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INTRODUCTION 
 

Gastric cancer (GC) stands as the sixth most frequently 

diagnosed cancer globally, with the second-highest 

mortality rate among malignant tumors [1]. While the  

5-year overall survival rate for early-stage GC patients 

can reach 95% [2], it remains around 50% for those in  

the advanced stage, even with comprehensive treatment 

approaches involving surgery [2, 3]. The low survival 

rate of GC is primarily attributed to tumor recurrence and 

metastasis [4]. As a result, it becomes crucial to delve 

into the potential molecular mechanisms that drive the 

malignant biological behavior of GC cells. Moreover, the 

discovery of efficient early diagnostic techniques and 

dependable molecular markers for recurrence monitoring 

and prognosis evaluation holds significant importance. 
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ABSTRACT 
 

Introduction: The underlying mechanisms of gastric cancer (GC) remain unknown. Therefore, in this study, we 
employed a comprehensive approach, combining computational and experimental methods, to identify 
potential key genes and unveil the underlying pathogenesis and prognosis of GC. 
Methods: Gene expression profiles from GEO databases (GSE118916, GSE79973, and GSE29272) were analyzed 
to identify DEGs between GC and normal tissues. A PPI network was constructed using STRING and Cytoscape, 
followed by hub gene identification with CytoHubba. Investigations included expression and promoter 
methylation analysis, survival modeling, mutational and miRNA analysis, gene enrichment, drug prediction, and 
in vitro assays for cellular behaviors. 
Results: A total of 83 DEGs were identified in the three datasets, comprising 41 up-regulated genes and 42 
down-regulated genes. Utilizing the degree and MCC methods, we identified four hub genes that were 
hypomethylated and up-regulated: COL1A1, COL1A2, COL3A1, and FN1. Subsequent validation of their 
expression and promoter methylation on clinical GC samples through targeted bisulfite sequencing and RT-
qPCR analysis further confirmed the hypomethylation and overexpression of these genes in local GC patients. 
Furthermore, it was observed that these hub genes regulate tumor proliferation and metastasis in in vivo and 
exhibited mutations in GC patients. 
Conclusion: We found four potential diagnostic and prognostic biomarkers, including COL1A1, COL1A2, COL3A1, 
and FN1 that may be involved in the occurrence and progression of GC. 
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Despite notable progress in comprehending the molecular 

intricacies of GC and the emergence of targeted 

therapeutic options, the effectiveness of existing targeted 

therapies remains limited for certain patients [5, 6]. 

Therefore, further research aimed at uncovering novel 

and more effective targeted approaches is essential to 

improve patient outcomes and overcome these challenges. 

 
In recent years, the utilization of microarray and RNA-

sequencing technology has emerged as a powerful and 

efficient tool in the quest for promising biomarkers to 

aid in cancer diagnosis, treatment, and prognosis [7, 8]. 

These technologies have led to the accumulation of a 

vast amount of data, accessible through public database 

platforms like Gene Expression Omnibus (GEO) [9] 

and The Cancer Genome Atlas (TCGA) [10, 11]. By 

leveraging the wealth of information in GEO and TCGA, 

scientists can uncover novel molecular signatures and 

candidate biomarkers that may have diagnostic, prog-

nostic, or therapeutic implications in the fight against 

cancer [12]. The integration of GEO data with other 

experimental approaches enables a deeper understanding 

of cancer biology and aids in the early detection  

and treatment of cancer. By performing experimental 

validation, researchers can verify the expression patterns, 

molecular interactions, and functional roles of the 

identified biomarkers, ultimately strengthening the 

confidence in their potential clinical utility. 

Various investigations have been undertaken to analyze 

the abnormal gene expression patterns associated with 

GC. Despite advanced research, these studies yielded 

inconsistent results [13–16]. Therefore, to address the 

challenges posed by diverse technological platforms and 

small sample sizes, integrated bioinformatics approaches 

have been embraced in cancer studies, yielding a wealth 

of valuable biological insights. In pursuit of gaining 

profound insights into the influence of Differentially 

Expressed Genes (DEGs) on the molecular pathogenesis 

of GC, our study aimed to explore novel signature genes 

associated with GC. For this purpose, we adopted a 

multi-level validation approach to rigorously examine 

and confirm the relevance and significance of these 

signature genes in the context of GC. 

 

MATERIALS AND METHODS 
 

Methodology 

 

The overall methodology employed in this study is 

depicted in Figure 1. 

 

Collection of clinical specimens 

 

We acquired paired fresh cancer tissue specimens along 

with control samples from 39 patients who underwent 

surgical resection of GC at the District Headquarter 

 

 
 

Figure 1. This figure illustrates the overall methodology utilized in the present study. 
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Hospital (DHQ), Teaching Hospital, Dera Ismail  

Khan, Khyber Pakhtunkhwa (KPK) between 2019  

and 2023. None of the patients had received any 

chemotherapy or radiation therapy prior to the  

surgery. The collected tissue samples were promptly 

frozen in liquid nitrogen and stored at −80°C until  

DNA and RNA isolation. The study received ethical 

approval in accordance with the Helsinki Declaration, 

and informed written consent was obtained from all 

participants. 

 

Microarray data acquisition, DEGs, and hub genes 

identification 

 

We retrieved three datasets of microarray, namely 

GSE118916, GSE79973, and GSE29272, from the 

GEO database at http://www.ncbi.nlm.nih.gov/geo/. 

The selection criteria for appropriate GC datasets  

were as follows: studies involving pharmacological 

manipulation, interfering molecules like miRNAs, 

siRNAs, or gene therapies, knockdown cultures, or 

artificially induced mutations were excluded. Only 

studies with a minimum of ten control and experimental 

samples, exclusively conducted in Homo sapiens, and 

providing clear descriptions of protocols or samples 

were chosen. Additionally, datasets with raw data 

availability, excluding those with treated data only, 

and studies conducted on platforms belonging to 

Affymetrix, Illumina, or Agilent manufacturers were 

included. Samples from metastasized tissues were  

also excluded. A total of 16 microarray datasets were 

reviewed, and GSE118916, GSE79973, and GSE29272 

were selected based on sample size adequacy for 

further analysis. 

 

For our study, we specifically selected paired GC 

tissues and their corresponding adjacent tissues. In cases 

where multiple probes were associated with a particular 

gene, we calculated the average expression level to 

represent its final expression. The initial microarray 

data from each series underwent processing using  

the R software package (version 3.6.1; http://www.R-

project.org/). Following the transformation to a log2 

scale, we set the cutoff criteria for identifying DEGs as 

|Log2 fold change (FC)| > 1 and adjusted P < 0.01. To 

visualize the common DEGs across the three datasets, 

we generated a Venn diagram utilizing Venny (version 

2.1; https://bioinfogp.cnb.csic.es/tools/venny/index.html). 

Subsequently, we selected these overlapping DEGs for 

further investigation of hub genes. 

 

In order to identify hub genes from the  

overlapping DEGs, we first constructed a protein-
protein interaction (PPI) network using the STRING 

database (https://string-db.org/) [17]. During PPI 

construction all the active interactions sources were 

utilized including textmining, experiments, database, 

co-expression, neighborhood, genefusion, and co-

occurrence with 1st shell. The minimum required 

interaction score was set to 0.4 (medium confidence) 

and the protein nodes having no interaction with  

other proteins were removed from the network. This 

allowed us to explore the interactions and associations 

between the identified genes. Next, we employed the 

CytoHubba application within the Cytoscape software 

to analyze the PPI network and pinpoint the hub genes 

based on the degree method [18]. 

 

TCGA-datasets-based expression validation analysis 

 

In this study, we harnessed the power of  

three crucial databases, including UALCAN 

(https://ualcan.path.uab.edu/cgi-bin/ualcan-res.pl) [19], 

OncoDB (https://oncodb.org/) [20], and GEPIA 

(http://gepia.cancer-pku.cn/) [21] to validate the 

expression of hub genes on the GC TCGA expression 

datasets. UALCAN offers a user-friendly interface, 

providing researchers with valuable insights into gene 

expression patterns and conducting in-depth analyses 

using TCGA data. OncoDB serves as a comprehensive 

repository of oncogenomic information, shedding light 

on cancer-related gene expression and molecular 

alterations. GEPIA, on the other hand, is a web-based 

tool enabling researchers to explore gene expression 

data and conduct interactive analyses across diverse 

cancer types. 

 

Proteomic expression analysis 

 

In this study, the UALCAN database was used to 

conduct proteomic expression analysis of the hub 

genes across GC and normal tissues. By utilizing  

this database, we gained essential information on  

the protein expression patterns of these hub genes, 

enhancing our understanding of their potential roles in 

GC and normal tissue biology. 

 

Promoter methylation analysis 

 

In our research, we utilized the promoter methylation 

features available in the UALCAN [19] and OncoDB 

[20] databases. These databases provide essential 

information on the epigenetic modifications of genes, 

particularly focusing on promoter methylation, which 

can regulate gene expression. Leveraging the data 

from these resources, we conducted a comprehensive 

promoter methylation analysis of the hub genes 

identified across GC and normal tissue samples. By 

examining the methylation patterns of these hub genes, 
we aimed to gain valuable insights into potential 

regulatory mechanisms that could influence gene 

expression in the context of GC. 
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Mutational and co-expressed gene analyses 

 

In the current study, we utilized the mutational  

analysis feature of the cBioPortal database (https:// 

www.cbioportal.org/) [22], a powerful resource for 

exploring genomic alterations in various cancers. 

cBioPortal provides comprehensive genomic and clinical 

data from numerous cancer studies, enabling researchers 

to assess the mutation landscape of specific genes of 

interest. We conducted an extensive mutational analysis 

of the hub genes across GC samples using cBioPortal 

with default settings. By examining the mutational status 

of these hub genes, we aimed to uncover potential 

genetic alterations that could influence their functions 

and contribute to the development and progression of 

GC. In addition to this, we also used this database with 

default settings to identify mutually co-expressed genes 

with hub genes in GC. 

 

Survival analysis and the construction of a 

prognostic model 

 

In this study, we employed two important 

methodologies to explore the prognostic implications  

of the hub genes. Firstly, we utilized the GEPIA [21],  

a powerful online tool for conducting survival analysis, 

to assess the association between the expression levels 

of the hub genes and patient outcomes. GEPIA allowed 

us to investigate the impact of these genes on overall 

survival and disease-free survival in specific cancer 

types. Secondly, to construct a robust prognostic model, 

we implemented the Cox regression method [23] via R. 

This approach enabled us to develop a predictive model 

that could accurately stratify patients based on their risk 

of adverse clinical outcomes. 

 

Enrichment and miRNA prediction analyses 

 

In our study, we utilized three important databases, 

namely DAVID, [24] miRDB, and ENCORI [25],  

to gain further insights into the functional implications 

of the hub genes identified. DAVID (Database for 

Annotation, Visualization, and Integrated Discovery) 

offers a comprehensive platform for gene functional 

annotation and enrichment analysis. We performed 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathway analysis of the hub 

genes using the DAVID database. We utilized miRDB 

and ENCORI database to conduct miRNA prediction 

analysis of the hub genes. 

 

Genomic DNA and RNA isolation 

 
Total cell DNA from tissue samples was extracted using 

an organic method [26], while total RNA was extracted 

using TRIZol method [27]. We employed the NanoDrop 

2000 Spectrophotometer (Thermo Fisher Scientific, 

Waltham, MA, USA) to assess the concentration and 

purity of the extracted DNA and RNA, ensuring that the 

A260/A280 ratio fell within the range of 1.8 to 2.0. 

 

Library preparation for targeted bisulfite sequencing 

analysis 

 

In brief, total DNA (1 µg) was fragmented into 

approximately 200–300 bp fragments using a Covarias 

sonication system (Covarias, Woburn, MA, USA). 

Following purification, the DNA fragments underwent 

repair and phosphorylation of blunt ends using a 

mixture of T4 DNA polymerase, Klenow Fragment, and 

T4 polynucleotide kinase. The repaired fragments were 

then 3′ adenylated using Klenow Fragment (3′–5′ exo-) 

and ligated with adapters containing 5′-methylcytosine 

instead of 5′-cytosine and index sequences using T4 

DNA Ligase. The constructed libraries were quantified 

using a Qubit fluorometer with the Quant-iT dsDNA  

HS Assay Kit (Invitrogen, Carlsbad, CA, USA) and  

sent to Beijing Genomic Institute (BGI), China for 

targeted bisulfite sequencing. Following sequencing, the 

methylation data was normalized into beta values. 

 

Real time quantitative PCR (RT-qPCR) 

 

The RNA extracted was transcribed into cDNA using 

the Prime-Script RT reagent kit (TaKaRa, Dalian, 

China). RT-qPCR analysis was performed on an ABI 

7500 Real-Time PCR System (Applied Biosystems, 

USA) using the SYBR Premix Ex Taq™ II kit 

(TaKaRa). The expression levels were normalized to 

β-actin. All experiments were independently conducted 

in triplicate. The 2(−ΔΔCt) method was employed to 

assess the relative expression of each hub gene [28]. 

This method quantifies gene expression changes by 

comparing the cycle threshold (Ct) values of a target 

gene between control and experimental groups. It 

normalizes to reference genes, yielding a fold change 

value (2(−ΔΔCt)), indicating whether the gene is up-

regulated (>1), down-regulated (<1), or unchanged (=1). 

 

Receiver operating characteristic (ROC) curve 

generation 

 

Based on the RT-qPCR and targeted bisulfite-seq expres-

sion and methylation data, ROC curves of identified 

DEGs expression were generated using the SRPLOT  

web source (https://bioinformatics.com.cn/srplot). 

 

Drug prediction analysis 

 
In our study, we harnessed the drug prediction feature 

of the DrugBank (http://www.drugbank.ca) database 

[29], a comprehensive resource that provides valuable 
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information on drug-target interactions and drug-related 

data. Leveraging this feature, we aimed to identify 

potential drugs that could target the hub genes identified 

in our study. By exploring the vast database of drug-

target interactions, we sought to uncover drugs that may 

have regulatory effects on the expression of the hub 

genes. 

 

Cell culture and transfection 

 

AGS cell line (obtained from the American Type Culture 

Collection, ATCC, Manassas, VA, USA) were maintained 

in a 37°C incubator with 5% CO2 in Dulbecco’s Modified 

Eagle Medium (DMEM) from Hyclone (Logan, UT, 

USA) supplemented with 10% fetal bovine serum (FBS) 

obtained from Gibco (Waltham, MA, USA). Following 

this, we carried out gene knockdown experiments 

targeting COL1A1, COL1A2, COL3A1, and FN1 genes. 

These knockdowns were achieved by transfecting the  

cell with two siRNA constructs specific to each gene-

namely, si-COL1A1, si-COL1A2, si-COL3A1, and si-

FN1. The transfection was facilitated using Lipofectamine 

3000 from Invitrogen (Waltham, MA, USA). The cells 

were subsequently cultured for an additional 48 hours 

following transfection. 

 

Following are the sequences of the utilized siRNAs: 

 

si-COL1A1-1: 5′-TTGGTGTTGTGCGATGACGTG-3′; 

si-COL1A1-2: 5′-GTACGTCCGGTTGTATGTA-3′;  

si-COL1A2-1: 5′-GGACCCGTTGGCAAAGATG-3′; 

si-COL1A2-2: 5′-CACCAGGAGGACCAGGAG-3′; si-

COL1A3-1: 5′-CUAUGCGGAUAGAGAUGUCTT-3′; 

si-COL1A3-2: 5′-GAGGAAACAGAGGTGAAAGA 

GG-3′; si-FN1-1 sense: 5′-CCAUUUCACCUU 

CAGACAATT-3′; si-FN1-1 anti-sense: 5′-UUGU 

CUGGGUGAAAUGGTT-3′; si-FN2-1 sense: 5′-

GCAAGCAGCAACAAUUUTT-3′; si-FN2-1 anti-

sense: 5′-AAAUUGGCUUGCUGAUUGCTT-3′. 

 
RNA extraction and RT-qPCR 

 

Total RNA from the cell lines was extracted using 

TRIZol method [30] and RT-qPCR analysis was 

performed according to the instructions as discussed 

above. 

 
Cell counting kit-8 (CCK-8) assays 

 

After the transfection process, AGS cells were plated in 

96-well plates at a concentration of 1 × 105 cells/mL 

and allowed to proliferate for 48 hours. To assess  

cell viability, we employed a CCK-8 kit (provided  

by Meilunbio, China), following the manufacturer’s 

instructions. Absorbance measurements at 450 nm were 

taken using a Bio-Rad model 550 microplate reader. 

Colony-forming assays 

 

The cells were distributed into 6-well plates, with each 

well receiving 500 cells, and were then cultured for  

48 hours. Subsequently, the cells were exposed to the 

correct doses of ATO (2 μM for AGS cells). Following 

one-week incubation, the cells were immobilized using 

4% paraformaldehyde sourced from Thermo Fisher 

Scientific (Waltham, MA, USA). Afterward, they were 

subjected to staining with 2% crystal violet from 

Thermo Fisher Scientific (USA). Colonies that were 

clearly visible and consisted of at least 50 cells per 

clone were enumerated under a microscope. 

 

Statistics analysis 

 

DEGs were identified using a t-test [31]. While for  

GO and KEGG enrichment analysis, we used Fisher’s 

Exact test for computing difference [32]. Correlational 

analyses were carried out using the Pearson method. For 

comparisons, a student t-test was adopted in the current 

study. All the analyses were carried out in R version 

3.6.3 software. 

 

Availability of data and materials 

 

The data supporting the findings of the  

article are available in the GEO database at 

https://www.ncbi.nlm.nih.gov/geo/. 

 

RESULTS 
 

Microarray data acquisition, DEGs, and hub genes 

identification 

 

We obtained three gene expression profiles 

(GSE118916, GSE79973, and GSE29272) from the 

GEO database, comprising a total of 318 samples, 

including 159 GC and 159 matched adjacent control 

tissues. From GSE118916, a total of 1295 DEGs were 

identified, consisting of 651 up-regulated and 644 

down-regulated genes. In GSE79973, a total of 376 

DEGs were screened, including 132 up-regulated  

and 244 down-regulated genes. Similarly, GSE29272 

yielded 330 DEGs, comprising a total of 165 up-

regulated and 165 down-regulated genes. Volcano plots 

depicting the DEGs in each dataset were illustrated  

in Figure 2A–2C. Among these datasets, 83 genes (41 

up-regulated and 43 down-regulated) were common, 

and were chosen for further analysis (Figure 2D). 

 

To investigate the interactions between the 83 DEGs, 

we utilized the STRING database to construct a PPI 

network. The resulting PPI network was generated 

using Cytoscape (Figure 3A) and comprised 83 nodes 

with 253 interactions (Figure 3A). Subsequently, the 
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PPI network was analyzed using the cytoHubba 

application in Cytoscape to identify hub genes (Figure 

3B). This analysis involved two algorithms, degree 

and MCC, provided by cytoHubba. Based on these  

two algorithms, up-regulated COL1A1 (Collagen,  

type I, alpha 1), COL1A2 (Collagen, type I, alpha 2), 

COL3A1 (Collagen, type III, alpha 1), and FN1 

(Fibronectin) in GC samples were identified as  

the hub genes (Figure 3C). These genes exhibited 

significant connectivity within the network, suggesting 

their potential importance in the regulatory network  

of the DEGs. 

 

 
 

Figure 2. This figure depicts the process of identifying differentially expressed genes (DEGs) across the GSE118916, 
GSE79973, and GSE29272 datasets related to gastric cancer (GC). (A) Volcano plot of differentially expressed genes (DEGs) in the 

GSE118916 dataset. (B) Volcano plot of DEGs in the GSE79973 dataset. (C) Volcano plot of DEGs in the GSE29272 dataset. (D) Venn diagram 
showing the overlap of DEGs among the three datasets (GSE118916, GSE79973, and GSE29272). Red dots represent up-regulated genes, 
and green dots represent down-regulated genes. The numbers in Venn diagram represent the count of unique and overlapping genes 
among the datasets. P-value < 0.05. 
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Expression validation based on TCGA datasets 

 

To confirm the mRNA expression levels of COL1A1, 

COL1A2, COL3A1, and FN1 in GC samples compared 

to controls from the TCGA database, we utilized 

UALCAN, OncoDB, and GEPIA for data integration 

and visualization. These hub genes (COL1A1, COL1A2, 

COL3A1, and FN1) exhibited significant overexpression 

(p < 0.05) in GC samples relative to controls (Figure 

4A–4C), which was consistent with the findings from 

the GEO datasets. Furthermore, the expression of 

COL1A1, COL1A2, COL3A1, and FN1 varied across 

different stages of GC (Figure 4D). These results provide 

additional evidence supporting the up-regulation of 

these hub genes in GC. 

 

Proteomic expression analysis of COL1A1, 

COL1A2, COL3A1, and FN1 

 

In our study, we conducted proteomic expression 

analysis of COL1A1, COL1A2, COL3A1, and FN1 in 

GC samples compared to controls using the UALCAN 

database. The results revealed that the protein levels of 

these genes were significantly higher in GC samples 

compared to controls (Figure 5). The findings were 

consistent with the mRNA expression data, further 

validating the up-regulation of COL1A1, COL1A2, 

COL3A1, and FN1 in GC relative to control samples. 

 

Promoter methylation levels of COL1A1, COL1A2, 

COL3A1, and FN1 

 

In our study, we conducted promoter methylation 

analysis of COL1A1, COL1A2, COL3A1, and FN1 in 

GC samples compared to controls using the UALCAN 

and OncoDB databases. The results revealed that these 

genes exhibited hypomethylation in GC samples relative 

to controls (Figure 6). This finding suggests that the 

promoter regions of COL1A1, COL1A2, COL3A1, and 

FN1 undergo reduced methylation levels in GC, which 

could potentially contribute to their up-regulation of 

these genes in GC (Figure 6). 

 

Mutational and co-express gene analysis of 

COL1A1, COL1A2, COL3A1, and FN1 

 

We conducted a mutational analysis of COL1A1, 

COL1A2, COL3A1, and FN1 in GC samples using the 

cBioPortal database. The results revealed that these 

genes were mutated in approximately 15.79% of the 

analyzed GC samples (Figure 7A). Among the mutated 

GC samples, missense mutations were particularly 

 

 
 

Figure 3. This figure illustrates the process of constructing protein-protein interaction (PPI) networks, analyzing them, and 
identifying hub genes. (A) Panel A presents the PPI network formed by the 83 common DEGs from GSE118916, GSE79973, and GSE29272. 

(B) Panel B displays the PPI network of these DEGs highlighting hub genes identified through degree and MCC methods. (C) Panel C showcases 
a refined PPI network focusing solely on the four identified hub genes. 
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prevalent, with C>T substitution mutation being the 

most common type of mutation observed (Figure 7B). 

These findings suggest that these hub genes undergo 

genetic alterations in a subset of GC cases, and the 

prevalence of missense mutations, particularly C>T 

substitutions, underscores their potential significance in 

the molecular landscape of GC. 

 

Additionally, in our study, we observed that COL1A1, 

COL1A2, COL3A1, and FN1, being the hub genes, 

exhibited co-expression patterns with other genes in GC 

samples. Notably, the co-expression analysis revealed 

that MTM and COL5A1 were among the genes showing 

significant co-expression with the hub genes (Figure 

7C). This finding suggests that MTM and COL5A1 

might be functionally linked to the hub genes and 

potentially involved in shared biological processes or 

pathways related to GC development and progression. 

 

Survival analysis and the construction of a 

prognostic model 

 

We conducted survival analysis of COL1A1, COL1A2, 

COL3A1, and FN1 in GC patients using the GEPIA 

database. The results revealed a significant association 

between higher expression levels of these genes and 

worse overall survival (OS) of the GC patients. This 

finding suggests that increased expression of COL1A1, 

COL1A2, COL3A1, and FN1 may be indicative of 

poorer prognosis in GC (Figure 8A). 

 

To develop the prognostic model based on COL1A1, 

COL1A2, COL3A1, and FN1 genes, we utilized  

the TCGA_STAD dataset as the training dataset, and 

the GSE84437, GSE84433, GSE84426, GSE28541, 

GSE26901, GSE26899, GSE26253, GSE183136, and 

GSE13861 datasets served as validation datasets.  

The construction of our prognostic model involved a 

stepwise Cox regression approach, which integrated 

hazard ratio, c-index, and risk score parameters.  

By evaluating the predictive performance of our 

prognostic model using the c-index, we confirmed its 

effectiveness and robustness in assessing the prognosis 

of patients with GC (Figure 8B, 8C). The incorporation 

of multiple datasets for validation strengthens the 

reliability of our prognostic model and supports its 

potential clinical utility in predicting patient outcomes 

in GC. 

 

 
 

Figure 4. mRNA expression analysis of COL1A1, COL1A2, COL3A1, and FN1 using additional TCGA datasets of gastric cancer 
(GC). (A) Expression analysis of COL1A1, COL1A2, COL3A1, and FN1 in GC and normal samples via UALCAN database. (B) Expression analysis 

of COL1A1, COL1A2, COL3A1, and FN1 in GC and normal samples via OncoDB database. (C) Expression analysis of COL1A1, COL1A2, 
COL3A1, and FN1 in GC and normal samples via GEO GEPIA. (D) Expression analysis of COL1A1, COL1A2, COL3A1, and FN1 in GC samples 
belonging to different cancer stages. P-value < 0.05. 
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Figure 5. Proteomic expression analysis of COL1A1, COL1A2, COL3A1, and FN1 using additional database. This figure presents 
the proteomic expression analysis of COL1A1, COL1A2, COL3A1, and FN1 in gastric cancer (GC) and normal samples via UALCAN database. 
P-value < 0.05. 

 

 
 

Figure 6. Promoter methylation and survival analyses of COL1A1, COL1A2, COL3A1, and FN1. (A) Promoter methylation analysis 

of COL1A1, COL1A2, COL3A1, and FN1 in gastric cancer (GC) and normal samples via UALCAN. (B) Promoter methylation analysis of COL1A1, 
COL1A2, COL3A1, and FN1 in GC and normal samples via OncoDB. P-value < 0.05. 
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Enrichment and miRNA prediction analyses 

 

In our study, we conducted enrichment analysis of 

COL1A1, COL1A2, COL3A1, and FN1 to gain 

insights into their functional roles. The analysis 

revealed that these hub genes are involved in a wide 

range of diverse GO terms and KEGG) pathways 

(Figure 9A–9D). These findings indicate that COL1A1, 

COL1A2, COL3A1, and FN1 may play crucial roles in 

various BP, CC, and MF. 

 

Furthermore, in our study, we utilized miRDB and 

ENCORI to predict the regulatory miRNAs targeting 

COL1A1, COL1A2, COL3A1, and FN1. The analysis 

via both databases revealed a total of 40 miRNAs  

that potentially target these hub genes (Figure 9E).

 

 
 

Figure 7. Mutational and co-express gene analysis of COL1A1, COL1A2, COL3A1, and FN1. (A) Detail of the mutational 

frequencies of COL1A1, COL1A2, COL3A1, and FN1 gens in gastric cancer (GC) samples. (B) Detailed summary of the mutations found in 
COL1A1, COL1A2, COL3A1, and FN1 genes across GC samples. (C) Significant co-expressed genes along with overexpressed COL1A1, 
COL1A2, COL3A1, and FN1 genes in GC samples. P-value < 0.05. 
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Remarkably, hsa-miR-29b-3p was found to target all 

hub genes simultaneously (Figure 9F). This observation 

suggests that hsa-miR-29b-3p may play a crucial role  

in the post-transcriptional regulation of COL1A1, 

COL1A2, COL3A1, and FN1, potentially modulating 

their expression levels. 

Validation of COL1A1, COL1A2, COL3A1, and 

FN1 gene expression in clinical GC samples via  

RT-qPCR 

 

To validate the results obtained from the GEO 

expression dataset, cDNA from both GC and control

 

 
 

Figure 8. This figure illustrates the survival analysis and development of a prognostic model using the gene expression data 
of COL1A1, COL1A2, COL3A1, and FN1. (A) The survival analysis of these genes in gastric cancer (GC) patients is conducted via GEPIA. 

(B) Box plots representing the risk scores of patients in various GEO datasets and the TCGA_STAD dataset. (C) Cox regression analysis forest 
plot showing the hazard ratios of COL1A1, COL1A2, COL3A1, and FN gene expression levels for overall survival in STAD across different 
datasets and concordance index (C-index) bar plot for the predictive performance of the COL1A1, COL1A2, COL3A1, and FN gene expression 
models. The yellow squares represent the hazard ratio (HR) for each dataset with 95% confidence intervals. P-value < 0.05. 
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tissue samples was utilized for RT-qPCR analysis of 

COL1A1, COL1A2, COL3A1, and FN1. The results, as 

depicted in Figure 10A, demonstrated a significant 

increase in the expression levels of COL1A1, COL1A2, 

COL3A1, and FN1 in the GC sample group (n = 39) 

compared to the control group (n = 39, p-value < 0.05). 

Additionally, the ROC curves for COL1A1 (AUC: 1.0, 

p-value < 0.05), COL1A2 (AUC: 1.0, p-value < 0.05), 

COL3A1 (AUC: 1.0, p-value < 0.05), and FN1 (AUC: 

1.0, p-value < 0.05) based on the expression levels 

exhibited significant diagnostic potential, sensitivity, 

and specificity (Figure 10B). 

 

Targeted bisulfite-seq analysis to analyze promoter 

methylation levels of COL1A1, COL1A2, COL3A1, 

and FN1 in clinical GC samples 

 

To assess the extent of promoter methylation in the 

hub genes COL1A1, COL1A2, COL3A1, and FN1 

within clinical GC samples, we enrolled a total of 39 

individuals diagnosed with GC, along with 39 healthy 

individuals from the Pakistani population. In both  

the GC and control groups, a high rate of bisulfite 

conversion (C to T) exceeding 99.1% was observed, and 

there were no notable differences in the read mapping 

rate between the two groups. Following stringent 

quality control measures, all 39 samples from the GC 

group and 39 samples from the control group were 

deemed suitable for subsequent analysis. Our analysis 

revealed a significant pattern of hypomethylation across 

all candidate genes (COL1A1, COL1A2, COL3A1, 

and FN1) in GC samples compared to the control 

group (Figure 11A). Furthermore, the ROC curves 

were generated for COL1A1 (AUC: 1.0, p-value < 

0.05), COL1A2 (AUC: 1.0, p-value < 0.05),  

COL3A1 (AUC: 1.0, p-value < 0.05), and FN1 (AUC: 

1.0, p-value < 0.05) based on their methylation  

levels (Figure 11B). These ROC curves demonstrated 

significant diagnostic potential with high AUC values 

of 1.0, indicating excellent discriminatory power. 

Additionally, the ROC curves exhibited remarkable 

sensitivity and specificity in distinguishing between 

GC and controls (Figure 11B). 

 

Drug prediction analysis 

 

The management of GC often involves medical 

treatment as the primary approach. Therefore, the 

careful selection of suitable candidate drugs becomes 

essential. In this current investigation, we utilized the 

DrugBank database to explore potential therapeutic 

drugs for GC, focusing on the identified hub genes 

(COL1A1, COL1A2, COL3A1, and FN1) as potential 

targets for treatment. Notably, our investigation yielded 

two important drugs deemed suitable for the treatment 

of GC with respect to identified hub genes, namely 

Acetaminophen and Cytarabine (Table 1). 

 

Functional verification of the in vitro and in vivo 

roles of COL1A1, COL1A2, COL3A1, and FN1 in 

GC 

 

The COL1A1, COL1A2, COL3A1, and FN1 genes 

work synergistically to regulate processes such as cell 

migration, invasion, and tissue remodeling. Therefore, 

the simultaneous silencing of COL1A1, COL1A2, 

COL3A1, and was carried out in AGS cells using 

siRNA to analyze their functional synergetic impact on 

 

 
 

Figure 9. This figure showcases the gene enrichment and miRNA prediction analyses of COL1A1, COL1A2, COL3A1, and FN1. 
(A) Displays the associated cellular component (CC) terms. (B) Illustrates the associated molecular function (MF) terms. (C) Presents the 
associated biological process (BP) terms. (D) Shows the associated Kyoto Encyclopedia of Genes and Genomes (KEGG) terms. (E) Exhibits a 
protein-protein interaction (PPI) network of COL1A1, COL1A2, COL3A1, and FN1 along with their associated 40 miRNAs. (F) Demonstrates 
another PPI network of these genes and 40 miRNAs, highlighting the most significant miRNA (has-miR-29b-3p) in the network. P-value < 0.05. 
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the different parameters. The silencing efficiency was 

checked with the help of RT-qPCR. As shown in  

Figure 12A, reduced expression of COL1A1, COL1A2, 

COL3A1, and FN1 was observed in transfected AGS 

cell as compared to control AGS cells (Figure 12A). 

Further assessments, via CCK-8 assays and colony-

forming assays, indicated that the knockdown of 

COL1A1, COL1A2, COL3A1, and FN1 led to a 

reduction in cellular proliferation when compared to the 

control AGS cells (Figure 12B–12D). 

 

 
 

Figure 10. This figure depicts the relative expression and receiver operating characteristic (ROC) curve analysis of COL1A1, 
COL1A2, COL3A1, and FN1 in Pakistani gastric cancer (GC) patients and normal controls. (A) Presents the relative expression 

analysis of these genes in Pakistani GC patients and control samples via RT-qPCR. (B) Shows the ROC curves based on RT-qPCR expression of 
COL1A1, COL1A2, COL3A1, and FN1. A significance level of P < 0.05 was utilized as the selection criteria. P-value < 0.05. 
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DISCUSSION 
 

In this study, we initially integrated three microarray 

expression profiles obtained from the GEO database, 

leading to the identification of 83 DEGs between GC 

and normal gastric tissues, with 41 up-regulated and  

42 down-regulated genes. Subsequently, utilizing the 

degree and MCC methods, we designated COL1A1, 

COL1A2, COL3A1, and FN1 as hub genes, which 

exhibited significant up-regulation in GC. Furthermore, 

 

 
 

Figure 11. Targeted bisulfite sequencing-based methylation level exploration and receiver operating characteristic (ROC) 
curve analysis of the hub genes, including COL1A1, COL1A2, COL3A1, and FN1 in Pakistani gastric cancer (GC) patients 
and normal controls. (A) Beta value-based methylation analysis of COL1A1, COL1A2, COL3A1, and FN1 in Pakistani GC patients and 

control samples, and (B) targeted bisulfite sequencing-based ROC curves of the COL1A1, COL1A2, COL3A1, and FN1 methylation level. 
P-value < 0.05. 
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Table 1. DrugBank-based DEGs-associated drugs. 

Sr. no Hub gene Drug name Effect Reference Group 

1 COL1A1 
Acetaminophen 

Decrease expression of COL1A1 mRNA 
A20418 

Approved 
Cytarabine A20508 

2 COL1A2 
Acetaminophen 

Decrease expression of COL1A2 mRNA 
A20418 

Approved 
Cytarabine A20508 

3 COL3A1 
Acetaminophen 

Decrease expression of COL3A1 mRNA 
A20418 

Approved 
Cytarabine A20508 

4 FN1 
Acetaminophen 

Decrease expression of FN1 mRNA 
A20418 

Approved 
Cytarabine A20508 

 

we validated the expression of these hub genes on 

additional GC datasets from TCGA and clinical samples 

collected from Pakistani GC patients. The expression 

validation analysis further confirmed the significant up-

regulation of COL1A1, COL1A2, COL3A1, and FN1 in 

GC patients compared to controls. 

 

COL1A1, encoding the alpha-1 chain of collagen  

type I, plays a critical role in the extracellular  

matrix (ECM) and is essential for maintaining tissue 

integrity and strength [33]. This protein is known  

to be involved in cell adhesion, migration, and 

proliferation, making it a key player in various 

biological processes [34]. Dysregulation of COL1A1 

has been implicated in tumorigenesis and cancer 

progression in multiple malignancies. Research has 

demonstrated the significance of COL1A1 in different 

cancers. For instance, in breast cancer, up-regulated 

COL1A1 has been associated with tumor growth, 

invasion, and metastasis, promoting a pro-tumorigenic 

microenvironment [35]. Similarly, in pancreatic 

cancer, higher expression of COL1A1 has been found 

to enhance tumor cell proliferation and migration [36]. 

In hepatocellular carcinoma, overexpressed COL1A1 

contributes to tumor progression and metastasis by 

modulating the tumor microenvironment [37]. In lung 

cancer, COL1A1 higher expression has been linked  

to tumor invasiveness and poor patient prognosis [38]. 

 

COL1A2, which codes for the alpha-2 chain of collagen 

type I, plays a critical role as a fundamental building 

block in the extracellular matrix (ECM), ensuring the 

integrity and strength of various tissues [39]. Like 

COL1A1, COL1A2 is involved in various cellular 

processes, including cell adhesion, migration, and 

proliferation, making it an important player in cancer

 

 
 

Figure 12. Knockdown of COL1A1, COL1A2, COL3A1, and FN1 impairs the growth and metastatic potential of gastric cancer 
(GC) cells (AGS). (A) The transfection efficiency of si-COL1A1, si-COL1A2, si-COL3A1, and si-FN1 was checked with the help of RT-qPCR, 
(B) AGS control and transfected cells were analyzed proliferation, (C, D) colony formation. 
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biology [40]. Emerging research has shed light on the 

role of COL1A2 in different cancer types. For example, 

in breast cancer, up-regulation of COL1A2 has been 

associated with increased tumor invasiveness and 

metastasis [41]. In GC, COL1A2 has been identified  

as a potential biomarker for tumor progression and 

prognosis [42]. Moreover, in lung cancer, COL1A2 

expression has been linked to tumor growth and 

metastasis [43]. In ovarian cancer, COL1A2 has been 

associated with tumor cell proliferation and migration 

[44]. In colorectal cancer, COL1A2 has been found  

to play a role in tumor invasion and metastasis [45]. 

Taken together, the evidence highlights the importance 

of COL1A2 in various cancers, with its dysregulation 

contributing to tumor aggressiveness and metastasis. 

 

COL3A1, encoding the alpha-1 chain of collagen type 

III, is an essential component of the extracellular matrix 

(ECM) that provides structural support and elasticity  

to tissues [46]. Research has highlighted the role of 

COL3A1 in various cancer types. Such as, in colorectal 

cancer, elevated COL3A1 expression has been associated 

with tumor growth, progression, and metastasis, 

indicating its potential as a prognostic marker [47, 48]. 

Similarly, in ovarian cancer, overexpressed COL3A1  

has been found to promote tumor cell migration and 

invasion, contributing to disease aggressiveness [49]. 

Moreover, in hepatocellular carcinoma, higher expression 

of COL3A1 has been implicated in tumor growth and 

angiogenesis, affecting patient prognosis [50]. These 

studies underscore the significance of COL3A1 in cancer 

biology and highlight its potential as a therapeutic target 

and diagnostic marker. 

 

FN1 encodes for a significant glycoprotein responsible 

for cell adhesion, migration, and tissue remodeling, 

playing a crucial role in these processes [51]. FN1 

interactions with various components of the extra-

cellular matrix (ECM) are essential for facilitating cell-

matrix interactions and maintaining tissue organization 

[52]. Studies have provided valuable insights into the 

diverse role of FN1 in different cancer types. In breast 

cancer, elevated FN1 expression has been linked to 

tumor invasiveness and metastasis, contributing to  

poor patient outcomes [53]. Similarly, in pancreatic 

cancer, FN1 has been associated with tumor progression 

and resistance to therapy, indicating its potential as  

a therapeutic target [54]. Moreover, in GC, FN1 over-

expression has been correlated with tumor aggressiveness 

and lymph node metastasis, suggesting its significance 

as a prognostic biomarker [55]. 

 

During present study, we observed hypomethylation  
of COL1A1, COL1A2, COL3A1, and FN1 promoter 

regions in GC. Previous studies have also reported 

dysregulation of COL1A1, COL1A2, COL3A1, and 

FN1 promoter methylation in various cancers. 

Hypermethylation of the promoters has been linked to 

the down-regulation of these genes in breast, gastric, 

and colorectal cancers, contributing to tumor growth 

and invasion [56–59]. Conversely, hypomethylation of 

these genes has been observed in ovarian and lung 

cancers, leading to their overexpression and association 

with aggressive tumor phenotypes [60, 61]. 

 

Survival analysis of COL1A1, COL1A2, COL3A1, and 

FN1 in GC patients revealed the relevance of these genes 

with poor OS. Earlier studies have also reported the 

association of COL1A1, COL1A2, COL3A1, and FN1 

expression with OS in different other cancer patients. 

For example, in breast cancer, high expression of 

COL1A1 has been associated with worse OS and distant 

metastasis [40]. In lung cancer, increased COL1A2 

expression has been correlated with poorer OS and 

advanced tumor stage [62]. Similarly, up-regulation of 

COL3A1 and FN1 has been linked to unfavorable OS  

in stomach and ovarian cancers, respectively [63, 64]. 

 

Additionally, the results of this study emphasized that 

hsa-miR-29b-3p is a shared regulator of COL1A1, 

COL1A2, COL3A1, and FN1 expression. Dysregulation 

of this miRNA may play a role in the abnormal 

expression of COL1A1, COL1A2, COL3A1, and FN1, 

potentially contributing to the observed alterations in 

their expression levels. The hsa-miR-29b-3p has been 

implicated in tumorigenesis and cancer progression in 

different cancer types. For instance, in breast cancer, 

overexpressed hsa-miR-29c-3p has been shown to 

inhibit tumor cell migration and invasion by targeting 

specific genes involved in metastasis [65]. In GC, up-

regulated hsa-miR-29c-3p has been reported to suppress 

tumor growth and induce apoptosis, indicating its tumor-

suppressive function [66]. Conversely, in colorectal 

cancer, elevated hsa-miR-29c-3p has been found to 

promote cancer cell proliferation and invasiveness, 

suggesting an oncogenic role in this context [67]. 

 

The study presents valuable insights into GC through 

comprehensive analysis of gene expression profiles. 

Despite its strengths, including multi-database integration 

and identification of key hub genes, several limitations 

warrant consideration. The relatively small sample size 

and heterogeneity across datasets may limit result 

generalization. Additionally, biological variability and 

confounding factors were not fully addressed, potentially 

impacting result accuracy. Moreover, validation methods 

primarily focused on in silico and in vitro analyses, 

lacking extensive clinical validation. Lastly, the study’s 

single-omics approach overlooks other molecular layers 
crucial for a holistic understanding of GC. Addressing 

these limitations in future research could enhance the 

study’s clinical relevance and translational impact. 
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CONCLUSION 
 

This extensive investigation, combining experimental 

analyses and computational approaches, enabled the 

identification of DEGs linked to GC. Among these 

DEGs, four promising biomarkers (COL1A1, COL1A2, 

COL3A1, and FN1) were discovered, demonstrating 

potential diagnostic and prognostic implications in GC. 

Additionally, these genes hold promise as therapeutic 

targets for the treatment of GC, presenting new 

opportunities for targeted interventions. 
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