples between high- and low-risk groups. (E) Time-dependent ROC curve analysis of risk scores predicting 3- and 
5-year OS in the KIRC samples. 
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correlation with the infiltration level of B cells (cor = 

−0.153, p = 1.01e−03), however, it had significantly 

positive correlation with the infiltration level of CD4+ 

T cells (cor = 0.323, p = 1.18e−12) and Neutrophil 

(cor = 0.129, p = 5.53e−03). The expression of 

NCOA7 closely correlated with infiltration of CD8+ T 

Cell (cor = 0.202, p = 1.99e−05), CD4+ T Cell (cor = 

0.247, p = 7.79e−08), Macrophage (cor = 0.214, p = 

5.02e−06), Neutrophil (cor = 0.245, p = 1.11e−07) and 

Dendritic Cell (cor = 0.117, p = 1.22e−02). Both 

NEK6 and TTK show a close correlation with immune 

cell infiltration. The expression of NEK6 and TTK 

closely and positively correlated with the infiltration 

of these six immune cells (B Cells, CD8+ T Cell, 

CD4+ T Cell, Macrophage, Neutrophil and Dendritic 

Cell) (p < 0.01). The expression of PRDM16 had 

significantly negative correlation with the infiltration 

of B cells (cor = 0.13, p = 5.33e−03), but significantly 

positive correlation with the infiltration of CD8+ T 

Cell (cor = 0.1, p = 3.72e−02), CD4+ T Cell (cor = 

0.311, p = 8.90e−12) and Macrophage (cor = 0.135, p 

= 4.21e−03). We further investigated the correlation 

between the expression of these 8 HMs and the level of 

MSI and TMB. The results showed that the expression 

of C17orf49 significantly correlated with the level of 

TMB (r = 0.11, p = 0.041). The expression of HJURP 

significantly correlated with the level of MSI (r = 0.15, 

p = 0.005) and TMB (r = 0.24, p = 1.49e−05). KAT2A 

likewise showed a close association with MSI (r = 

0.17, p = 0.002) and TMB (r = 0.16, p = 0.003). The 

expression level of PRDM16 negatively correlated 

with the level of TMB (r = −0.12, p = 0.032). The 

expression level of TTK showed a meaningful 

correlation with the level of both MSI (r = 0.17, p = 

0.002) and TMB (r = 0.20, p = 2.39e−04) (Figure 13). 

 

Based on the evidence that these HMs were associated 

with immunity, we analyzed the correlation between 

 

 
 

Figure 8. Prognostic analysis of HMs-based signature in the entire set. (A) Expression of HMs of KIRC samples between high- and 

low-risk groups. (B) Kaplan-Meier survival analysis of KIRC samples between high- and low-risk groups. (C, D) Analysis of differences in 
survival status of KIRC samples between high- and low-risk groups. (E) Time-dependent ROC curve analysis of risk scores predicting 3- and 
5-year OS in the KIRC samples. 
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Figure 9. Correlation between HMs-based signature and clinical characteristics and prognosis. (A) Analysis of differences in 

clinical characteristics (age, gender, grade and stage) of KIRC samples between high- and low-risk groups. (B) Analysis of survival differences 
between high- and low-risk KIRC samples from subgroup stratified by age (≤60 years and >60 years). (C) Analysis of survival differences 
between high- and low-risk KIRC samples from subgroup stratified by gender (FEMALE and MALE). (D) Analysis of survival differences 
between high- and low-risk KIRC samples from subgroup stratified by grade (G1-2 and G3-4). (E) Analysis of survival differences between 
high- and low-risk KIRC samples from subgroup stratified by stage (Stage I−II and Stage III−IV). 
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Figure 10. Identification of independent factors affecting the prognosis of the KIRC samples. (A) Univariate Cox regression 
analysis to identify factors associated with prognosis in the KIRC sample. (B) Multivariate Cox regression analysis to identify factors that can 
independently predict prognosis in the KIRC sample. (C) Multivariate ROC curves for risk and other clinical variables predicting prognosis in 
the KIRC samples. 
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HMs-based signature and immune characteristics. 

Analysis of differences in the TME between high-  

and low-risk groups showed that the level of immune 

cell infiltration in the TME was significantly higher  

in the high-risk group than in the low-risk group (p = 

1.1e−05) (Figure 14A–14C). We further analyzed the 

differences in the expression of immune checkpoints 

in KIRC samples between high- and low-risk groups, 

and result showed that the level of expression of 

IDO2, ICOS, PDCD1, CD70, LAIR1, CD28, CD40, 

TNFRSF4, CD160, ADORA2A, TNFSF9, LAG3, BTLA, 
CD48, CD44, CD40LG, TIGIT, TNFSF4, TMIGD2, 

TNFRSF14, TNFSF14, LGALS9, TNFRSF9, CD86, 
CD244 and TNFRSF25 were significantly higher in 

the high-risk group than in the low-risk group (Figure 

14D). In addition, a significant finding was that the 

TIDE scores of KIRC samples in the high-risk group 

were significantly higher than those of samples in the 

low-risk group (Figure 14E), revealing that KIRC in 

the high-risk group was more prone to immune escape. 

 

 
 

Figure 11. Construction of a risk score-based prognostic model for KIRC. (A) Construction of a risk score-based nomogram for 

predicting 3- and 5-year OS in KIRC samples. (B, C) Calibration curves to determine the performance of nomogram to predict 3- and 5-year 
OS in KIRC samples. 
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Drug sensitivity analysis 

 

To improve chemotherapy outcomes in KIRC patients, 

it is important to understand KIRC’s sensitivity  

to chemotherapy. Analyses of chemotherapy drug 

sensitivity in KIRC samples with high or low risk 

showed that KIRC samples with high risk had  

lower IC50 values for Sunitinib, Tipifarnib, Nilotinib, 

Bosutinib, Mitomycin. C, Vinblastine, Camptothecin, 

Docetaxel and Doxorubicin compared with KIRC 

 

 
 

Figure 12. Correlation analysis of the expression of HMs with immune cell infiltration in TIMER database. 
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Figure 13. Correlation analysis of the expression of HMs with the level of MSI and TMB. 

10504



www.aging-us.com 17 AGING 

samples with low risk (Figure 15), implying that KIRC 

samples with high risk were more sensitive to these nine 

chemotherapy drugs. In contrast to the high-risk group, 

the low-risk group had significantly lower IC50 values 

for Pazopanib, Bexarotene, and Thapsigargin in KIRC, 

implying that KIRC samples with low risk were more 

sensitive to these three chemotherapeutic drugs. 

DISCUSSION 
 

HMs involved in histone modifications, which were 

important content of epigenetic [24, 25]. KIRC has  

been shown to be a cancer closely associated with 

epigenetic alterations [26–28]. Although studies have 

now demonstrated that HMs were associated with KIRC 

 

 
 

Figure 14. Correlation between HMs-based signature and immune characteristics. (A–C) Analysis of the tumour microenvironment 

between high- and low-risk groups by ESTIMATE algorithm. (D) Analysis of differences in immune checkpoint expression between high- and 
low-risk groups. (E) Analysis of differences in TIDE scores between high- and low-risk groups. 
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occurrence or progression [27, 29], comprehensive 

analysis of the predictive value of HMs in KIRC is 

lacking. 

In the present study, we firstly obtained HMs from top 

journals, and then by differential analysis of mRNA 

expression in KIRC, we obtained 49 HMs that were 

 

 
 

Figure 15. Analysis of differences in sensitivity to chemotherapy drugs between high- and low-risk groups. 
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differentially expressed in KIRC. The results of 

enrichment of GO and KEGG uncovered that HMs 

were closely involved in epigenetic regulation. In 

addition, consensus cluster analysis based on the 

expression of HMs revealed that the OS and clinical 

characteristics (grade, stage and gender) of the two 

clusters differed significantly. To evaluate whether 

HMs have prognostic value in the KIRC samples, we 

successfully constructed an HMs-based prognostic 

signature by Cox analysis and LASSO analysis, and the 

test and entire sets validated the good performance of 

the HMs-based signature in predicting KIRC sample’s 

prognosis. The results of the clinical characteristics 

analysis and subgroup survival analysis implied poor 

prognostic outcomes for KIRC patients in the high- 

risk group. Nomogram and calibration curves-based 

HMs signature revealed the satisfactory performance 

of a risk score in combination with traditional clinical 

variables in forecasting the prognosis of KIRC. 

 
Of these 8 HMs used to construct prognostic signature, 

some have displayed significant associations with KIRC 

progression. KAT2A can drive the glycolytic process  

of KIRC and promote the progression of KIRC by 

activating MCT1 [30]. NEK6 is an oncogenic gene in 

KIRC that can be upregulated by LncRNA FAM13A-

AS1 to promote the progression of KIRC [31, 32]. 

PRDM16 can exert its tumor growth inhibitory effect 

by suppressing the expression of HIF-targeted gene  

in KIRC [33]. TTK can promote KIRC growth and 

metastasis by increasing the proliferative and invasive 

capacity of KIRC cells [34]. The functions of 

C17orf49, GLYATL1, HJURP and NCOA7 in KIRC 

have not been reported. Our future studies will focus  

on these HMs. 

 
Numerous studies have shown that tumor progression 

depends on TME [35–39], of which immune cells  

were important component and closely associated with 

tumor progression [40, 41]. The results in the TIMER 

database showed that all 8 HMs (C17orf49, GLYATL1, 
HJURP, KAT2A, NCOA7, NEK6, PRDM16, TTK) 

correlated significantly with cell infiltration by immune 

cells, especially NEK6, TTK and HJURP, which all 

correlated significantly with the infiltration of the  

6 common immune cells. Furthermore, the results  

of correlation analyses of the expression of HMs 

constituting prognostic signature with the level of MSI 

and TMB indicated that the expression of HJURP, 

KAT2A and TTK closely correlated with MSI and 

TMB, and the expression of C17orf49 and PRDM16 

significantly correlated with TMB. These findings 

implied that our prognostic signature may be closely 

related to the immune characteristics of KIRC. TME 

analysis revealed a greater proportion of immune cells 

in high-risk group than in low-risk group, uncovering 

that immune cell infiltration may contribute to a worse 

prognosis for high-risk KIRC patients than for low-risk 

KIRC patients. Based on the analysis of the immune 

checkpoint expression differences between patients in 

the high and risk groups, we can infer that patients in 

the high risk group were immunosuppressed. Immune 

checkpoint blockade is now becoming an influential 

therapeutic approach for several cancers, including 

KIRC, [42–45] and has shown remarkable results. 

However, there were still some patients who received 

unsatisfactory treatment outcomes, and one important 

reason for this is the immune escape [46–48]. We 

analyzed the likelihood of immune escape in groups  

of KIRC patients at high and low risk. KIRC patients 

in the high-risk group have higher TIDE scores than 

these in the low-risk group, uncovering that tumors in 

KIRC patients in the high-risk group were more likely 

to undergo immune escape. Therefore, it triggers a 

reflection that the factor of possible immune escape 

needs to be taken into account when immunotherapy 

of KIRC samples is not effective. Results of sensitivity 

analysis of KIRC samples to chemotherapy drugs 

uncovered that high-risk KIRC patients benefit more 

from Sunitinib, Tipifarnib, Nilotinib, Bosutinib, 

Mitomycin. C, Vinblastine, Camptothecin, Docetaxel 

and Doxorubicin than low-risk patients, while KIRC 

patients in the low-risk group benefited more from  

the use of Pazopanib, Bexarotene, and Thapsigargin 

than those in the high-risk group. This has led to  

a consideration that we need to individualize the  

drug therapy in KIRC samples according to their risk 

level. 

 

There were some limitations in our research. The lack of 

prognostic data on KIRC patients in the Gene Expression 

Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) 

database [49] and the fact that the International Cancer 

Genome Consortium (ICGC, https://dcc.icgc.org/) 

database [50] only contained patient data on KIRC 

patients derived from TCGA, prevented us from 

validating the results of this study using an independent 

dataset. This may have led to some selection bias. In 

addition, cell and animal experiments are needed to 

further mine the latent function of HMs signature in 

KIRC. Thus, our findings in this study will be further 

validated in future studies. 

 

CONCLUSION 
 

We successfully established and validated a risk model 

to predict the prognosis, immune characteristics and 

sensitivity to chemotherapy drugs in KIRC samples 

based on 8 HMs (C17orf49, GLYATL1, HJURP, 

KAT2A, NCOA7, NEK6, PRDM16, TTK), which may 

have potential for application in the management of 

KIRC patients. 
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