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INTRODUCTION 
 

HNSCC, also known as head and neck squamous cell 

carcinoma, accounts for 95% of cancerous growth in the 

head and neck area, resulting in over 316,000 deaths 

worldwide annually [1, 2]. Similar to other forms of solid 

cancers, HNSCC encounters various obstacles during its 

progression, such as oxygen deprivation, inadequate 

nourishment, immune cell toxicity, and diverse treatment 

modalities [3, 4]. Maintaining a functional network of 

mitochondria in tumors relies heavily on the process of 

mitophagy, which is responsible for selectively 

eliminating malfunctioning mitochondria [5–7]. The 

resultant decomposition byproducts can function as 

bioenergetic intermediaries to facilitate unimpeded 

expansion. In HNSCC, targeting mitophagy in different 
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ABSTRACT 
 

Mitophagy serves as a critical mechanism for tumor cell death, significantly impacting the progression of tumors 
and their treatment approaches. There are significant challenges in treating patients with head and neck 
squamous cell carcinoma, underscoring the importance of identifying new targets for therapy. The function of 
mitophagy in head and neck squamous carcinoma remains uncertain, thus investigating its impact on patient 
outcomes and immunotherapeutic responses is especially crucial. We initially analyzed the differential 
expression, prognostic value, intergene correlations, copy number variations, and mutation frequencies of 
mitophagy-related genes at the pan-cancer level. Through unsupervised clustering, we divided head and neck 
squamous carcinoma into three subtypes with distinct prognoses, identified the signaling pathway features of 
each subtype using ssGSEA, and characterized subtype B as having features of an immune desert using various 
immune infiltration calculation methods. Using multi-omics data, we identified the genomic variation 
characteristics, mutated gene pathway features, and drug sensitivity features of the mitophagy subtypes. 
Utilizing a combination of 10 machine learning algorithms, we have developed a prognostic scoring model called 
Mitophagy Subgroup Risk Score (MSRS), which is used to predict patient survival and the response to immune 
checkpoint blockade therapy. Simultaneously, we applied MSRS to single-cell analysis to explore intercellular 
communication. Through laboratory experiments, we validated the biological function of SLC26A9, one of the 
genes in the risk model. In summary, we have explored the significant role of mitophagy in head and neck 
tumors through multi-omics data, providing new directions for clinical treatment. 
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signaling pathways has been found to prevent 

oncogenesis [8–10]. Hence, it is beneficial to investigate 

the importance of mitophagy in HNSCC, as it aids in 

comprehending the processes of tumor development and 

aiming at malignant proliferation. 

 

Mitophagy, a selective form of autophagy confined to 

the mitochondria, targets the elimination of damaged and 

senescent mitochondria, significantly impacting the 

maintenance of cellular mitochondrial quantity and 

quality [11, 12]. This process is crucial in regulating the 

balance of cancer cells, where it can function to promote 

or suppress cancerous growth. Although mitophagy acts 

as a defense against various environmental insults by 

preserving mitochondrial integrity and energy 

homeostasis, its dysregulation can contribute to mito-

chondrial network abnormalities and energy production 

disruptions, influencing cancer development and 

progression [13, 14]. The activation of mitophagy can 

vary with cell types, involving different pathways like 

PINK1/Parkin, BNIP3/Nix, and FUNDC1 [11]. In 

cancer cells, mitophagy has a dual effect, serving as a 

tumor promoter or inhibitor. Initially, by clearing 

defective mitochondria, it protects cells from oxidative 

and DNA damage, potentially preventing tumor 

initiation. However, in established tumors, especially 

those that are advanced or aggressive, cancer cells 

harness mitophagy to alleviate oxidative stress and 

recycle components for growth and survival [15–17]. 

Mitophagy’s connection with cancer cell metabolic 

reprogramming, drug resistance, and stem-like properties 

is well-established. Key pathways, including the classic 

PINK1-Parkin and the hypoxia-driven BNIP3/Nix and 

FUNDC1 pathways, are implicated in the metabolic 

reconfiguration of cancer cells, particularly affecting 

glycolysis. In the absence of Parkin, PTEN degradation 

occurs, modulating glycolysis and activating PI3K/AKT 

signaling through Parkin-PTEN interactions [18]. 

Furthermore, the PINK1-Parkin pathway can trigger a 

HIF1α-dependent Warburg effect, which is a hallmark of 

cancer metabolism, by degrading mitochondrial 

transporters SLC25A37 and SLC25A28. This leads to an 

accumulation of mitochondrial iron, supporting the 

relentless division and growth of cancer cells [19]. 

 

The development of cancer is frequently associated with 

the initiation of oncogenic signals and an adjustment to 

low oxygen environments. It is observed that Parkin 

inhibits glycolysis by binding with pyruvate kinase M2 

(PKM2) and facilitating the ubiquitination and 

subsequent breakdown of HIF1a. This action hampers 

the stimulation of proteins that promote glycolysis and 

various transcriptional targets [20]. In a similar vein, the 
lack of PINK1 correlates with the Warburg effect, 

which is marked by the stabilization of HIF1a and a 

reduction in PKM2 efficacy [21]. Disruption of 

essential elements of the mitophagy pathway can result 

in its dysfunction. Conversely, a rise in mitochondrial 

ROS is documented to transcriptionally heighten HIF1a, 

triggering the metabolism of glycolysis and the 

expression of its associated genes (BNIP3, NIX, 

FUNDC1), thereby influencing mitophagy [22]. 

Research indicates that mitophagy plays a crucial role in 

sustaining stem cell reserves, including those traits that 

are stem-like within cancer stem cells (CSCs) [23–26]. 

There is a strong connection between mitophagy  

and cellular adaptability. Notably, a metabolic shift 

induced by mitophagy from glycolysis to oxidative 

phosphorylation enhances the stemness characteristics 

of CSCs [27]. CSCs undergo specific metabolic changes 

governed by mitochondrial dynamics, shaped by the 

cellular microenvironment. It has been documented that 

mitochondrial function contributes to the metabolic 

reprogramming of CSCs in nasopharyngeal carcinoma 

[28]. The switch from oxidative phosphorylation to 

glycolysis is critical for bolstering the stem-like 

qualities of CSCs. Additionally, mitophagy plays a dual 

role in CSCs by preserving their drug resistance and 

supporting the maintenance of their stemness, as well as 

tumor proliferation. Publications indicate that 

mitophagy bolsters both the stem-like properties and 

chemotherapeutic resilience of CSCs in oral squamous 

cell carcinoma [29]. Furthermore, curtailing Drp1 

function by inhibiting COX-2 has been demonstrated to 

diminish stem-like qualities, which in turn makes 

nasopharyngeal carcinoma cells more receptive to the 

effects of 5-fluorouracil [28]. Hence, within the realm 

of oncological treatment, pinpointing biomarkers related 

to mitophagy might steer towards therapies that are 

more precise, efficacious, and lower in toxicity. 

 

In our study, we initially explored the expression levels 

and prognostic value of mitophagy-related genes at the 

pan-cancer level. Subsequently, we integrated multi-

omics data to elucidate the molecular characteristics, 

biological functions, infiltration levels in the tumor 

microenvironment, and clinical significance of different 

types of mitophagy alterations in HNSCC. Furthermore, 

we developed and validated a prognostic tool named 

Mitophagy Subgroup Risk Score (MSRS), aimed at 

predicting the prognosis and immune response of 

HNSCC patients, and applied it at the single-cell level 

to explore intercellular communication. Concurrently, 

laboratory experiments validated the biological function 

of SLC26A9, one of the genes in MSRS. 

 

MATERIALS AND METHODS 
 

Collection and management of data 

 

The gene expression profiles and clinical information of 

HNSCC were downloaded from the UCSC Xena 
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database [30]. Copy number variation data for head  

and neck squamous cell carcinoma were downloaded 

from the TCGA website using the R-package 

TCGAbiolinks. Tumor immune cycle scores were 

downloaded from the TIMER2.0 database. The specific 

transcription factors for HNSCC (Supplementary  

Table 1) were downloaded from the HumanTFDB 

(http://bioinfo.life.hust.edu.cn/HumanTFDB) database. 

 

Categorization of mitophagy subtypes in HNSCC 

 

A total of 29 Mitophagy-Related Genes (MRGs) 

(Supplementary Table 2) were retrieved from databases 

such as Reactome, CPDB, KEGG, and MSigDB [31–

34]. Using R package ‘corrplot’, we evaluated 

correlations among these genes. HNSCC patients were 

classified into mitophagy subgroups (k=3) using the 

“ConsensusClusterPlus” R package [35]. Subsequently, 

differential expression genes between subtypes were 

analyzed using the “limma” R package. 

 

Pathway enrichment in subgroups 

 

Pathway enrichment was performed using the GSVA 

method through the GSVA R package, with pathway 

enrichment data sourced from gmt files in the MSigDB 

[31] and ConsensusPathDB [33] databases. 

 

Analysis of the tumor microenvironment (TME) 

 

We assessed the immune cell composition in the TME 

of various subgroups using algorithms such as TIMER, 

CIBERSORT, QUANTISEQ, MCPCOUNTER, 

XCELL, and EPIC. Additionally, ssGSVA was applied 

to validate differences in immune infiltration across 

HNSCC subgroups [36–39]. The infiltration levels 

based on immune and stromal scores in HNSCC were 

calculated using the “ESTIMATE” R package. 

 

Mutation profile analysis in subgroups 

 

We used the “Maftools” R package to compare 

mutation patterns across different subgroups [40]. 

Functions within “Maftools” were used to calculate 

mutation spectra for different mitophagy subgroups and 

to explore drug-gene interactions and carcinogenic 

pathways [41]. Additionally, somatic copy number 

alterations were analyzed using GISTIC 2.0 [42]. 

 

Evaluation of chemotherapy response disparities 

among subgroups 

 

Based on the GDSC database [43], we used the 
“oncoPredict” R package [44] to assess differences in 

drug sensitivity among subgroups. Furthermore, the 

CellMiner [45] and CCLE [46] databases were used to 

analyze the correlation between mitophagy-related 

genes and drug sensitivity in HNSCC cell lines. 

 

Machine learning algorithms 

 

To construct the Mitophagy Subgroup Risk Score 

(MSRS), we integrated ten different machine learning 

algorithms, including RSF, Enet, Lasso, Stepwise Cox, 

Ridge, CoxBoost, plsRcox, SuperPC, GBM, and 

survival SVM. We applied 94 different combinations of 

these algorithms to identify the one with the highest 

average concordance index (C-index) across multiple 

cohorts. The “timeROC” R package was used to 

calculate the Area Under the Curve (AUC) to verify the 

accuracy of the MSRS. Additionally, the independent 

predictive capability of the MSRS was confirmed using 

Cox regression analysis in the “survival” R package. 

 

Cell–cell communication analysis 

 

We used GSE181919 dataset to explore the role of 

mitophagy genes at the single-cell level. R package 

“Seurat” was used to perform dimension reduction and 

clustering analysis, and the annotation of cell cluster was 

obtained by R package “SingleR”. We employed the 

‘CellPhoneDB’ package [47] to explore communication 

at the cellular level between immune and HNSC cells, 

concentrating on the identification of distinct ligand-

receptor pairs. 

 

Immunotherapy efficacy prediction 

 

We used the Tumor Immune Dysfunction and Exclusion 

(TIDE) algorithms [48, 49] to predict responses to 

immune checkpoint blockade (ICB) therapy. The patient 

cohorts for this immunotherapy study were derived from 

the TIGER database [50], which includes the GSE91061 

(melanoma) and phs000452 (melanoma) datasets. 

 

Cultivation of cell lines 

 

HNSC cell lines including SCC15 and HN30 were 

obtained from the public laboratory of Tianjin Medical 

University Cancer Institute and Hospital. For their 

cultivation, we used DMEM enriched with 10% FBS 

and 1% penicillin-streptomycin. The incubation 

conditions for these cell lines were carefully controlled, 

while the environment was maintained at constant 

temperature of 37° C with an atmosphere of 5% CO2, 

ensuring optimal growth conditions and allowing for 

accurate and reliable experimental results. 

 

siRNA transfection 

 

For transfection studies, SCC15 and HN30 cell lines 

were seeded into 6-well plates. According to the 
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protocol provided by the supplier, transfection was 

carried out using si-SLC26A9-1 (sequence 5’- CAGCC 

AAGAUCAAAGCUGUGGUGUU -3’), si-SLC26A9-2 

(sequence 5’- GGGCUUCAUGCAGUUUGGCUUUG 

UG -3’), and a non-targeting siRNA control (sequence 

5’- CAGAAAGCUAAGAUCUGGGUCCGUU-3’) 

with Hieff Trans® Liposomal Transfection Reagent 

(Yeasen, China). The knockdown efficiency was 

verified by Western blot 48 hours post-transfection. 

 

Cell viability assay 

 

Cells were collected through a process of digestion 

followed by centrifugation. After counting the cells, 

they were seeded into 96-well plates at a density of 

2,500 cells per well. To assess cell viability, we utilized 

a Cell Counting Kit-8 (ApexBio, USA), conducting 

measurements at intervals of 0, 24, 48, and 72 hours 

according to the instructions provided with the kit. 

This methodical approach allowed us to accurately 

monitor the health and proliferation of the cells over 

time. 

 

Cell lysis and western blotting 

 

Cell lysis for protein extraction was performed at cold 

temperatures using a lysis buffer containing phosphatase 

and protease inhibitors. Protein levels were quantified 

with the SDS. The proteins were separated by 4-12% 

SDS-PAGE, transferred to PVDF membranes, blocked, 

and incubated with primary and secondary antibodies 

sequentially. Detection of the target proteins was 

achieved using a chemiluminescence reagent. The 

primary antibodies applied were anti-SLC26A9 

(ABclonal, A18530) and anti-beta-actin (Santa, sc-8432). 

 

Transwell assays and wound healing assays 

 

SCC15 and HN30 cells, post transfection with either si-

SLC26A9-1, si-SLC26A9-2, or si-NC, were harvested, 

washed with PBS, and subsequently resuspended in 

DMEM medium. These cells were then placed into the 

upper chamber of a 24-well plate which contains an 

insert with 8 μm pore size. In the lower chamber, 700 

μL of DMEM containing 10% FBS was added. 

Following a period of 24 hours, cells remaining on the 

upper surface were wiped off, and those adhered to the 

lower surface were fixed with 4% paraformaldehyde 

(PFA) and stained with crystal violet for further image 

acquisition and analysis. 

 

Wound healing assay 

 
SCC15 and HN30 cells transfected with siRNA were 

cultured in 6-well plates to near confluence. 

Subsequently, a sterile pipette tip was used to create 

scratches through the monolayer. Photographs were 

taken immediately (0 hours) and at 48 hours after the 

scratch was made. The healing progress was quantified 

using the ImageJ software. 

 

Colony formation assay 

 

To assess the colony formation capacity of the cells, we 

carefully seeded between 800 to 1000 cells in each well 

of 6-well plates. These were then incubated at a 

consistent temperature of 37° C for a duration of 10 to 14 

days to allow sufficient time for colony development. 

Following the incubation period, we fixed the colonies 

using methanol for 15 to 30 minutes, ensuring their 

preservation for analysis. This step was followed by 

staining with 0.1% crystal violet for 15 minutes to 

highlight the colonies for easier counting. The final step 

involved meticulously counting the colonies, providing a 

clear measure of the cells’ ability to proliferate and form 

colonies under the given conditions. 

 

EdU assay 

 

After transfection process the cells were plated into  

24-well plates (5 *104 cells) and cultured overnight in a  

37° C incubator. Following the protocol provided by the 

BeyoClick EdU Cell Proliferation Kit with Alexa Fluor 

488, EdU detection was performed, EdU-positive cells 

were stained with Azide 488 and Hoechst 33342 to 

differentiate them from non-proliferative cells. We 

captured images from three randomly selected fields of 

view under a microscope to ensure a representative 

sampling. The percentage of EdU-positive cells was 

calculated by the following formula: EdU-positive rate = 

EdU-positive cell count/(EdU-positive cell count + EdU 

negative cell count) × 100%. 

 

Statistical analysis 

 

Experimental results are presented as mean ± standard 

deviation. We employed the chi-squared test to explore 

differences in categorical variables, including clinical 

characteristics, among various subgroups to identify 

significant variations P-value of less than 0.05 was 

considered to indicate statistical significance. The 

Benjamini-Hochberg (BH) method was applied to 

calculate adjusted P-values for multiple testing 

corrections. All data processing, statistical analyses, and 

the generation of graphical representations were 

conducted using R software (version 4.1.3), ensuring 

rigorous and comprehensive analysis. 

 

Availability of data and materials 

 

The open-access datasets are available through the 

following URL: GSE41613, GSE42743, GSE65858, 
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and GSE181919 (https://www.ncbi.nlm.nih.gov/geo/) 

and the Cancer Genome Atlas (TCGA) HNSC project 

(http://xena.ucsc.edu/). 

 

RESULTS 
 

The role of mitophagy in cancers and its impact on 

patient survival 

 

Figure 1 illustrates the sequential steps of our research 

process. We investigated the complex regulation of 

mitophagy in various cancer types by assessing the 

expression levels of mitophagy-related mRNAs in 

diverse cancer types. Our findings indicate that the 

expression levels of CSNK2B, MTERF3, and PGAM5 

are elevated in multiple cancers, while the expression 

levels of PINK1 and PRKN are reduced in several 

cancers (Supplementary Figure 1A). We used 

Spearman (upper right) and Pearson (lower left) 

correlation analysis to study the relationship between 

Mitophagy-Related Genes (MRGs) in the TCGA-

HNSCC dataset, identifying significant associations 

between RPS27A and TOMM22, TOMM7, UBA52 

(Supplementary Figure 1B). Furthermore, our study 

revealed the connection between gene expression 

profiles and patient prognosis (Supplementary Figure 

1C), finding that most MRGs act as risk factors in 

HNSC, LIHC, KICH, LUAD, LUSC, BRCA, while 

TOMM6 serves as a protective factor in THYM, OV, 

DLBC, and PINK1 as a protective factor in KIRC, 

KIRP, ACC. 

 

Copy number and mutation events of mitophagy 

regulators in cancers 

 

To further explore the reasons for changes in 

mitophagy-related genes, we validated copy number 

variations (CNV) in cancer and observed a significant 

positive correlation between CNV and mRNA 

expression (Figure 2A). As shown in Figure 2B, genes 

such as MTERF3, TOMM7, CSNK2A1, SRC, 

TOMM20, and MAP1LC3A commonly exhibit 

heterozygous amplification in tumors, whereas UBB, 

TOMM22, MAP1LC3B, and PRKN mainly show 

heterozygous deletion. However, homozygous 

amplifications and deletions were found to be 

infrequent (Figure 2C). Figure 2D displays the 

genomic locations of CNVs in mitophagy-related 

genes. Notably, in HNSCC, genes such as TOMM7, 

TOMM70, MTERF3, and MFN1 have a higher 

frequency of CNV amplification, while SQSTM1, 

VDAC1, and ATG12 have a higher frequency of CNV 

deletion (Figure 2E). Furthermore, we delved into the 

mutation status of mitophagy-related genes and found 

that these genes have a higher mutation frequency in 

UCEC, COAD, SKCM, STAD, BLCA, LUSC, and 

LUAD, but mutations are rare in PCPG, MESO, and 

KICH (Figure 2F). 

 

Defining three subgroups within HNSCC based on 

mitophagy regulator expression 

 

We employed an unsupervised clustering algorithm to 

divide TCGA-HNSCC samples into three distinct 

molecular subgroups based on the expression profiles of 

mitophagy-related genes (Figure 3A, 3B). Patients in 

Cluster A exhibited a significantly enhanced survival 

advantage compared to those in the other two clusters 

(Figure 3C). Additionally, within Clusters B and C, a 

specific subset of mitophagy related genes shown not 

significantly higher expression levels. TOMM20, 

TOMM22, CSNK2B, UBA52, RPS27A, TOMM7 were 

less expressed in Cluster A, while in Cluster B, the 

expression levels of ULK1, CSNK2A2, MAP1LC3B, 

UBC, MFN2, PINK1 were lower. However, the 

expression of mitophagy-related genes was higher in 

Cluster C (Figure 3D). 

 

Enrichment analysis of functional pathways in 

varied patterns of mitophagy alterations 

 

We employed Gene Set Variation Analysis (GSVA) to 

assess metabolic pathway signatures. Cluster A was 

characterized by metabolic dormancy, showcasing 

downregulation in pathways such as glucose, amino 

acid, nucleotide, and RNA metabolisms, the TCA cycle, 

and tyrosine metabolism. Conversely, Clusters B and C 

demonstrated metabolic exuberance with these 

signatures predominantly active, hinting at an 

augmented metabolic state (Supplementary Figure 2A). 

Furthermore, GSVA revealed a consistent enrichment 

of the hypoxia signature in Cluster B (Supplementary 

Figure 2B), a condition known to hinder cancer 

immunotherapy effectiveness due to reduced oxygen 

levels in tumors [51–53]. Addressing hypoxia might 

thus potentiate immunotherapeutic outcomes for 

patients in Cluster B. Additionally, an attenuated 

exosomal signature in Cluster B implicates a potential 

interplay between mitophagy and exosome dynamics 

(Supplementary Figure 2B). 

 

To further our transcriptomic investigation, we 

harnessed RTNduals [54], an R-based analytical 

package, to decipher transcription factor regulons 

specific to mitophagy subtypes, sourced from the 

HumanTFDB. Notably, ZFP36L1 activity was minimal 

in Cluster B, suggesting a dampened cell cycle 

mechanism in this subgroup (Supplementary Figure 

2C). Given recent insights linking ZFP36L1 [55] to 
immune infiltration in tumor microenvironments, these 

findings suggest that alterations in mitophagy may 

regulate crucial biological functions. 
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Figure 1. The workflow of the study. 
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Figure 2. CNV and sequence alteration contribute to abnormal mitophagy genes Levels. (A) CNV strongly correlates to gene 
expression of mitophagy regulators in pan-cancer using spearman analysis. (B, C) Heterozygous and homozygous amplification/deletion of 
mitophagy regulators in pan-cancer. Amplification, red; Deletion, blue. (D) The location of CNV of mitophagy regulators on 23 chromosomes. 
(E) CNV of mitophagy regulators in TCGA-HNSC dataset. CNV loss, blue; CNV gain, red. (F) Mutation frequency of mitophagy regulators in pan-
cancer. 
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Assessing distinct immune profiles across mitophagy 

subgroups 

 

To compare immune activity among various subgroups, 

we evaluated immune process enrichment scores across 

different subgroups using Gene Set Variation Analysis 

(GSVA). Notably, Cluster B was marked by a 

pronounced decrease in pathways related to chemokines, 

chemokine receptors, immune inhibitors, and immune 

stimulators (Supplementary Figure 3A). Further analysis 

 

 
 

Figure 3. Identification of mitophagy subtypes of HNSCC. (A) Consensus matrix of samples in TCGA-HNSC for k=3. (B) The cumulative 

distribution function curves for k = 2 to 8. (C) Kaplan-Meier survival analysis for overall survival of the three subtypes in TCGA-HNSC dataset. 
(D) The expression profiles of the mitophagy regulators in three subtypes and normal kidney samples. Statistical significance denoted as 
****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05. 
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of the tumor microenvironment (TME) cell composition 

revealed a substantial reduction in immune cell 

infiltration in Cluster B compared to Clusters A and C, 

as shown in Figure 4A. This suggests that Cluster B 

might represent an ‘immune desert’ phenotype with 

notably reduced immune engagement. 

 

This observation is in line with survival analyses, where 

Cluster B patients had poorer outcomes compared to 

those in Cluster A. Our focus then turned to dissecting 

the anti-cancer immune cycle, which involves multiple 

critical steps. In Cluster B, there was a notable decrease 

in key phases of this cycle, including Cancer cell 

antigens are released (Step 1), and immune cells such as 

CD4 and CD8 T cells, macrophages, NK cells, Th1, 

Th2, and Th22 cells are mobilized (Step 4), along with 

their infiltration into the tumor (Step 5), as depicted in 

Figure 4B. 

 

Tumor genomic alterations and CNV profiles in 

three mitophagy subgroups 

 

Among the three defined groups, we analyzed  

the distribution of tumor somatic mutations. 

Supplementary Figure 4A–4C show the top 25 most 

frequently mutated genes, indicating a high mutation 

burden across all subgroups. Additionally, we assessed 

druggable targets based on these mutations, using  

the DGIdb and the maftools package to investigate 

drug-gene interactions. Potential therapeutic targets 

related to the three mitophagy modification patterns 

were categorized into 19, 18, and 20 groups, which 

included targets within clinically relevant, druggable 

genome, kinase, and histone modification categories, 

as detailed in Supplementary Figure 4D–4F. 

Employing the R package maftools, we examined less 

common genetic changes in cancer pathways including 

RTK-RAS, Hippo, WNT, TP53, and the Cell Cycle.  

In Cluster A, the NRF2, TP53, and TGF-Beta 

pathways were most affected, while Cluster B  

showed a pronounced impact on the NRF2 and TGF-

Beta pathways. Cluster C affected the NRF2 and RTK-

RAS pathways most significantly, as shown in 

Supplementary Figure 4G–4I. 

 

In our comparative assessment of Copy Number 

Variation (CNV) among the clusters, Cluster B 

showed the highest rate of CNV, with Clusters C and 

A following closely, as demonstrated in Figure 5A. 

This observation is supported by similar trends in the 

percentage of gain/loss and GISTIC scores for 

amplification and deletion regions on chromosomes 

analyzed using GISTIC 2.0, as depicted in Figure 5B, 
5C. These insights suggest that diverse CNVs play a 

role in defining the distinct mitophagy-related tumor 

subtypes. 

Chemotherapeutic response variations among 

mitophagy subgroups 

 

We conducted a comparative analysis of drug 

sensitivity using IC50 values obtained from the GDSC 

database. Our analysis predicted enhanced sensitivity to 

palbociclib for patients categorized within Cluster B. It 

was found that gefitinib, navitoclax, and dasatinib were 

more potent for patients in Cluster A, while those in 

Cluster C were more responsive to temozolomide, 

cisplatin, and tamoxifen, as indicated in Supplementary 

Figure 5. 

 

Subsequently, we sought to identify treatments that 

counteract cancer-driving processes. We examined the 

relationship between mitophagy gene expression and 

drug sensitivity using data from the CellMiner database. 

We found that the expression of PINK1 inversely 

correlates with the IC50 values for AFP464, palbociclib, 

and denileukin diftitox (Supplementary Figure 6), 

implying that patients with higher PINK1 expression 

may benefit more from these drugs. Additionally, 

Econazole nitrate and Crizotinib appeared to be more 

effective in individuals with lower expression of 

RPS27A and TOMM7, respectively. 

 

Construction of the mitophagy subgroup risk score 

(MSRS) by integrated machine learning 

 

By employing the Limma algorithm, the computation of 

unique genes for the three subcategories and the 

assessment of overlaps were conducted, leading to the 

discovery of a grand total of 468 genes linked to 

mitophagy subtypes (Supplementary Table 3). 

Univariate Cox regression analysis (Supplementary 

Table 4) revealed 194 genes that exhibited a significant 

association with overall survival. Out of the 194 

prognostic genes, the bootstrap technique identified 19 

genes that remained stable even after resampling the 

samples and were also present in the validation datasets 

(Supplementary Table 5). Furthermore, we employed 

the Boruta algorithm and narrowed down the selected 

genes to a group of 10 genes that were confirmed to 

have greater importance in terms of recurrence 

(Supplementary Figure 7), as illustrated. Based on their 

inferred degree of importance, the Boruta algorithm 

ranked 10 genes, identified as Figure 6A. 

 

We employed our machine learning algorithm to 

scrutinize these 10 genes and develop a predictive 

model. Utilizing 94 forecasting models, we examined 

the TCGA dataset and calculated the concordance index 

(C-index) for three validation datasets. Ultimately, the 
integration of the SuperPC algorithms yielded the most 

effective prototype, achieving an average C-index of 

0.619 across all validation datasets, as illustrated in 
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Figure 4. Comparison of the Specific Immune Infiltration Landscape among Three Subgroups. (A) Heatmap of immune cell 
infiltration among the subtypes. (B) Boxplot of cancer immunity cycle in three mitophagy modification subtypes. Statistical significance 
denoted as ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05. 

10588



www.aging-us.com 11 AGING 

 
 

Figure 5. CNV differences among subgroups. (A) CNV rate among subgroups. (B, C) Differences of gain/loss percentage (B) and GISTIC 
score (C) in Cluster A, B, and C. Statistical significance denoted as ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05. 
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Figure 6. Machine learning-based gene signatures based on mitophagy subgroups. (A) The Boruta algorithm identified 10 

mitophagy-related genes. Yellow represents confirmed features while other colors denote shadow attributes. The corresponding boxplots 
compared the concordance index (C-index) values. (B) Machine learning was used to build 93 different models, and their C-indices were 
tested in each verification set. (C) The coefficients of ten genes calculated by SuperPC. (D) Statistical analysis of the risk scores and survival 
status of ten genes as well as their expression characteristics in TCGA. (E–H) Prognoses of patients in the TCGA (E), GSE42743 (F), GSE65858 
(G), and GSE41613 (H) sets. (I–K) Predicting patient survival at 1, 3, and 5 years using the MSRS. 
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Figure 6B. The SuperPC algorithm revealed 10 crucial 

genes for determining the risk score, as depicted in 

Figure 6C. The calculation of MSRS involved the 

evaluation of the expression levels of these 10 genes 

and their respective regression coefficients for every 

individual within the mitophagy subgroup. 

 

As Figure 6D–6H, there was a correlation between an 

escalation in the MSRS, a decrease in the overall survival 

(OS), and an elevation in the mortality rates. Patients 

were categorized into high-risk and low-risk groups 

based on the median MSRS value. Consistently, the 

TCGA training dataset and the three validation datasets 

showed that the high-risk group had significantly worse 

survival outcomes than the low-risk group, as depicted in 

Figure 6E–6H. In TCGA-HNSC, the ROC analysis 

verified that the MSRS has a robust ability to 

discriminate, as evidenced by AUC values of 0.56, 0.61, 

and 0.57 for one-, three-, and five-year survival, 

respectively. displays the AUCs for GSE41613 as 0.72, 

0.7, and 0.7; for GSE42743 as 0.62, 0.67, and 0.71; and 

for GSE65858 as 0.65, 0.66, and 0.58. 

 

Interactions between immune cells and HNSC cells 

that involve ligand‒receptor pairs 

 

To investigate the potential interaction between immune 

cells (T cells, B cells, etc.) and head and neck squamous 

cell carcinoma (HNSC) cells, we utilized single-cell 

RNA sequencing (scRNA-seq) to analyze their 

collaboration. Initially, we calculated risk scores for 

various cell types and discovered that epithelial cells 

exhibited the lowest risk score, as illustrated in 

Supplementary Figure 8A. Supplementary Figure 8B 

shows that risk scores were higher in tumor tissue-

associated cells than in normal tissues. 

 

Afterwards, we conducted a thorough analysis of the 

associations between high-risk epithelial cells 

(Riskhighepi) and low-risk epithelial cells (Risklowepi) 

along with other cellular components using CellphoneDB 

in combination with scRNA-seq data. As shown in 

Supplementary Figure 8C, when acting as a receptor or 

ligand, Riskhighepi has a significantly greater number of 

ligand-receptor pairs in interactions with other cells than 

Risklowepi. Supplementary Figure 8D illustrates the 

interaction intensity between Riskhighepi and other cell 

types, showing notably stronger interactions with 

endothelial cells, fibroblasts, and smooth muscle cells. 

Upon contrasting the communicative signals with 

Riskhighepi, we identified that the signaling pathway 

showing a robust interaction between Risklowepi and 

Smooth muscle cells involved COL17A1_a2b1_ 
complex, COL17A1_a10b1_complex, and COL17A1_ 

a1b1_complex (Supplementary Figure 8E). The pathway 

connecting Risklowepi and Fibroblasts included 

COL17A1_a1b1_complex, COL17A1_a11b1_complex, 

and MIF_TNFRSF14 (Supplementary Figure 8F), and 

the interaction between Risklowepi and endothelial cells 

featured MIF_TNFRSF10D, MIF_TNFRSF14, and 

COL17A1_a1b1_complex (Supplementary Figure 8G). 

Furthermore, we noticed that the signal indicating the 

most prominent connection between Risklowepi and 

other immune cells was linked to either COL17A1 or 

MIF (Supplementary Table 6). 

 

MSRS’s ability to predict ICB efficacy 

 

To validate the immunotherapy predictive performance 

of the Mitophagy Subgroup Risk Score (MSRS), we 

assessed it using the TIDE website. We found that in 

the group with lower MSRS, the TIDE scores and 

exclusion scores were lower, while the dysfunction 

scores were higher (Supplementary Figure 9A–9C). 

Furthermore, individuals with decreased MSRS 

exhibited a decline in the infiltration of cancer-

associated fibroblasts (CAFs), as illustrated in 

Supplementary Figure 9D–9G. In summary, these 

findings suggest that people with decreased MSRS 

scores exhibit increased responsiveness to immuno-

therapy. 

 

In the GSE91061 cohort, a higher proportion of patients 

with lower MSRS had a response to immunotherapy 

(Supplementary Figure 9H). The findings from the 

GSE91061 and phs000452 immunotherapy cohorts also 

supported the idea that patients who had a low MSRS 

and received immunotherapy had a better prognosis 

than those with a high MSRS, as shown in 

Supplementary Figure 9I, 9J. The potential of the 

MSRS as a predictive indicator for the effectiveness of 

immunotherapy in these specific patient cohorts is 

emphasized by this observation. 

 

SLC26A9 is associated with tumor suppression in 

HNSC 

 

Through laboratory experiments, we explored the 

biological function of SLC26A9, which is one of the 

genes in the Mitophagy Subgroup Risk Score (MSRS). 

Supplementary Figure 10 demonstrates that SLC26A9 

is a protective factor in the prognosis of HNSCC. 

During our research, we utilized a collection of siRNAs 

to inhibit the expression of SLC26A9 in SCC15 and 

HN30 cell lines. After 48 hours of transfection, western 

blot analysis confirmed the successful knockdown of 

SLC26A9 (Figure 7A). 

 

Afterwards, Figure 7B shows that the decrease in 
SLC26A9 resulted in improved cell viability. The 5-

ethynyl-2’-deoxyuridine (EdU) incorporation assay 

revealed enhanced cell growth in both SCC15 and 
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Figure 7. Knockdown of SLC26A9 promoted the proliferation and migration of HNSC cells. (A) SLC26A9 siRNA transfection levels 

analyzed via Western Blot. (B) CCK8 assay assessing cell viability in SCC15 and HN30 cells with reduced SLC26A9 expression. (C) EdU assay 
evaluating cell proliferation post SLC26A9 knockdown in SCC15 and HN30 cells. (D, E) Quantitative analysis of EdU-positive cell rates in SCC15 
(D) and HN30 (E) cells. (F) Notable reduction in clone numbers in SCC15 and HN30 cells following SLC26A9 knockdown. (G) Transwell assay 
measuring migration capability of SCC15 and HN30 cells with decreased SLC26A9 expression. (H, I) Cell scratch assay examining proliferation 
in SCC15 (H) and HN30 (I) cells post SLC26A9 reduction. (J, K) Quantitative summary of clone numbers, migration rates in transwell assay, and 
wound healing rates in SCC15 (J) and HN30 (K) cells. 
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HN30 cell lines upon the observation of SLC26A9 

inhibition. Moreover, a rise in the quantity of colonies 

was observed in the cell lines when SLC26A9 was 

diminished, as depicted in Figure 7C–7E. Moreover, the 

migratory capabilities of SCC15 and HN30 cells were 

notably enhanced following SLC26A9 knockdown, as 

evidenced by transwell and wound healing assays 

(Figure 7G–7J). The overall results suggest that 

SLC26A9 inhibits the proliferation and migration of 

HNSC cells, highlighting its therapeutic potential as a 

target for addressing this type of cancer. 

 

DISCUSSION 
 

Head and neck squamous cell carcinomas exhibit 

considerable heterogeneity. There is a critical demand 

for precise diagnostic tools and reliable prognostic 

indicators. Targeting mitophagy has gained prominence 

as a pivotal strategy in oncology, given its vital role in 

cellular survival and tumor growth. The progression of 

tumors has been associated with key players in the 

mitophagy pathway such as PINK1 [56], Parkin [57], 

BNIP3 [58], and FUNDC1 [59]. Therapeutic benefits 

have been observed by disrupting the activity of these 

proteins in cancer therapies. Additionally, a focus on 

mitophagy has often led to an increased susceptibility of 

cancer cells to pharmacological treatments. Inhibiting 

mitophagy has been noted to elevate chemosensitivity 

in tumor cells, reducing their ability to resist drug 

interventions, particularly through the action of PINK1 

[60]. Moreover, blocking FUNDC1 has been noted to 

increase the responsiveness of cervical cancer cells to 

both cisplatin and radiation therapy. It has been 

documented that salinomycin can initiate mitophagy, 

which serves as a protective mechanism in tumor cells. 

A reduction in ATG5 has also been shown to promote 

apoptosis in malignant and cancer stem cells [61]. 

Additionally, the compound liensinine, a type of 

isoquinoline alkaloid, not only impedes mitophagy but 

also heightens the susceptibility of cancer cells to a 

range of anti-cancer drugs. Liensinine impedes the 

merging of autophagosomes with lysosomes, causing an 

accumulation of mitophagosomes, which consequently 

induces mitochondrial division through DNM1L and 

leads to cell death [62]. There is growing evidence that 

mitophagy is integrally involved in glycolysis [63], 

tumor development [64], activation of inflammasomes 

[65], and the preservation of stem cell characteristics 

[23, 66], via its regulatory interactions. While most 

research has concentrated on individual regulatory 

molecules, the collective impact of multiple mitophagy 

modulators on cancer attributes is not yet fully 

comprehended. 

 

In our research, key mitophagy-related genes were 

scrutinized across various cancers, culminating in the 

discernment of three mitophagy-based classifications 

(Clusters A, B, and C) in individuals with HNSCC. We 

conducted an in-depth comparative analysis of these 

clusters, assessing them across multiple omics facets. 

This comprehensive approach resulted in the creation 

and validation of a prognostic tool, named MSRS, 

which effectively predicts patient outcomes in HNSCC. 

 

The study exposed significant correlations between 

mitophagy-related genes across different cancers, 

suggesting a shared regulatory axis. Further scrutiny 

hinted that copy number variations and genetic 

aberrations could be driving the deregulation of 

mitophagy-related genes in oncogenesis. The research 

also unveiled distinctive clinical attributes within the 

three mitophagy patterns, highlighting how disruptions 

in mitophagy modulate the clinical trajectory of 

HNSCC sufferers. Notably, subjects in Cluster A 

manifested enhanced survival rates compared to those 

in Clusters B and C, which were linked with more 

advanced disease grades and stages. 

 

Metabolic alteration is a hallmark of HNSCC, typifying 

its status as a malignant archetype [67, 68]. By 

conducting an enrichment analysis of transcriptomic 

variations, the current study identified strong links 

between metabolic pathways and distinct mitophagy 

subgroups. Metabolic functions appeared notably 

suppressed in Cluster A compared to Clusters B and C, 

pointing to metabolic intervention as a potential 

therapeutic avenue. Further scrutiny exposed distinct 

signaling dynamics within the cancer milieu among the 

clusters, with a marked suppression of the mitophagy 

signature in Cluster A. Intricate epigenetic regulatory 

mechanisms, involving complex modifications and 

interactions [69, 70], are known to initiate mitophagy, 

prompting our focus towards the epigenetic landscape 

as an actionable area. We also hypothesize that the 

group-specific functional disparities might be steered by 

key transcriptional regulators such as YBX1, TP53, 

ATF4, and NME2, meriting further investigation. These 

insights underscore the pivotal influence of mitophagy 

on diverse cell functions. 

 

In head and neck squamous cell carcinoma (HNSCC), 

the tumor microenvironment (TME) is composed of a 

diverse mixture of neoplastic and assorted stromal cells, 

including endothelial cells, cancer-associated fibroblasts 

(CAFs), and components of the immune system. A 

prevalent feature of many HNSCC tumors is a marked 

immunosuppression within the TME [71, 72]. T 

lymphocytes and NK cells play vital roles in the TME, 

bolstering the host’s anti-tumor defenses. In contrast, T 

regulatory cells, MDSCs, and M2 macrophages play a 

counteractive role, promoting tumor growth. A higher 

presence of CD8 T cells and NK cells [73, 74] in the 
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TME correlates with increased survival rates, while 

greater populations of MDSCs [75], neutrophils [76], 

and M2 macrophages [77] align with advanced HNSCC 

stages or adverse outcomes. Research indicates that 

mitochondrial autophagy in cancer significantly 

contributes to the infiltration of immune cells [65]. 

IL1B (interleukin 1 beta), pivotal components of the 

IL1 family, are associated with neutrophil migration, T 

cell differentiation and activation, NK cell engagement, 

and macrophage functions [78–80]. Growing research 

suggests that linear autophagy downregulates IL1B 

production through the regulation of NLRP3 [81–84]. 

IFNA and IFNB, are multifunctional cytokines 

enhancing antigen presentation, NK cell activities, and 

lymphocyte reactions [85]. The suppression of 

IFNA/IFNB synthesis by mitophagy was initially noted 

in ATG5-deficient cells, characterized by dysfunctional 

mitochondrial accumulation and elevated IFNA/IFNB 

generation [86]. Control of dysfunctional mitochondria 

associate mitophagy with other inflammatory cytokines, 

influencing immune cell infiltration. For instance, an 

increase in mtROS from autophagy deficiency leads to 

an overproduction of MIF (macrophage migration 

inhibitory factor) in human and mouse macrophages 

when stimulated by lipopolysaccharide. Besides 

impacting immune cell infiltration via pro-inflammatory 

cytokines, mitophagy can also directly exert effects on 

immune cells. Studies demonstrate a direct involvement 

of mitophagy in the development and differentiation of 

immune cells, such as T cells, NK cells, and 

macrophages. Additionally, the reduction of mito-

chondrial volume through autophagy is 

developmentally crucial for maintaining cell viability 

during the transformation of T cells from thymocytes to 

peripheral naïve T cells, as well as for the maturation of 

invariant NK T cells within the thymus [87, 88]. 

Significantly, the stage-specific control of BNIP3- and 

BNIP3L-mediated mitophagy is vital for the 

differentiation process of memory NK cells [89]. 

Additionally, IL10’s suppression of mTOR activity 

triggers mitophagy while simultaneously slowing down 

glycolysis in lipopolysaccharide -stimulated macro-

phages, as noted in studies [90, 91]. Inhibiting 

mitophagy with 3-methyladenine encourages a shift 

towards inflammatory (M1) macrophages phenotypes, 

whereas promoting mitophagy with rapamycin hinders 

M1 polarization, favoring anti-inflammatory (M2) 

macrophages differentiation instead [92]. Building on 

these insights, we extended our research to examine the 

impact of mitophagy on immune functionality in head 

and neck squamous cell carcinoma. 

 

Cluster B was characterized by a notably sparse 
infiltration of immune cells, indicative of immuno-

suppression and the ‘cold tumor’ phenotype, which is 

commonly resistant to immunotherapy. Research 

indicates that such tumors circumvent immune detection 

and hinder the proliferation and activation of T cells 

[93]. In Cluster B, the immune response was 

compromised by impediments in the release of cancer 

cell antigens and the subsequent T-cell engagement. 

Improving the immune response, particularly T-cell 

activation and patient survival, might be feasible by 

leveraging dendritic cell-mediated antigen presentation 

within the tumor milieu [94]. This aspect aligns with 

findings that individuals in Cluster B faced poorer 

prognoses compared to those in Cluster A. Further, our 

study explored examined the link between mitophagy 

and CNV alterations, with Cluster B showing a higher 

incidence of CNV changes, both deletions and 

amplifications, while Cluster A exhibited the least CNV 

frequency. The progression and complexity of HNSCC 

are thought to correlate with CNV patterns [95], and we 

postulate that genetic diversity may increase the 

likelihood of unpredictable clinical outcomes. 

 

As previously noted, mitophagy can modulate the 

effectiveness of cancer treatments [81, 96]. Our analysis 

revealed differential drug response profiles among 

HNSCC patients categorized into the various clusters. 

Hence, our cluster categorizations could guide more 

precise drug deployment in therapeutic protocols. 

Additionally, our research also delves into potential 

treatment avenues for HNSCC, particularly for those in 

Cluster B, aiming to advance the knowledge of the 

molecular dynamics that govern the efficacy of these 

therapeutic interventions. 

 

Our study aimed to enrich our understanding of HNSCC 

tumor biology by integrating patterns of mitophagy. To 

address individual variations, we amalgamated an 

extensive array of 94 machine learning techniques to 

forecast patient survival and their potential reaction to 

immunotherapy. Nevertheless, this research faces 

certain constraints. Primarily, our conclusions were 

drawn using thorough bioinformatic methods. There 

remains a need for experimental corroboration, 

especially in understanding the interplay of mitophagy 

regulators and the downstream pathways they influence. 

Additionally, despite observed variances in drug 

sensitivity across the subgroups, experimental 

confirmation is crucial. Furthermore, while we have 

validated our prognostic model, certain unavoidable 

confounders, like ethnicity and geographical location, 

may have introduced bias. For more robust conclusions, 

further independent datasets would be beneficial. 

 

In closing, our research dissected the implications of 

mitophagy in HNSCC, distinguishing three mitophagy-
related subgroups. We conducted an all-encompassing 

assessment of these subgroups’ clinical profiles, 

biological roles, immune infiltration, genetic attributes, 
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and drug response patterns. Moreover, we constructed a 

solid mitophagy-based prognostic framework for 

forecasting HNSCC patient outcomes. The insights 

from our study offer a novel perspective on the 

mitophagy-HNSCC nexus, potentially aiding in clinical 

strategy formulation. 

 

CONCLUSIONS 
 

The MRGs were regarded as highly correlated with the 

prognosis of HNSCC and were recognized as 

exceptional prognosticators for HNSCC. Specific 

metabolic pathways and outcomes were linked to 

unique variations in mitophagy. Immune cell infiltration 

was more severe in subtypes that demonstrated 

increased levels of mitophagy. Moreover, there were 

differences in the way drugs responded among various 

subgroups. The Mitophagy Subgroup Risk Score 

(MSRS) is capable of effectively forecasting the 

immune treatment response and prognosis in patients 

with HNSCC. The Mitophagy Subgroup Risk Score 

(MSRS) gene SLC26A9 can inhibit HNSCC cell 

proliferation and migration. Examining the terrain of 

mitophagy alteration will increase understanding and 

further enrich the comprehension of HNSCC charac-

terization. Additionally, it will provide guidance for 

future clinical decision-making. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Disrupted mitophagy regulators in cancers and correlations with patient outcomes: (A) mRNA 

expression related to mitophagy in multiple cancers. (B) The correlation of mitophagy-related genes in the expression matrix TCGA-HNSC 
using two methods, Spearman (upper right) and Pearson (lower left) correlation tests. (C) The association between transcript levels and 
patient outcomes. 
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Supplementary Figure 2. Functional Enrichment Analysis in Distinct Mitophagy Modification Patterns: (A, B) Heatmap of 

metabolism-related and cancer-related pathway enrichment scores among the subtypes by GSVA analysis. (C) Heatmap of transcription 
factor regulon activation in three mitophagy modification subtypes. ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05 
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Supplementary Figure 3. Comparison of the Specific Immune Infiltration Landscape among Three Subgroups: (A) Heatmap of 

chemokines, chemokine receptors, immunoinhibitors, and immunostimulators among the subtypes by expression analysis. (B) Heatmap of 
estimate score in three mitophagy modification subtypes. ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05. 
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Supplementary Figure 4. Landscapes of somatic mutation among subgroups: (A–C) Waterfall plot showing the mutation patterns of 
the top 20 most frequently mutated genes. Each column represented patients. The upper barplot showed tumor mutational burden. The 
mutation frequency of each gene was indicated on the right. (D–F) Potentially druggable gene categories from mutation datasets in Cluster A, 
B, and C. (G–I) Onco-pathway alteration frequency and the fraction of sample affected for each pathway in Cluster A, B, and C. 
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Supplementary Figure 5. Comparison of drug sensitivity. Estimated IC50 of the indicated molecular targeted drugs in Cluster A, B, and C. 
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Supplementary Figure 6. The association between mitophagy gene expression and drug sensitivity based on the CellMiner 
database. 
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Supplementary Figure 7. Results of the Boruta algorithm iterations. Green indicates features considered important by the Boruta 

algorithm while blue represents shadow attributes. 
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Supplementary Figure 8. Observations on cell-to- cell communication. (A) Scores for each cell type shown in a dotplot. (B) 

Dimensionality reduction charts show the risk scores of different cell types, grouped by normal and tumor. (C) Overview of cellular 
communication. (D) Network visualization of high-risk epigenetic profiles’ communication patterns. (E–G) Bubble plots depicting 
communication intensity between various cell types and the Risk group. This includes interactions from the Risk group to Endothelial cells (E), 
Fibroblasts (F), and Smooth muscle cells (G) to the Risk group. 
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Supplementary Figure 9. Predicting immune therapy response with MSRS. (A–C) Comparison of the TIDE (A), dysfunction (B), and 

exclusion (C) between groups with high and low MSRS. (D–G) Comparison of CAF in high and low MSRS groups in GSE41613 (D), GSE42743 
(E), GSE65858 (F), and TCGA (G). (H) A comparison of the MSRS between immune therapy responders and nonresponders in the GSE91061 
immunotherapy cohort. (I, J) Based on the phs000452 (I), and GSE91061 (J) immunotherapy cohorts, the effect of MSRS on prognosis in these 
patients. 
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Supplementary Figure 10. KM survival analysis of SLC26A9. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 3, 4, 6. 

 

 

Supplementary Table 1. 
The specific transcription 
factors for HNSCC. 

regulon 

CSDE1 

ZNF207 

LTF 

YBX1 

PITX1 

TP63 

NFE2L1 

XBP1 

HIF1A 

KLF5 

TSC22D1 

MAZ 

USF2 

STAT1 

EPAS1 

NFE2L2 

SFPQ 

IRF6 

EGR1 

ID1 

ATF4 

BHLHE40 

MYC 

HMGA1 

SSRP1 

ARID5B 

ETS2 

ZNF385A 

HMGB2 

PHB 

STAT3 

CNBP 

FOS 

JUNB 

FOSL1 

JUN 

MAF1 

ZFP36L1 

LITAF 

HMGB1 

SREBF2 
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ATF6B 

NME2 

ZEB2 

EBF1 

FOXP3 

TP53 

 

Supplementary Table 2. 
The list of Mitophagy-
Related Genes. 

ATG12 

ATG5 

CSNK2A1 

CSNK2A2 

CSNK2B 

FUNDC1 

MAP1LC3A 

MAP1LC3B 

MFN1 

MFN2 

MTERF3 

PGAM5 

PINK1 

PRKN 

RPS27A 

SQSTM1 

SRC 

TOMM20 

TOMM22 

TOMM40 

TOMM5 

TOMM6 

TOMM7 

TOMM70 

UBA52 

UBB 

UBC 

ULK1 

VDAC1 

 

Supplementary Table 3. Subtype differentially expressed genes based on limma algorithm. 

 

Supplementary Table 4. Univariate COX regression analysis of subtype differential genes. 
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Supplementary Table 5. The 
result of Bootstrapping-based 
analysis. 

 gene times 

1 GRHL3 1000 

2 MS4A2 997 

3 SCNN1B 996 

4 ATP10B 995 

5 A2ML1 992 

6 TGM5 981 

7 BNIPL 978 

8 SASH1 977 

9 ALOX12B 965 

10 KRT80 893 

11 PLA2G3 891 

12 SPINK5 867 

13 ZNF831 781 

14 SLC26A9 749 

15 LY6G6C 742 

16 MASP1 722 

17 MUC15 683 

18 TMPRSS11D 675 

19 FAM83C 649 

 

Supplementary Table 6. The result of receptor ligand pairs between riskhighepi or risklowepi and others. 
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