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ABSTRACT

T cells are the key to killing tumor cells. However, the exact mechanism of their role in cancer is not fully
understood. Therefore, a comprehensive understanding of the role of T-cell proliferation regulatory genes in
tumors is needed. In our study, we investigated the expression levels of genes controlling T-cell proliferation,
their impact on prognosis, and their genetic variations. Additionally, we explored their associations with TMB,
MSI, ESTIMATEScore, ImmuneScore, StromalScore, and immune cell infiltration. We examined the role of these
genes in cancer-related pathways using GSEA. Furthermore, we calculated their activity levels across various
types of cancer. Drug analysis was also conducted targeting these genes. Single-cell analysis, LASSO Cox model
construction, and prognosis analysis were performed. We observed distinct expression patterns of T-cell
proliferation regulatory genes across different malignant tumors. Their abnormal expression may be caused
by CNA and DNA methylation. In certain cancers, they also showed complex associations with TMB and
MSI. Moreover, in many tumors, they exhibited significant positive correlations with ESTIMATEScores,
ImmuneScore, and StromalScore. Additionally, in most tumors, their GSVA scores were significantly positively
correlated with various T-cell subtypes. GSEA analysis revealed their involvement in multiple immune
pathways. Furthermore, we found that model scores were associated with patient prognosis and related to
tumor malignancy progression. T-cell proliferation regulatory genes are closely associated with the tumor
immune microenvironment (TIM), especially T cells. Targeting them may be an essential approach for cancer
immunotherapy.
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INTRODUCTION

Solid tumors are highly complex tissues that
contain highly heterogeneous cancer cells and a tumor
microenvironment (TME) composed of immune cells,
stromal cells, blood vessels/lymphatics, nerve endings,
and extracellular matrix (ECM). Among them, various
signaling molecules act as immunomodulatory micro-
environments to continuously reshape local immunity.
The tumor immune microenvironment (TIME) is an
immune system composed of different cell groups
and their interactions in the TME ecological niche.
It has been suggested to play a key role in cancer
development, progression, and therapeutic response [1—
3]. T cells of the immune system play a crucial role in
identifying and eliminating cells that pose a threat to the
body, such as infected and cancerous cells [4]. The
ultimate goal of tumor immunotherapy is to eradicate
cancer cells. CD8+ cytotoxic T lymphocytes (CTL) are
vital immune surveillance cells and their abundant
presence in tumor tissues serves as a positive prognostic
indicator. Increasing the proportion of CTL with killing
function in patients’ tumor tissues can help inhibit
tumor progression or even achieve complete elimination
[5, 6].

In patients with chronic infections and cancer, T
cells undergo continuous stimulation due to prolonged
exposure to persistent antigens and inflammation. This
persistent stimulation leads to the exhaustion of T
cells, resulting in the loss of their effector functions
and the absence of memory T cell characteristics. This
state is referred to as T cell exhaustion [7, 8]. CD8+ T
cells are key mediators of cytotoxic effector function in
infection, cancer, and autoimmunity. Persistent exposure
to antigens and activating signals (e.g. chronic viral
infections or cancer), or lack of support from CD4+ T
cells and immune-supporting cytokines, among others,
will lead to differentiation of CD8+ T cells into failing
T cells [9]. This is a progressive differentiation process
controlled by specific transcriptional mechanisms,
gene expression profiles, metabolic alterations, and
epigenetic background. In addition, immunomodulatory
cells such as regulatory T cells, tumor-associated
macrophages, and dendritic cells can regulate T cell
immune response and promote T cell failure through
the production of immunosuppressive metabolites and
the depletion of immune support nutrients [10-14].
Coordination of these immunomodulatory cells and
tumor cells in TME can impose metabolic stress on
tumor-infiltrating lymphocytes (TIL), thereby eliminating
the anti-tumor response of T cells. In most solid tumors,
the presence of a high number of infiltrating CD8+
T cells is beneficial for tumor treatment [15-17].
However, in the case of RCC (renal cell carcinoma), a
high infiltration of CD8+ T cells is associated with a

poor prognosis [18]. Treg (regulatory T cells) are a
subset of CD4+ T cells that have immunosuppressive
properties and play a crucial role in maintaining self-
tolerance and immune homeostasis. In the context of
tumor immunity, Treg hinders the immune surveillance
of cancer in healthy individuals and suppresses the anti-
tumor immune responses of the host. Consequently, this
leads to tumor progression in various types of cancer
[19, 20]. Foxp3+ regulatory T cells (Treg) promote
tumor immune escape by forming a suppressive tumor
microenvironment. Therefore, strategies targeting Treg
may help to enhance the efficacy of immune checkpoint
blockade (ICB) against cancer [21]. There are significant
molecular differences between yd T cells in the normal
intestinal epithelium and y6 T cells in CRC tumors,
and they play opposite roles in CRC progression - y6 T
cells in normal epithelial tissue play an anti-tumor role,
while v6 T cells enriched in tumors mostly “defect” as
cancer pushers, and this contrasting cellular function is
associated with changes in the T cell receptors used [22].
Further research is needed to explore the functional
role of T cells in the tumor microenvironment and their
underlying mechanisms, particularly in different cancer

types.

Thanks to advances in bioinformatics, researchers have
recently screened a variety of regulatory genes that
promote or inhibit T cell function through the over-
expression of a large-scale genome-wide open reading
frame library, which has recently been published in
Nature. These genes increase the proliferation of human
CDA4+ and CD8+ T cells and activate the secretion of
key cytokines, providing new strategies to optimize and
improve T cell therapy. In this study, we conducted a
systematic analysis of T cell proliferation regulators
and their impact on the prognosis of cancer patients.
Additionally, we investigated the genomic and epigenetic
alterations associated with these regulators. We also
investigated their relationship with the immune micro-
environment, cancer-related pathways, and especially
immune-related pathways. We also investigated the
drugs that can act on them. Finally, single-cell analysis,
LASSO Cox model construction and prognostic analysis
were performed.

RESULTS
Expression and survival analysis results

We included twenty cancers with paired normal and
tumor samples from the TCGA database for our
analysis. Through differential analysis of the expression
levels of T-cell proliferation-related genes, we observed
that CALML3 exhibited the highest expression levels in
LUSC and CESC (Figure 1A). Figure 1B shows that the
most functional T-cell proliferation-related genes, LTBR,
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have low expression in KICH and LIHC and high in 18
other cancers. Using genes with FoldChange >1 and
adjusted P-values less than 0.05 as truncation criteria,
we found that T-cell proliferation-associated genes were
mostly significantly high-expressed (Figure 1C). We also
identified the relationship between T-cell proliferation-
related genes and survival in cancer patients and found
that they play a protective or risk factor (Figure 1D).

Genetic analysis
By examining SNP data, we identified the frequency

and type of mutations of T-cell proliferation-associated
genes in each cancer subtype. Figure 2A shows that

AHNAK had the highest mutation frequency in most
cancers, and the remaining T cell proliferation-
related genes had lower mutation frequencies in most
cancers. The SNV percentage analysis showed that the
top 3 mutated genes were AHNAK, LIG3, and B2M,
where the mutation percentages were 28%, 6%, and
5%, respectively (Figure 2B). Using the cBioPortal
database (Figure 3A), we found that the types of genetic
variants in T-cell proliferation-associated genes were
mainly Amplification and Missense Mutation (unknown
significance). To further investigate the genetic
abnormalities of T-cell proliferation-related genes in
cancer, we examined the percentage of SCNA. The
results indicated that SCNA frequently occurred in most
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Figure 1. Expression and prognostic analysis. (A) The gene expression of T cell proliferation regulatory genes in cancers. (B) Box plots
showing the expression distribution of LTBR across tumor and normal samples. (C) Histogram (upper panel) shows the number of
significantly differentially expressed genes, and the heatmap shows the fold change and FDR of T cell proliferation regulatory genes in each
cancer. (D) Summary of the correlation between expression of T cell proliferation regulatory genes and patient survival.
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cancer types, with frequencies exceeding 5% of all
samples (Figure 3B). As CNA plays a crucial role in
regulating gene expression in tumors, we assessed the
impact of CNA on gene expression. Pearson correlation
analysis was conducted between gene expression and
copy number using the masked copy number fragment
from TCGA. The findings demonstrated significant

correlations between the expression of most T cell
proliferation-related genes and SCNA in various tumors
(Figure 3C). For instance, the expression of citrate
synthase (CS), involved in oxidative metabolism,
displayed a significant association with CNA across all
cancers. These results indicate that abnormalities in the
copy number of T-cell proliferation-related genes are
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Figure 2. SNV frequency and variant types of T cell proliferation regulatory genes. (A) Mutation frequency of T cell proliferation
regulatory genes. (B) SNV oncoplot. An oncoplot showing the mutation distribution of T cell proliferation regulatory genes and a

classification of SNV types.
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commonly observed in most cancers and can influence
gene expression. We observed that T-cell proliferation-
associated genes showed hypomethylation status in
most cancer types (Figure 3D). The correlation analysis
(Figure 3E) revealed a correlation between gene
expression and DNA methylation.
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Correlation analysis of T cell proliferation-related
genes with TMB and MSI

The correlation analysis (Figure 4A) demonstrated that
CDKI exhibited a positive correlation with 21 tumors
and a negative correlation with one tumor. On the other
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Figure 3. Genomic and epigenetic alterations. (A) Type of genetic variation. (B) The frequency of somatic copy number alterations. (C)
The correlation between somatic copy number alterations and the expression of genes. (D) Differential methylation of genes in cancers. (E)

The correlation of gene expression and promoter methylation.
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hand, CXCL12 displayed a negative correlation with
18 tumors and a positive correlation with one tumor.
Regarding the correlation of T cell proliferation-related
genes with MSI (Figure 4B), MRPL15 was positively
correlated with 14 tumors, while negatively correlated
with one tumor. The correlation between StromalScore
and T cell proliferation-related genes showed (Figure
5A) that NGFR, ITM2A, IL1RN, IL12B, HLA-A,
CRLF2, CXCL12, CYP27Al, CD19, B2M, BATF,
and ADA were significantly positively correlated in
most tumors with StromalScore; ZNF830, LIG3, LTBR,
MRPL18, MRPL51, HOMER1, GPN3, CDK1, CDK2,
and AHCY were significantly richly correlated with
StromalScore in most tumors. The correlation analysis
of ImmnueScore showed (Figure 5B) that 1L12B,
ILIRN, ITM2A, HLA-A, CRLF2, CXCL12, CYP27A1,
CD19, B2M, BATF, and ADA were significantly
positively correlated with ImmnueScore of most tumors;
ZNF830, RAN, NFYB, MRPL18, LTBR, LIGS,
HOMER1, GPN3, CDK2, CDK1, and AHCY were
significantly negatively correlated with ImmnueScore
of most tumors. In terms of ESTIMATEScore
(Figure 5C), ITM2A, 1L12B, IL1RN, HLA-A, CLIC1,
CRLF2, CXCL12, CYP27A1, CD19, B2M, BATF, and
ADA were significantly positively associated with
ESTIMATEScore; ZNF830, RAN, MRPL51, MRPL18,
LTBR, LIG3, HOMER1, GPN3, CDK2, CDK1, ATF6B,
and AHCY were significantly negatively associated
with ESTIMATEScore. The results of the correlation
between T cell proliferation-related genes GSVA
score and immune cells showed (Figure 5D) that Trl,
Th2, Thl, Tfh, NK, MAIT, Macrophage, Exhausted,
Gamma_delta, InfiltrationScore, iTreg, DC, Cytotoxic,
Central_memory, and CD8 T were significantly
positively associated with GSVA scores in most tumors;
Th17, Neutrophil, Effector_memory, CD8_ naive, and
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CD4 _naive were significantly negatively associated with
GSVA scores of T cell proliferation-related genes in most
tumors. These results suggest that T-cell proliferation-
related genes and tumor immune microenvironment are
closely related.

Enrichment analysis

In the hallmark gene sets, T cell proliferation-
associated genes were associated with immune-related
pathways, like especially tnfa signaling via nfkb,
kras signaling up, and interferon gamma response
(Figure 6). We observed a robust positive association
between immunological pathways and genes involved
in T-cell proliferation. Therefore, we further showed
the enrichment of each T cell proliferation-related
gene in the immune-related pathways of each tumor,
including il2 stat5 signaling (Figure 7A), il6 jak stat3
signaling (Figure 7B), inflammatory response (Figure
7C), interferon alpha response (Figure 7D), interferon
gamma response (Figure 7E), and tnfa signaling via
nfkb (Figure 7F).

Activity score and drug sensitivity analysis

T cell proliferation regulatory gene activity scores
increased in CESC, BRCA, UCEC, BLCA, COAD,
STAD, CHOL, LIHC, KIRP, READ, PRAD, and ESCA
and decreased in KIRC, THCA, LUAD, HNSC, LUSC,
GBM, and KICH (Figure 8A). Based on the results of
the GDSC database (Figure 8B) and the CTRP database
(Figure 8C), we identified multiple drugs that can act
simultaneously on T cell proliferation regulatory genes.
T-cell proliferation regulatory genes have dual effects
on these drugs, such that high gene expression can lead
to increased resistance or sensitivity to the drug.

Correlations of T cell proliferation regulatory genes with MSI
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Figure 4. Correlation analysis. Correlation analysis of T cell proliferation regulatory genes with TMB (A) and MSI (B).
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Single-cell analysis

By integrating single-cell datasets, we analyzed the
correlation between T-cell proliferation regulatory
genes and cancer-related functional states (Figure 9A),
and found that there was a correlation between T-cell
proliferation regulatory genes and different cancers and
functional states. Figure 9B-9E shows the correlation
between T-cell proliferation regulatory genes and cancer-
related functional states in BRCA, Glioma, HNSCC,
and LUAD, respectively.

Identification of 16 T-cell proliferation regulatory
genes signature in pan-cancer

In the TCGA pan-cancer training dataset, a LASSO
regression analysis was conducted using 51 initial

biomarkers of T cell proliferation regulatory genes
(Figure 10A). This analysis identified 16 genes with
non-zero correlation coefficients. To remove genes with
similar expression patterns, the remaining 16 genes
were selected for further model construction. Cox
regression analysis was subsequently conducted on the
set of 16 genes (Figure 10B). Subsequently, correlation
analysis revealed that certain genes exhibited similar
expression patterns (Figure 10C).

Panorama of T-cell proliferation regulatory genes
score in cancers

In the pan-cancer context, Figure 11A illustrates the
scoring of T-cell proliferation regulatory genes.
Univariate Cox regression analysis was performed on
both the pan-cancer training cohort (Figure 11B) and
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test cohort (Figure 11C) to evaluate the influence
of T-cell proliferation regulatory gene scores on
different predictive and prognostic outcomes. The
results demonstrate a significant association between
higher T-cell proliferation regulatory gene scores and
adverse prognosis across most cancer types. Based on
whether the T-cell proliferation regulatory gene score
exceeded the population median, patients in the TCGA
training cohort were classified into high-risk or low-risk
groups. Compared to the low-risk group, pan-cancer
patients with higher T-cell proliferation regulatory gene
scores showed correlations with various unfavorable
survival indicators, including DSS (Figure 11D), OS
(Figure 11E), and PFI (Figure 11F). To examine the
effectiveness and universality of this signature, the
predictive role of T-cell proliferation regulatory gene
scores was first validated in the pan-cancer test cohort.
Consistent with the results obtained from the training
cohort, the survival analysis of patients in the test cohort

demonstrated an association between higher T-cell
proliferation regulatory gene scores and poorer
prognosis (Figure 11G-11l). Furthermore, it was
observed that T-cell proliferation regulatory gene scores
exhibited significant correlation for the prognosis of
patients with ACC (Figure 12A), KIRC (Figure 12B),
LGG (Figure 12C), and LUAD (Figure 12D).

T-cell proliferation regulatory genes signature and
malignant features of tumors

During the process of normal cell transformation into a
malignant state, rapid proliferation, active epithelial-
mesenchymal transition (EMT), and angiogenesis are
acquired, all of which are hallmarks of cancer [23].
To examine the association between the characteristics
of T-cell proliferation regulatory genes and malig-
nant traits, we quantified the tumor’s capacities in
promoting T-cell proliferation, angiogenesis, EMT, and
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Figure 6. Gene set enrichment analysis in hallmark gene set.
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cell cycle using the z-score algorithm. A significant
correlation was observed between the z-scores of T-
cell proliferation regulatory genes and both EMT and
cell cycle z-scores in the entire TCGA pan-cancer
cohort (Figure 13A-13C) or across most tumor types
(Figure 13D-13F).

Enrichment analysis results for high and low risk
groups

GO (Gene Ontology) and KEGG (Kyoto Encyclopedia
of Genes and Genomes) analyses were conducted to
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Down-regulated differentially expressed genes were
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and secretion, synapse organization, regulation of trans-
synaptic signaling, modulation of chemical synaptic
transmission (Figure 14B).
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Figure 7. Gene set enrichment analysis. T cell proliferation regulatory genes in il2 stat5 signaling (A), il6 jak stat3 signaling (B),
inflammatory response (C), interferon alpha response (D), interferon gamma response (E), and tnfa signaling via nfkb (F).
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Experimental verification

We investigated the expression of LTBR in normal cell
line (293T) and cancer cell lines (SW480, Caco-2,
SCC25, NH4) by employing gPCR. The results of the
study showed that LTBR was expressed at a higher
level in cancer cell lines compared to normal cell line

(Figure 15A-15D).

DISCUSSION

The development of target genes and drugs that act
on T cells is an effective way to treat a variety of
cancers. Understanding the role of T-cell proliferation
regulatory genes in cancer is crucial for comprehending
tumorigenesis and identifying potential targets for
clinical therapy. Through comprehensive analysis of
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Figure 8. Activity and drug analysis. (A) Activity of T cell proliferation regulatory genes in different tumors. (B) Drug sensitivity from

GDSC. (C) Drug sensitivity from CTRP.
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multiple datasets, we have conducted a systematic
investigation into T-cell regulators. Our findings not only
shed light on diverse potential mechanisms involving
T-cell regulatory genes in cancer but also identify
their associations with cancer pathways, providing
preliminary insights into the overall landscape of T-cell
proliferation regulatory genes in cancer.

Genes do not function in isolation and can cooperate in
the context of cancer thereby mediating tumorigenesis
and progression. Therefore, we investigated the common
features of gene alteration and expression correlations
among T cell proliferation regulatory genes. 37 T-cell
regulatory genes, comprising both positive and negative

regulatory genes for T-cell proliferation, were found
in this study. PPl and functional similarity analysis
indicated that these genes have some commonality in
interconnectivity and function. In addition, some genes
are located at the same chromosomal loci. Most T-cell
proliferation regulatory genes are aberrantly expressed
in different tumor types, while frequent CNA and
differential DNA methylation play an important role.
The results of our genetic investigation showed that T-
cell regulatory genes had copy number variations often.
Expression analysis of T-cell proliferation regulatory
genes confirmed that copy number changes were
positively correlated with expression, suggesting that
copy number changes may affect the expression of T-cell
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Figure 9. Single-cell analysis. The correlation between T-cell proliferation regulatory genes and cancer-related functional states (A). The
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proliferation regulators at times, which in turn promotes
tumorigenesis. Epigenetic analysis has shown that
aberrant methylation of genes mediates their altered
expression and positively correlates methylation levels
with expression. Epigenetic analysis has shown that
aberrant methylation of genes mediates their altered
expression and positively correlates methylation levels
with expression. Hence, we propose the hypothesis that
genetic and epigenetic alterations in T-cell proliferation
regulatory genes may induce T-cell dysfunction and
contribute to tumorigenesis under specific conditions.
Several known biomarkers, including patient age, tumor
type, and TMB, are positively correlated with immune
checkpoint blockade (ICB) response. Among them,
TMB is the most well-established marker for predicting
ICB response [24]. We also investigated the correlation
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are associated with multiple cancer pathways, especially
immune-related pathways. The interactions that occur
between T cells and tumor necrosis factor (TNF)-TNF

cell types are essential for T cell function [25].
Tumor necrosis factor must be activated by CDA40-
CDA40L in order to stimulate dendritic cells that produce
nitric oxide synthase during T cell treatment [26]. CD4+

receptors expressed by other immune and non-immune
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Figure 11. Prognostic performance of the 16 T-cell proliferation regulatory genes score. (A) Score of T-cell proliferation
regulatory genes in pan-cancer. The forest map shows the effects of T cell proliferation regulatory genes score on various predictors of
prognosis in the pan-cancer train cohorts (B) and the test cohorts (C), respectively. T cell proliferation regulatory genes score survival
analysis in the pan-cancer train cohorts, including DSS (D), OS (E), and PFI (F). T cell proliferation regulatory genes score survival analysis in

the pan-cancer test cohorts, including DSS (G), OS (H), and PFI (1).
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T cells alter tumor metabolism leading to enhanced
TNF-a-dependent oxidative stress and tumor cell death
[27]. One powerful T-cell effector mechanism that can
eliminate antigen-negative tumor cells is TNF-mediated
bystander death [28]. The primary producers of IFN-y
are T cells, NK cells, and NK T cells [29]. Regulatory T

ACC mu Saverign o Low

(Treg) cells promote macrophage srebpl-dependent
tumor metabolic adaptations by inhibiting CD8 T cell-
derived interferon-y [30]. Galactose lectin-3 reduces
chemokine production and T-cell tumor infiltration by
trapping interferon-y in the tumor stroma [31]. IFNa
reprograms glucose metabolism in the HCC tumor
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Figure 12. Survival analysis of T cell proliferation regulatory genes score in ACC (A), KIRC (B), LGG (C), and LUAD (D), including OS, DSS,

and PFI.
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microenvironment, thereby releasing the cytotoxic
capacity of T cells and enhancing the immune response
induced by PD-1 blockade [32]. PD-L1 antibodies
combined with IFNa enhance tumor targeting and

Figure 13. The correlation between T cell proliferation regulatory genes score and malignant features in the pan-cancer cohort (A—C) or
most tumor types (D—F).

antigen presentation while counteracting innate or T-
cell-driven upregulation of PD-L1 within the tumor
[33]. NLRC5 plays a protective role for T lympho-
cytes against NK cell-mediated elimination during
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inflammatory conditions [34]. Specific targeting
of CD163 TAMs (tumor-associated macrophages)
mobilizes inflammatory monocytes and facilitates T
cell-mediated tumor regression [35]. In the TIM, the
IL-6/JAK/STATS3 signaling pathway drives tumor cell
proliferation, survival, invasion, and metastasis, while
concurrently suppressing anti-tumor immune responses
[36]. Epidermal growth factor receptors regulate both
PD-L1 expression and cell proliferation in NSCLC
through the IL-6/JAK/STAT3 signaling pathway [37].
IL-2-STAT5 signaling is dependent on Mstl1-Mst2
function to maintain a stable Treg cell pool and immune
tolerance [38]. IL-2 signaling activates the STAT5-
TPH1 pathway, which promotes 5-HTP production and
subsequently triggers CD8+ T-cell depletion [39]. These
findings indicate that T-cell proliferation regulatory
genes interact with cancer immunity signaling path-
ways, potentially playing a role in suppressing tumor
progression and enhancing survival across multiple
cancer types.

To expand the range of drugs available for
immunotherapy, we searched for targeted drugs that
could act on genes regulating T cell proliferation.
Panobinostat blocked the Akt/FOXML1 signaling pathway
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to inhibit gastric cancer cell proliferation and metastasis
[40]. The combination of panobinostat and olaparib
demonstrated synergistic effects, including reduced tumor
burden and proliferation, increased tumor apoptosis and
DNA damage, enhanced infiltration of CD8+ T cells
into the tumor, and decreased expression of m2-like
macrophage markers [41]. Panobinostat, an inhibitor of
histone deacetylase, enhances the efficacy of chimeric
antigen receptor T cells specifically in pancreatic cancer
[42]. Furthermore, belinostat has been approved by the
U.S. Food and Drug Administration for the treatment of
relapsed or refractory peripheral T-cell lymphoma [43].
Manumycin A treatment strongly affects bone marrow
mesenchymal stem cell-mediated T-cell proliferation
inhibition [44]. The combination of 5-carboxy-8-
hydroxyquinoline (I0OX1) and doxorubicin (DOX)
effectively enhanced T-cell infiltration and activity, while
reducing tumor immunosuppressive factors. This liposome
combination exhibited significant growth reduction in
various mouse tumors, including subcutaneous tumors, in
situ tumors, and lung metastases, and also provided long-
term immune memory against tumor rechallenge [45].
DOX has been shown to eliminate myeloid-derived
suppressor cells and enhance the efficacy of breast cancer
against pericyte metastasis [46]. Furthermore, during
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Figure 14. GO and KEGG analysis of differentially expressed genes in high and low risk groups. Enrichment analysis of up-
regulated differentially expressed genes (A) and down-regulated differentially expressed genes (B). Abbreviations: GO: gene ontology; BP:
biological processes; CC: cellular components; MF: molecular function; KEGG: Kyoto Encyclopedia of Genes and Genomes.
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therapeutic administration in cancer patients, DOX
promotes antitumor CD8 T-cell responses [47]. The
combination of a DOX prodrug with an erythrocyte
membrane-enveloped polymer nano-vaccine enhances
the immune response by upregulating the expression
of dendritic cells and cytotoxic T cells in lymph nodes.
This combination also increases cytokine secretion and
mitigates the immunosuppressive environment by
suppressing regulatory T cell expression [48]. Dox in
combination with IL-12 induces the expression of
NKG2D in CD8+ T cells in vivo, thereby enhancing
NKG2D+CD8+ T-dependent antitumor immune
surveillance [49]. Additionally, doxorubicin sensitizes
human tumor cells to killing by NK cells and T
cells through the enhancement of TRAIL receptor
signaling [50]. Adriamycin contributed significantly
to the enhancement of T-cell and IFN-y immunity
and also reduced the levels of immunosuppressive
tumor-associated macrophages (TAMS) in tumors [51].
In highly differentiated CD8+ T cells, upregulation
of miR-24 correlated with reduced DNA damage
response after etoposide treatment, making them
sensitive to apoptotic cell death [52]. HOXALl
knockdown LUAD cells enhanced CD8+ T cell
response and increased sensitivity to etoposide in
the high-risk group [53]. Mechanistically, teniposide
induces DNA damage in tumor cells and activates
innate immune signaling pathways such as NF-«xB
and the STING-dependent type | interferon signaling
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pathway. These pathways contribute to the activation
of dendritic cells and subsequent T-cell responses.
Moreover, teniposide synergizes with anti-PD1
therapy to enhance antitumor effects in diverse mouse
tumor models [54]. Decitabine inhibits cytotoxicity
of y& T cells by promoting KIR2DL2/3 expression
[55]. It also enhances tumor recognition by T cells
through upregulation of esophageal cancer MAGE-
A3 expression [56]. Furthermore, low doses of
decitabine not only confer enhanced and durable anti-
tumor potential to CAR-T cells through epigenetic
reprogramming but also promote anti-tumor T cell
responses by promoting T cell proliferation [57, 58].
Evodiamine (Isoevodiamine) suppresses non-small cell
lung cancer by promoting the elevation of CD8+ T cells
and concurrently downregulating the MUC1-C/PD-
L1 axis [59]. Piperlongumine, an immunosuppressant,
exerts a pro-oxidant effect in human T cells, leading to
a decrease in T17 and enhanced T differentiation [60].
17-AAG liposomes remodel the immunosuppressive
microenvironment, leading to substantial augmentation
of tumor-infiltrating T cells, decreased hypoxia levels,
and reduced expression of suppressor lymphocytes [61].
Moreover, an effective tumor-killing strategy utilizing
graphene oxide loaded with SNX-2112 and folic acid
for ultrafast LTPTT not only restores T-cell function but
also enhances natural immunity, actively contributing
to tumor eradication [62]. Therefore, we anticipate that
these drugs targeting T-cell proliferation regulatory
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Figure 15. Experimental validation. Enrichment analysis of up-regulated differentially expressed genes (A-D) gPCR results revealed

elevated levels of LTBR expression in cancer cell lines.
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genes have the potential to be ideal approaches for
cancer therapy. However, further clinical studies and
experimental research are needed to elucidate the
potential mechanisms of action of these drugs on T-cell
proliferation-regulated gene expression and their impact
on cancer development.

We developed high and low risk groups and prognostic
models based on genes regulating T cell proliferation.
Most tumor progression occurs in high-risk patients,
while low-risk patients have longer survival. We also
found that scores were significantly associated with
multiple malignant biological processes, including
angiogenesis, epithelial to mesenchymal transition, and
cell cycle, and enrichment analysis revealed relevant
functions and pathways between the high- and low-risk
groups, and also found that up-regulated differentially
expressed genes were significantly enriched in the
cell cycle. This study reveals a constitutive T-cell
proliferation-regulated gene score-related feature, which
contributes to the advancement of tumor research.
However, the model requires further clinical validation
and experimental exploration.

In conclusion, our study revealed expression and
genetic alterations of T-cell proliferation regulatory
genes in individual tumors. These genes are closely
associated with the immune microenvironment and T
cells. They participate in the activation of immune
pathways in cancer. Targeting these T-cell proliferation
regulatory genes may be an important approach to
carrying out immunotherapy on cancer patients.

MATERIALS AND METHODS
Gene acquisition and related information

In this study, 37 genes were defined as T-cell
proliferation regulatory genes, including interferon
lambda 2 (IFNL2), lymphotoxin beta receptor (LTBR),
interleukin 1 receptor antagonist (ILLRN), C-X-C motif
chemokine ligand 12 (CXCL12), cytokine receptor like
factor 2 (CRLF2), interleukin 12B (IL12B), nuclear
transcription factor Y subunit beta (NFYB), basic
leucine zipper ATF-like transcription factor (BATF),
FosB proto-oncogene, AP-1 transcription factor subunit
(FOSB), activating transcription factor 6 beta (ATF6B),
AHNAK nucleoprotein (AHNAK), solute carrier family
10 member 7 (SLC10A7), calmodulin like 3 (CALML3),
chloride intracellular channel 1 (CLIC1), RAN, member
RAS oncogene family (RAN), cyclin dependent kinase 2
(CDK2), membrane spanning 4-domains A3 (MS4A3),
cyclin dependent kinase 1 (CDK1), diazepam binding
inhibitor, Acyl-CoA binding protein (DBI), cytochrome
P450 family 27 subfamily A member 1 (CYP27A1),
Aldo-Keto reductase family 1 member C4 (AKR1C4),

DUPD1, glycerol-3-phosphate dehydrogenase 1 (GPD1),
GPN-Loop GTPase 3 (GPN3), adenosyl homocysteinase
(AHCY), adenosine deaminase (ADA), DNA ligase 3
(LIG3), integral membrane protein 2A (ITM2A), homer
scaffold protein 1 (HOMERZ1), mitochondrial ribosomal
protein L18 (MRPL18), mitochondrial ribosomal protein
L51 (MRPL51), zinc finger protein 830 (ZNF830), DNA
cross-link repair 1B (DCLRE1B), beta-2-microglobulin
(B2M), major histocompatibility complex, class I, A
(HLA-A), CD19 molecule (CD19), and nerve growth
factor receptor (NGFR) [63].

Expression and survival analysis

The pan-cancer expression matrix and survival data were
obtained from the Xena database (https://xena.ucsc.edu).
From tumors with available tumor and normal samples,
we extracted the expression levels of 37 T-cell
proliferation regulatory genes. Differential expression
analysis on these genes was conducted using the Limma
package [64]. We further demonstrated the expression
of LTBR, the most powerful functional gene among
37 T cell proliferation-related genes, in each tumor.
Differentially expressed genes (DEGSs) were determined
based on a threshold of FoldChange >1 and an adjusted
P-value (FDR) less than 0.05. The impact of T-cell
proliferation regulatory genes on patient prognosis was
investigated using Cox analysis.

Genetic analysis

Single nucleotide variation (SNV) data from the TCGA
database were collected for 33 cancers (n = 8,663). The
frequency (percentage) of SNV mutations in the coding
region of each gene was calculated by determining the
number of mutated samples out of the total tumor
samples. SNV waterfall plots were generated using the
mafTools R package. Genetic variant analysis of T-cell
proliferation-associated genes was performed using the
cBioPortal database (http://www.chioportal.org). Copy
number variation (CNV) data were obtained from the
Xena database, allowing for the analysis of somatic copy
number variation in T-cell proliferation-related genes
across different cancer types. Bar graphs were created
to visualize these findings. The correlation between
somatic cell copy number and gene expression of T-
cell proliferation-associated genes was simultaneously
calculated and displayed using point plots. The
methylation status of T-cell proliferation-related genes
in tumor and normal tissues was analyzed. The cor-
relation between the expression of T-cell proliferation-
related genes and promoter methylation was also
evaluated. The R package “IlluminaHumanMethylation-
450kanno.ilmn12.hg19” from BioConductor was utilized
to annotate the methylation probes for each gene
promoter. Wilcoxon signed rank order test was employed
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to identify significantly hypo- or hypermethylated
genes by comparing methylation levels in tumor and
normal tissues, with a P-value cutoff of 0.05. Pearson’s
correlation was calculated to assess the relationship
between transcript expression of T-cell proliferation-
related genes and the Beta value of promoter DNA
methylation. A correlation was deemed significant if the
P-value was < 0.05.

TMB, MSI and immuno-infiltration analysis

The correlation between T-cell proliferation-related
gene expression and tumor mutational burden (TMB) or
microsatellite instability (MSI) across various tumors in
the TCGA dataset was assessed using the Spearman
test. The results were visualized using the “ggplot2”
R package [65]. Additionally, the ESTIMATEScore,
ImmuneScore, and StromalScore were computed for
each tumor using the ESTIMATE algorithm, and the
correlation coefficients between T-cell proliferation-
related genes and these three scores were calculated
using the Spearman algorithm. Gene Set Cancer
Analysis can be used for immune infiltration analysis
of genes [66]. The Gene Set Variance Analysis (GSVA)
score, which reflects the overall genomic expression
level, is positively correlated with genome-wide
gene expression. Hence, a higher GSVA score in the
tumor group compared to neighboring groups indicates
elevated overall genome expression within the tumor
group. The GSVA scores were calculated using the R
package GSVA. Immunecell Al was employed to assess
immune cell infiltration. The association between
immune cell infiltration and genomic expression levels
was evaluated using Spearman correlation analysis,
represented by a correlation coefficient.

Enrichment analysis

To further explore the pathways by which T cell
proliferation-related genes affect tumors, we calculated
the fraction of T cell proliferation-related genes using
gene set variation analysis at the pan-cancer level.
Subsequently, based on the median scores, samples from
each tumor type were categorized into two groups. Gene
set enrichment analysis (GSEA) was then conducted to
examine the enrichment of T-cell proliferation-related
genes in immune-related pathways.

Analysis of T cell proliferation regulatory gene
activity and drug sensitivity

To examine the activity changes of T-cell
proliferation regulatory genes in different tumors, we
utilized ssGSEA to calculate the enrichment score (ES).
By subtracting the ES of T-cell proliferation negative
regulatory genes from the ES of T-cell proliferation

positive regulatory genes, we obtained an activity
score. The Gene Set Cancer Analysis incorporates drug
and gene expression information from two databases:
GDSC  (https://www.cancerrxgene.org) and CTRP
(https://portals.broadinstitute.org/ctrp/). GDSC includes
IC50 values for 265 small molecules across 860 cell
lines, along with corresponding mRNA gene expression
data. CTRP compiles IC50 values for 481 small molecule
drugs across 1001 cell lines, also accompanied by mRNA
gene expression information. Pearson correlation analysis
was performed to assess the correlations between gene
mRNA expression and drug IC50 values.

Single-cell analysis

The CancerSEA database (http://biocc.hrbmu.edu.cn/
CancerSEA/home.jsp) was utilized to explore the
correlation between T-cell proliferation regulatory
genes and 14 cancer-related functional states.
CancerSEA is a comprehensive website that allows
for the investigation of various functional states of
cancer cells at the single-cell level. It encompasses
14 cellular functional states, such as angiogenesis,
apoptosis, cell cycle, differentiation, DNA damage,
DNA repair, EMT, hypoxia, inflammation, invasion,
metastasis, proliferation, quiescence, and stemness.
By treating T cell proliferation-regulated genes as a
gene set, we performed single-cell analyses using site
default parameters.

Model construction and prognostic analysis

We randomly assign 70% of the samples as the training
set and the remaining 30% as the test set. Pan-cancer
samples were divided into training and test cohorts,
with T-cell proliferation regulatory genes serving as
the initial biomarkers for feature training. We set the
regularization of LASSO regression as a one-time SE
for the most concise model. The LASSO algorithm was
employed to identify prognosis-related genes. Then,
we analyze their correlations at the pan-cancer level.
Using a Cox proportional hazards regression model,
the impact of T-cell proliferation regulatory genes on
prognosis was assessed. Based on the median score of
these genes, patients were categorized into high-risk and
low-risk groups. The effects of these risk groups on
disease-specific survival (DSS), overall survival (OS),
and progression-free interval (PFI) were subsequently
evaluated. The effectiveness and universality of the
signature were validated in the test cohort.

Analysis of correlation between T-cell proliferation
regulatory genes score and malignant characteristics

To directly examine the association between the T-cell
proliferation regulatory gene score and malignant features,
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we utilized the z-score algorithm through GSVA
to quantify the tumor’s capabilities in promoting T-
cell proliferation, angiogenesis, EMT, and cell cycle.
Additionally, we analyzed the correlations between T-cell
proliferation regulatory gene score and these features.

Enrichment analysis of high and low risk groups

The patients were categorized into high-risk and low-risk
groups. Differential expression analysis using the limma
algorithm was conducted to identify genes that exhibited
differential expression between these two groups.
Subsequently, the clusterProfiler R package was employed
to perform functional enrichment analyses, including
GO and KEGG, on the differentially expressed genes.

Quantitative real-time PCR

To extract total RNA from cells, we employed TRIzol
reagent. Subsequently, cDNA synthesis was performed
using the PrimeScript RT Reagent Kit (TaKaRa, Japan).
Quantitative PCR analysis was carried out on the
Roche LightCycler 480 Il Real-Time PCR system
(Roche, Switzerland) with FastStart Universal SYBR
Green Master Mix (ROX). Gene expression levels were
assessed in three replicates. The gPCR experiments
utilized the following primers: Human LTBR: forward,
5'-GAAGGGTAACAACCACTGC-3";  reverse, 5'-
CTTGGTTCTCACACCTGGT-3". Human GAPDH:
forward, 5'-TCAAGATCATCAGCAATGCC-3’; reverse,
5-CGATACCAAAGTTGTCATGGA-3". The relative
gene expression levels were determined using the 24A¢t
method. All experiments were performed in triplicate.
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