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ABSTRACT 
 

The progression of atherosclerosis (AS), the pathological foundation of coronary artery disease (CAD), is 
featured by massive lipid deposition in the vessel wall. LncRNAs are implicated in lipid disorder and AS, 
whereas the specific role of lncRNA DANCR in atherogenesis remains unknown. Here, we demonstrated that 
DANCR promotes macrophage lipid accumulation by regulating the expression of membrane cholesterol 
transport proteins. qPCR showed that compared to control groups, CAD patients and atherosclerotic mice 
had higher DANCR levels. Treating human THP-1 macrophages and mouse RAW264.7 macrophages with ox-
LDL significantly upregulated the expression levels of DANCR. Oil Red O staining showed that the silence of 
DANCR robustly reduced, while overexpression of DANCR significantly increased the numbers and size of 
lipid droplets in ox-LDL-treated THP-1 macrophages. In contrast, the opposite phenomena were observed in 
DANCR overexpressing cells. The expression of ABCA1, ABCG1, SR-BI, and NBD-cholesterol efflux was 
increased obviously by DANCR inhibition and decreased by DANCR overexpression, respectively. 
Furthermore, transfection with DANCR siRNA induced a robust decrease in the levels of CD36, SR-A, and Dil-
ox-LDL uptake, while DANCR overexpression amplified the expression of CD36, SR-A and the uptake of Dil-
ox-LDL in lipid-laden macrophages. Lastly, we found that the effects of DANCR on macrophage lipid 
accumulation and the expression of membrane cholesterol transport proteins were not likely related to 
miR-33a. The present study unraveled the adverse role of DANCR in foam cell formation and its relationship 
with cholesterol transport proteins. However, the competing endogenous RNA network underlying these 
phenomena warrants further exploration. 
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INTRODUCTION 
 

Coronary artery disease (CAD), such as heart failure 

and stroke, is among the leading causes of morbidity 

and deaths around the globe [1]. Atherosclerosis (AS) is 

the pathological foundation of CAD. The deposition of 

macrophage foam cells within vessel walls is the 

hallmark of atherogenesis [2]. High-density lipoprotein 

cholesterol (HDL) can elicit lipid-lowering effects by 

mediating reverse cholesterol transport (RCT) [3]. RCT 

is a multi-step process that removes redundant 

cholesterol in macrophages to the liver for excretion [4]. 

Cholesterol efflux from macrophages mediated by ATP-

binding cassette transporter A1/G1 (ABCA1/G1) and 

scavenger receptor class B type I (SR-BI) is the first and 

critical step of RCT [5]. Membrane ABCA1 mediates 

free cholesterol (FC) and phospholipid to extracellular 

lipid-free apoA-1 to form nascent HDL particles [6]. 

Subsequently, ABCG1 and SR-BI mobilize intracellular 

cholesterol to nascent HDL particles, creating mature 

HDL particles [7]. An ABCA1 gene mutation can cause 

a rare lipid metabolism disorder called Tangier disease, 

featuring severe deficiency of HDL-C in the plasma and 

massive accumulation of cholesteryl esters (CE) in 

diverse tissues of the body [8]. Wang et al. reported that 

in bone marrow-derived macrophages (BMMs) from 

ABCA1 knockout (ABCA1-/-) mice, the efflux of [3H]-

cholesterol was inhibited entirely, compared with that 

from wild-type (WT) mice. Besides, injection of 

ABCA1-/- BMMs into mice caused a significant 

reduction of [3H]-tracer levels in plasma and feces [9]. 

In ABCG1-overexpressing macrophages, the efflux of 

intracellular cholesterol to HDL was increased by 

nearly 40%. Furthermore, mice injected with ABCG1-

overexpressing macrophages exhibited higher plasma 

[3H]-tracer levels and increased fecal [3H]-tracer 

excretion [9]. Compared to apoE-/- mice, mice receiving 

ABCA1-/-apoE-/- bone marrow displayed more severe 

lipid accumulation within atherosclerotic plaques [10]. 

Moreover, mice receiving ABCA1-/-ABCG1-/- bone 

marrow had larger atherosclerotic lesions than those 

single knockout recipients [11]. Likewise, macrophage 

SR-BI can promote macrophage-to-feces RCT, lower 

plasma total cholesterol (TC) and triglycerides (TG), 

and alleviate atherosclerotic plaque formation [12]. In 

addition to ABCA1/G1 and SR-BI, lipid uptake 

mediated by CD36 and SR-A also contributes to 

macrophage foam cell formation. Targeted deletion of 

SR-A and CD36 can effectively prevent the formation 

of advanced necrotic lesions and promote plaque 

stability in hyperlipidemic mice [13]. Repression of 

CD36 and SR-A in atherosclerotic mice significantly 

alleviated macrophage foam cell formation and 

decreased the size of atherosclerotic plaques in apoE-/- 

mice [14]. Thus, upregulation of ABCA1/G1 and SR-BI 

or downregulation of SR-A and CD36 is a practical 

approach to preventing foam cell formation and AS 

progression. 

 

Macrophage miR-33a was demonstrated to impair in vivo 

RCT and aggravate atherosclerotic plaque formation by 

inhibiting ABCA1/G1 [15, 16]. In peritoneal 

macrophages from hypercholesterolemic mice, miR-33a 

levels were negatively associated with cellular 

cholesterol ester (CE) content and ABCA1 expression. 

Overexpression of miR-33a in macrophages significantly 

diminished the mobilization of intracellular cholesterol to 

extracellular apoA-1 or HDL [17]. Low-density 

lipoprotein receptor knockout (LDLR-/-) mice treated 

with anti-miR-33a oligonucleotides (anti-miR-33a) 

displayed increased HDL-cholesterol (HDL-C) levels in 

the plasma and improved macrophage-to-feces RCT  

in vivo. Additionally, miR-33a can inhibit lipophagy, i.e., 

autophagy-mediated degradation of intracellular lipid 

droplets (LDs), and therefore retard cholesterol efflux 

from macrophages [18]. LDLR-/- mice administered with 

anti-miR-33a displayed enhanced autophagy in lipid-

laden macrophages and reduced atherosclerotic plaque 

formation [19]. Emerging evidence has identified long 

non-coding RNAs (lncRNAs) as critical regulators of 

foam cell formation and AS development [20–23]. 

LncRNA DANCR was reported to regulate tumor 

progression by modulating cell proliferation [24], 

apoptosis [25], and inflammation [26]. However, the role 

of DANCR in macrophage lipid accumulation and 

atherogenesis is unknown. Here, the effects of DANCR 

on macrophage foam cell formation and its relationship 

with miR-33a were investigated, which may help deepen 

the understanding of the connections between lncRNAs 

and AS. 

 

MATERIALS AND METHODS 
 

Participants selection 

 

Twelve patients (40 to 65 years of age) in the 

Department of Cardiology of the Qingyuan City 

People’s Hospital submitted to coronary angiography 

were enrolled. All participants did not have recent 

unstable angina, cancer, or liver and renal problems. 

They were divided into two groups according to the 

results of coronary angiography: the control group 

(n=6) and the atherosclerotic group (n=6). The 

procedures performed adhere to the tenets of the 1964 

Helsinki Declaration [27]. 

 

Mice treatment 

 

12 male apoE-/- mice (8 weeks old) and 6 wild-type 

C57BL/6 mice were bought from Zhaoqing CasGene 

Biotech. Co., Ltd (Guangdong, China). Mice were housed 

with free access to water and food under a 12 h light/dark 
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cycle (24±2° C, 60% humidity). 6 apoE-/- mice were fed a 

Western diet (0.3% cholesterol and 21% fat), and the rest 

mice were fed a chow diet. 12 weeks later, they were 

euthanized, and the blood and aorta and blood were 

collected to detect DANCR expression. 

 

PBMC isolation 

 

PBMC was isolated from the blood of humans and mice, 

as previously described [28]. DPBS supplemented with 

sodium citrate buffer (1:1) was used to dilute EDTA-

collected blood. Then, it was transferred into test tubes 

with 15 mL of Ficoll Paque Plus. After centrifugation at 

1,000 rpm for 10 min, the PBMC fraction was collected 

using sterile pipettes, followed by another round of 

centrifugation at 600 rpm for 10 min. The supernatant 

was discarded, and cells were washed three times using 

DPBS without magnesium and calcium, supplemented 

with sodium citrate buffer and FBS, and centrifuged for  

7 min at 250 g at RT. Afterward, the cells were 

resuspended in RPMI 1640 medium supplemented with 

FBS. A Nexcelcom Cell Counter was used to determine 

the total PBMC for each donor. Finally, PBMCs were 

cryopreserved for later use. 

 

Cell transfection 

 

THP-1 monocytes and RAW264.7 macrophages were 

obtained from ATCC (Virginia, US). Cells were 

cultured in RPMI-1640 medium containing 10% FBS 

and 1% penicillin-streptomycin (37° C, 5% CO2). For 

experimental use, THP-1 monocytes were differentiated 

into macrophages by incubation with 160 ng/mL PMA 

(Sigma, USA) for 48 h and further treated with 50 

μg/mL ox-LDL (Solarbio, Beijing, China) for 24 h to 

differentiate into foam cells. Before transfection, THP-1 

macrophages were planted into 6-well plates containing 

3~4×106 cells/well.  

 

For DANCR overexpression experiments, GeneChem 

(Shanghai, China) constructed a lentiviral over-

expression vector (LV-DANCR). Cells were treated 

with 1×1010 TU/mL LV-DANCR using lipofectamine 

2000 (Invitrogen, USA) for 48 h. A lentiviral vector that 

expressed GFP alone was used as a negative control 

(LV-NC). For DANCR knockdown experiments, the 

siRNA against DANCR (si-DANCR) was purchased 

from RiboBio (Guangzhou, China). Cells were 

incubated with 20 µM si-DANCR using lipofectamine 

2000. The negative control group was transfected with a 

scrambled siRNA (si-NC). After 48 h, DANCR levels 

were measured by qPCR. For miR-33a mimic/inhibitor 

transfection, cells were transfected with 50 nM of miR-
33a mimic/inhibitor or mimic/inhibitor control. At 48 h 

after transfection, cells were cultured in the RPMI-1640 

medium containing 2% FBS. After another 48 h, miR-

33a levels were detected by qPCR. Supplementary 

Table 1 listed the relevant sequence used in this study. 

 

Oil red O staining 

 

Oil Red O staining was used to analyze the lipid 

accumulation in THP-1 macrophages. After trans-

fection, cells were washed thrice in PBS and fixed at 

4% paraformaldehyde for 10 min. Following 

dehydration with 60% isopropanol for 2 min at 37° C, a 

0.3% Oil Red O solution was added to stain cellular 

lipid droplets for another 10 min. The pictures were 

observed and captured under optical microscopy. 

Image-Pro Plus software was used to quantify the 

degree of lipid accumulation. The Oil Red O-positive 

area was recorded and expressed as fold change, as 

previously described [29]. 

 

Cholesterol uptake assay 

 

Dil-ox-LDL uptake assay was used to measure the 

cholesterol uptake capacity by THP-1 macrophages. Cells 

were co-incubated with Dil-ox-LDL (10 µg/µL) at 37° C 

for 4 h in a dark environment. Then, DAPI was added to 

counterstain the cells and track the nucleus. Photographs 

were taken using an optical microscope [30]. 

 

Cholesterol efflux assay 

 

NBD-cholesterol efflux assay was conducted according 

to the previous literature [31]. THP-1 macrophages 

were cultured with 5 μM fluorescent NBD-cholesterol 

(Invitrogen, USA) at 37° C for 6 h. Afterward, the cells 

were thricely washed in PBS and equilibrated in RPMI-

1640 medium for 2 h. Then, the medium was 

supplemented with apoA-I (25 μg/mL) or HDL (50 

μg/mL) at 37° C for 4 h. 

 

0.3 M NaOH solution was used to lyse the cells for 15 

min. The fluorescence-labeled cholesterol (green color) 

was visualized using an inverted fluorescence 

microscope, and fluorescence intensity was determined 

using Image-Pro Plus software. The cholesterol efflux 

was calculated following the equation: [fluorescence in 

medium/fluorescence in (cell+medium)] ×100%. 

 

Quantitative real-time PCR (qPCR) 

 

After cells were transfected, TRIzol reagent (Invitrogen, 

USA) was used to extract the total RNA per the 

manufacturer’s instructions. Then, RNase-free DNase I 

was added to remove genomic DNA. Nanodrop 3000 

(Thermo Fisher Scientific, USA) assessed the extracted 
RNA’s purity. All RNA samples’ absorption ratios 

(OD260/OD280) ranged from 1.8 to 2.0. Afterward, the 

TaqMan MicroRNA Reverse Transcription Kit 
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(Applied Biosystems, USA) was utilized to reverse 

transcribe 2 μg total RNA for cRNA synthesis. Using 

SYBR Green PCR Master Mix (Applied Biosystems), a 

StepOnePlus™ Real-Time PCR System (Applied 

Biosystems, USA) was utilized to conduct qPCR 

reactions. Supplementary Table 1 lists the gene-specific 

primers, and Shanghai General Biotech Co., Ltd 

synthesized all the primers. U6 was used as an internal 

control for miR-33a and DANCR, and the other genes 

used GAPDH as a control. The relative changes in gene 

expression were determined using the 2-ΔΔCt method. 

 

Western blot 

 

After cells were transfected, the total proteins were 

obtained using a mixture of RIPA buffer (Beyotime, 

Beijing, China) and PMSF at a ratio of 94:6. A BCA 

assay kit (CWBIO, Peking, China) was used to detect the 

protein concentrations. An equivalent amount of protein 

(approximately 20 µg/lane) was added onto the 8% or 

10% SDS-PAGE for electrophoresis. Following 

fractionation at 120 V for 90 min in gel running buffer, 

the proteins were transferred to 0.45 µm PVDF 

membranes (Merck Millipore, Darmstadt, Germany). 

Then, they were blocked with 5% fat-free dry milk 

dissolved in TBST at 4° C for 4 h and incubated with 

primary antibodies (1:1,000, Affinity Biosciences, 

Jiangsu, China) at 4° C with gentle shaking overnight. 

After rinsing with TBST thricely (10 min each), 

membranes were immuno-blotted with corresponding 

secondary antibody (1:5,000, Abcam) for 2 h at 4° C. 

Finally, the bands were visualized, and the relative protein 

levels were assessed using the Quantity One software. 

 

Statistical analysis 

 

All data were represented as mean ±SD from at least 

three independent experiments. They were compared 

using Student’s unpaired t-test or a one-way ANOVA, 

followed by Tukeys’ post hoc test via GraphPad Prism 

10.0.3 software. P < 0.05 was considered as statistical 

significance. 

 

Data availability statement 

 

The data are available from the corresponding author 

upon reasonable request. 

 

RESULTS 
 

DANCR expression is significantly higher in CAD 

patients and atherosclerotic mice 

 

We first detected the expression of DANCR in CAD 

patients and HFD-fed apoE-/-mice using qPCR. The 

results showed that compared to non-CAD patients, the 

DANCR levels in PBMCs of CAD patients were 

significantly higher (Figure 1A). Similarly, HFD-fed 

apoE-/-mice displayed increased expression of DANCR 

in PBMCs and aortas compared to chow diet-fed mice 

(Figure 1B, 1C), indicating that DANCR may aggravate 

atherogenesis. 

 

 
 

Figure 1. The expression of DANCR in CAD patients and HFD-fed apoE-/- mice. (A) Detection of DACNR expression in PBMCs isolated 
from non-CAD and CAD patients. (B) Detection of DACNR levels in PBMCs from NCD- or HFD-fed or HFD-fed apoE-/- mice. (C) Detection of 
DACNR expression in the aorta from NCD- or HFD-fed apoE-/- mice. NCD, normal chow diet; HFD, high-fat diet. n=6. 
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Ox-LDL upregulates DANCR expression in both 

human and murine macrophages 

 

Ox-LDL is a well-known factor to drive foam cell 

formation in vitro [32]. To preliminary unravel the link 

between DANCR and lipid accumulation, we assessed 

the DANCR levels in ox-LDL-treated human and 

murine macrophages. Cells were treated with PBS or 

ox-LDL for 48 h, then qPCR was used to detect the 

DANCR levels. The results showed that ox-LDL 

upregulated DANCR levels in human and murine 

macrophages (Figure 2A, 2B), indicating that DANCR 

may adversely affect macrophage lipid accumulation. 

 

DANCR promotes lipid accumulation in THP-1 

monocytes-derived macrophages 

 

Next, we detected whether DANCR could influence 

lipid accumulation in THP-1 macrophages. Cells were 

incubated with ox-LDL and transfected with si-

DANCR or LV-DANCR for 48 h. It is observed that 

si-DANCR treatment significantly reduced DANCR 

expression by approximately 45%, while LV-DANCR 

transduction increased DANCR levels by nearly 2.2-

fold (Figure 3A, 3C). Subsequently, si-DANCR or 

LV-DANCR were transfected into macrophages  

for different durations (0 h, 24 h, 36 h, 48 h). Oil  

Red O staining showed that the lipid deposition in ox-

LDL-treated THP-1 macrophages was robustly 

attenuated after si-DANCR treatment time-dependently  

 

 
 

Figure 2. The expression of DANCR is increased in ox-LDL-
treated human THP-1 macrophages and mouse 
RAW264.7 macrophages. (A, B) THP-1 cells were incubated 
with 160 ng/mL PMA for 48 h to differentiate into macrophages. 
Then, THP-1-derived macrophages or RAW264.7 macrophages 
were treated with 50 µg/mL ox-LDL for 24 h. qPCR was used to 
detect the expression of DANCR. All results are presented as the 
mean ± SD from three independent experiments performed in 
triplicate. n=3. 

(Figure 3B). Conversely, transfection with LV-DANCR 

at various times gradually increased the numbers of 

lipid droplets (Figure 3D). Thus, DANCR contributes to 

lipid accumulation in THP-1 macrophages. 

 

DANCR promotes lipid uptake and suppresses the 

efflux of cholesterol in THP-1 macrophages 

 

The conversion of macrophages to lipid-laden foam 

cells is related to the balance of cholesterol uptake and 

efflux. Next, we detected the effects of DANCR 

suppression and overexpression on DiL-ox-LDL 

uptake and NBD-cholesterol efflux in human THP-1 

macrophages. Ox-LDL-treated THP-1 macrophages 

were transduced with si-DANCR or LV-DANCR for 

48 h. As shown in Figure 4, uptake of Dil-ox-LDL by 

THP-1 macrophages was robustly increased by 

overexpression of DANCR and decreased by the 

silence of DANCR, respectively (Figure 4A, 4B). At 

the same time, apoA-1/HDL-mediated cholesterol 

efflux was significantly suppressed by LV-DANCR 

transfection and augmented by si-DANCR 

transfection, respectively (Figure 4C, 4D). These 

findings indicate that increased lipid uptake and 

decreased cholesterol efflux are responsible for the 

positive effects of DANCR on lipid accumulation in 

THP-1 macrophages. 

 

DANCR upregulates SR-A and CD36 levels and 

downregulates ABCA1/G1 and SR-BI levels in THP-

1 macrophages  

 

ABCA1 can mediate the initial transport of free 

cholesterol (FC) to apoA-1, promoting the formation 

of nascent HDL particles [33]. Subsequently, these 

HDL particles accept continued FC efflux facilitated 

by ABCG1 and SR-BI for further maturation [34]. 

Besides, CD36 and SR-A can mediate ox-LDL uptake 

by macrophages, significantly contributing to 

macrophage lipid accumulation [35, 36]. To explore 

the potential mechanisms beneath the effects of 

DANCR on lipid uptake and efflux, we next assessed 

the impact of DANCR silence or overexpression on 

the expression of these five membrane cholesterol 

transporters. As expected, si-DANCR transfection 

significantly increased the ABCA1/G1 and SR-BI 

expression. Meanwhile, SR-A and CD36 levels were 

markedly decreased (Figure 5). Moreover, the mRNA 

and protein levels of ABCA1/G1 and SR-BI were 

reduced after DANCR overexpression in lipid-laden 

THP-1 macrophages. In contrast, CD36 and SR-A 

expression was sharply increased upon LV-DANCR 

transfection (Figure 6). These results indicate that 
regulation of these membrane cholesterol transporters 

underlies DANCR-induced lipid accumulation in THP-

1 macrophages. 
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DANCR modulates membrane cholesterol transporter 

levels in a miR-33a independent manner 

 

miR-33a can promote macrophage lipid accumulation 

by targeting ABCA1 and ABCG1 [37, 38]. Previous 

research has unraveled that DANCR can exert various 

biological effects by serving as a molecular sponge for 

miR-33a [39, 40]. Next, we determined whether 

DANCR regulates the levels of membrane cholesterol 

transporters through miR-33a in THP-1 macrophages. 

As shown in Figure 7A, the expression of miR-33a was 

not influenced by either si-DANCR or LV-DANCR 

transfection. Next, cells were treated with si-DANCR or 

LV-DANCR, followed by miR-33a mimic/inhibitor 

transduction. The results showed that miR-33a mimic 

treatment amplified the upregulation of CD36 

expression induced by LV-DANCR (Figure 7F), while 

the expression of the rest of the cholesterol transporters 

was unchanged (Figure 7B–7E). Furthermore, the 

positive effects of si-DANCR on macrophage ABCA1, 

ABCG1, and SR-BI were more evident after miR-33a 

inhibitor transfection (Figure 7B–7D). At the same 

time, si-DANCR-induced down-regulation of SR-A and 

CD36 was not influenced after miR-33a inhibitor 

transfection (Figure 7E, 7F). These findings indicated 

that DANCR does not likely regulate the expression of 

membrane cholesterol transporters by sponging miR-

33a in THP-1 macrophages. 

 

DISCUSSION 
 

Although tremendous progress has been made in 

treating AS, various side effects are still present in the 

long-term treatment plans [2]. The formation of 

atherosclerotic lesions is featured by the massive 

deposition of lipid-loaded macrophages within the 

vessel wall. Targeting macrophage lipid accumulation 

effectively treats hyperlipidemia and AS [41, 42]. Here, 

we found that ox-LDL, a risk factor in developing AS, 

can upregulate DANCR levels in human and murine 

macrophages. DANCR overexpression promoted 

macrophage lipid accumulation, whereas suppression of 

DANCR caused the opposite effects, suggesting the 

adverse role of this lncRNA in foam cell formation. 

DANCR may be a potent stimulator of hyperlipidemia 

and atherogenesis. 

 

LncRNAs are involved in macrophage lipid 

accumulation by regulating ABCA1/G1-mediated 

cholesterol efflux. LncRNA MeXis can promote 

ABCA1 gene transcription via interaction with DDX17 

and subsequent activation of LXRα. In THP-1 

 

 
 

Figure 3. DANCR promotes lipid accumulation in THP-1 macrophages. (A) THP-1 macrophages were transfected with 20 µM  

si-DANCR or the negative control for 48 h. Transfection efficiency was determined by qPCR. (B) THP-1 macrophages were treated with  
50 µg/mL ox-LDL for 24 h. Then, they were transfected with 20 µM si-DANCR for 24 h, 36 h, and 48 h, respectively. Oil Red O staining was 
used to detect lipid droplets. Image-Pro Plus software calculated Oil Red O-positive areas. (C) THP-1 macrophages were transfected with 
1×1010 TU/mL LV-DANCR or the negative control for 48 h. Transfection efficiency was determined by qPCR. (D) THP-1 macrophages were 
treated with 50 µg/mL ox-LDL for 24 h. Then, they were transfected with 1×1010 TU/mL LV-DANCR for 24 h, 36 h, and 48 h, respectively. Oil 
Red O staining was used to detect lipid droplets. Image-Pro Plus software calculated Oil Red O-positive areas. All results are presented as the 
mean ± SD from three independent experiments performed in triplicate. Scale bar=200 µm. 
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macrophages, MeXis overexpression increased ABCA1 

expression and enhanced apoA-1-mediated cholesterol 

efflux [43]. Sun et al. found that inhibition of exosomal 

LOC100129516 derived from mesenchymal stem cells 

activated the PPARγ/LXRα/ABCA1 pathway and 

prevented detrimental lipid deposition in ox-LDL-

treated THP-1 macrophages [44]. LncRNA DAPK-IT1 

can downregulate ABCA1/G1 levels and diminish 

apoA-1/HDL-mediated cholesterol efflux by sponging 

miR-590-3p, leading to less formation of THP-1 

macrophage-derived foam cells [45]. LncRNA THRIL 

can interact with Forkhead box protein O1(FOXO1) and 

decrease the transcription of ABCA1/G1, causing 

damage to cholesterol efflux and more lipid deposition 

in macrophages [46]. However, whether lncRNAs can 

regulate macrophage lipid accumulation by affecting 

SR-BI has not been reported. Our results showed that 

the expression of ABCA1/G1, SR-BI, and the capacity 

of cholesterol efflux was significantly elevated by 

DANCR suppression and decreased by DANCR 

 

 
 

Figure 4. DANCR promotes lipid uptake and inhibits cholesterol efflux in THP-1 macrophages. THP-1 macrophages were treated 

with 50 µg/mL ox-LDL for 24 h. Then, they were transfected with 1×1010 TU/mL LV-DANCR or 20 µM si-DANCR or their corresponding control 
for 48 h. (A, B) Cells were incubated with 10 µg/µL Dil-ox-LDL at 37° C for 4 h. The representative fluorescent images of Dil-ox-LDL uptake 
were photographed (200×). (C, D) Cells were loaded with 5 µM NBD-cholesterol for 6 h. Then, the medium was supplemented with 25 μg/mL 
apoA-I or 50 μg/mL HDL for 4 h. The representative fluorescent images of the NBD cholesterol burden in THP-1 macrophage-derived foam 
cells were photographed (200×). All results are presented as the mean ± SD from three independent experiments performed in triplicate. 
Scale bar=50 µm. 
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Figure 5. Effects of DANCR inhibition on the expression of membrane cholesterol transporters in ox-LDL-treated THP-1 
macrophages. THP-1 macrophages were treated with 50 µg/mL ox-LDL for 24 h. Then, they were transfected with 1×1010 TU/mL LV-DANCR 

or 20 µM si-DANCR or their corresponding control for 48 h. (A–E) Detection of the mRNA levels of ABCA1, ABCG1, SR-BI, SR-A, and CD36 by 
qPCR. (F–K) Detection of the protein levels of ABCA1, ABCG1, SR-BI, SR-A, and CD36 by Western blot. All results are presented as the mean ± 
SD from three independent experiments performed in triplicate. n=3. 

 

 
 

Figure 6. Effects of DANCR overexpression on the expression of membrane cholesterol transporters in ox-LDL-treated THP-1 
macrophages. THP-1 monocytes were incubated with 160 ng/mL PMA for 48 h to differentiate into macrophages. Then, they were treated 

with 50 µg/mL ox-LDL for 24 h, followed by transfection with 1×1010 TU/mL LV-NC or LV-DANCR 48 h. (A–E) Detection of the mRNA levels of 
ABCA1, ABCG1, SR-BI, SR-A, and CD36 by qPCR. (F–K) Detection of the protein levels of ABCA1, ABCG1, SR-BI, SR-A, and CD36 by Western 
blot. All results are presented as the mean ± SD from three independent experiments performed in triplicate. n=3. 

12517



www.aging-us.com 9 AGING 

overexpression, respectively, suggesting that down-

regulation of cholesterol efflux is responsible for 

macrophage lipid accumulation induced by DANCR. 

 

In addition to cholesterol efflux, excessive cholesterol 

uptake is another promoter in macrophage lipid 

accumulation. LncRNAs are critical regulators of 

CD36-mediated lipid uptake in macrophages and 

hepatocytes. Ning et al. found that ox-LDL can increase 

lncRNA MALAT1 expression, which recruits β-catenin 

to binding sites on the CD36 promoter, leading to 

increased lipid uptake in THP-1 macrophages [47]. 

LncRNA UCA1 can increase oxidative stress and CD36 

expression by sponging miR-206, and inhibition of 

UCA1 significantly reverses ox-LDL-induced macro-

phage foam cell formation [48]. Another research 

 

 

 

Figure 7. DANCR regulates the expression of membrane cholesterol transporters in a miR-33a-independent manner. THP-1 
macrophages were treated with 50 µg/mL ox-LDL for 24 h. (A) Cells were transfected with 20 µM si-DANCR, 1×1010 TU/mL LV-DANCR, or 
their corresponding control for 48 h. miR-33a levels were determined by qPCR. (B–F) Cells were transfected with 20 µM si-DANCR, 1×1010 
TU/mL LV-DANCR, and 50 nM miR-33a mimic (Mim) /inhibitor (Inh) for 48h. Then, qPCR was conducted to determine the expression of 
ABCA1, ABCG1, SR-BI, SR-A, and CD36. All results are presented as the mean ± SD from three independent experiments performed in 
triplicate. 
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showed that MALAT1 could promote free fatty acids 

(FFA)-induced hepatocyte lipid accumulation. 

Specifically, MALAT1 upregulates the expression of 

aryl hydrocarbon receptor nuclear translocator 

(ARNT) through binding with miR-206, increasing 

CD36 expression and lipid uptake [49]. Moreover, 

Kim et al. reported that PPARα could augment the 

expression of lncRNA 3930402G23Rik (G23Rik) by 

binding to its promoter region, further decreasing 

CD36 levels and attenuating hepatic lipid 

accumulation [50]. So far, the association between 

lncRNAs and SR-A-mediated cholesterol uptake has 

not been well disclosed. We found that DANCR up-

regulation significantly increased CD36 and SR-A 

expression and subsequent uptake of Dil-ox-LDL. In 

contrast, suppression of DANCR exerted the opposite 

effects, indicating that enhanced cholesterol uptake is 

involved in DANCR-induced macrophage lipid 

accumulation. 

 

miR-33a can influence atherogenesis and cholesterol 

metabolism by targeting ABCA1/G1 in macrophages 

[17]. The expression of miR-33a is conversely related to 

ABCA1/G1 in monocytes of patients with primary 

hypertension [51]. Antisense inhibition of miR-33a in 

hepatocytes and macrophages significantly upregulated 

ABCA1 expression and accelerated cholesterol efflux. 

Injection of Western diet-fed mice with anti-miR-33a 

oligonucleotides resulted in elevated HDL-C levels in 

the plasma [52]. Urolithin A (UA), the most abundant 

ellagitannin, can mitigate lipid deposition in mouse 

RAW264.7 macrophages via miR-33a inhibition  

and enhancement of ABCA1/G1-mediated cholesterol 

efflux [53]. A furostanol bisglycoside Methyl 

protodioscin can decrease miR-33a levels by inhibiting 

SREBP1c and SREBP2 transcription, leading to 

upregulation of ABCA1-mediated cholesterol efflux 

[54]. The lncRNA CHROME-miR-33 axis can enhance 

ABCA1 expression, cholesterol efflux, and the 

formation of nascent HDL particles, alleviating lipid 

deposition in macrophages [55]. Recently, DANCR was 

found to exert various biological activities by inhibiting 

miR-33a. Yang et al. reported that DANCR decreased 

miR-33a levels, inhibited apoptosis of glioma cells, and 

increased epithelial-mesenchymal transition [56]. In 

osteosarcoma cell lines, DANCR up-regulated the 

expression of kinase AXL by acting as a sponge of 

miR-33a, leading to cell proliferation, migration, and 

metastasis [40]. Feng et al. determined that miR-33a can 

inhibit cell proliferation and insulin production of INS-1 

cells, effects that can be rescued by DANCR 

overexpression [57]. Unexpectedly, our results showed 

that DANCR overexpression or inhibition did not 
change miR-33a levels in THP-1 macrophages. 

Transfection of miR-33a mimic did not influence the 

effects of LV-DANCR on ABCA1/G1, SR-A, and SR-

BI expression. Furthermore, the negative effects of si-

DANCR on SR-A and CD36 levels were not changed 

by miR-33a inhibitor treatment. These observations 

indicate that DANCR regulates the expression of 

membrane cholesterol transporters in a miR-33a-

independent manner. According to previous studies, 

NF-κB is a key regulator of the five membrane 

cholesterol transporters. Li et al. reported that the Qing-

Xue-Xiao-Zhi formula increased ABCA1/G1-mediated 

cholesterol efflux by suppressing the TLR4/NF-κB 

pathway in murine macrophages [58]. Hu et al. found 

that silencing ZAP70 inhibited the NF-κB signaling 

pathway and increased ABCA1/G1- and SR-BI-

mediated cholesterol efflux from T cells [59]. Besides, 

Hyun et al. observed that metformin could attenuate 

inflammation and decrease CD36 and SR-A levels via 

down-regulation of NF-κB translocation in RAW264.7 

macrophages [60]. Interestingly, DANCR was found to 

activate the NF-κB signaling and cause cisplatin 

resistance in glioma cells [61]. These pieces of evidence 

imply that DANCR may regulate the expression of 

membrane cholesterol transporters by activating NF-κB. 

More investigations are warranted to verify this 

hypothesis. 

 

In conclusion, this study demonstrated that DANCR can 

decrease ABCA1/G1- and SR-BI-mediated cholesterol 

efflux and increase SR-A- and CD36-mediated 

cholesterol influx, contributing to macrophage foam cell 

formation. Moreover, these effects are miR-33a 

independent. DANCR may become a novel, promising 

target for AS therapy. 
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SUPPLEMENTARY MATERIALS 

 

 

 

Supplementary Table 
 

Supplementary Table 1. The primer sequences used in this study. 

Gene Sequences 

DANCR (Human) 
Forward, 5'-ACTCACTCACTCACTCACT-3';  

Reverse, 5'-GCCTCTGTATACTATTCTTGCCA-3' 

DANCR (Mouse) 
Forward, 5'-CGCGAGACACAAAGTCCTCT -3';  

Reverse, 5'-CTGGAACCTCCGTCTTCTCG -3' 

miR-33a (Human) 
Forward, 5'-CCTCATAAGCGGTGCATTGTA-3';  

Reverse, 5'-TATGCTTGTTCTCGTCTCTGTGTC-3' 

ABCA1 (Human) 
Forward, 5'-GCTCAGTGGGATGGATGGCAAAG-3';  

Reverse, 5'-CTCCGTCTGGCAATTAGCAGTCTC-3' 

ABCG1 (Human) 
Forward, 5'-TCTCGGTGGATGAGGTGGTGTC-3';  

Reverse, 5'-GCTGGGCTTCCGTGAGGTTATTATC-3' 

SR-BI (Human) 
Forward, 5'-AGCAAGGTTGACTTCTGGCATTCC-3';  

Reverse, 5'-TGTAGAACTCCAGCGAGGACTCAG-3' 

SR-A (Human) 
Forward, 5'-GACACTGATAGCTGCTCCGAATCTG-3';  

Reverse, 5'-AAACACGAGGAGGTAAAGGGCAATC-3' 

CD-36 (Human) 
Forward, 5'-GGAAGTGATGATGAACAGCAGCAAC-3';  

Reverse, 5'-TGTCCTCAGCGTCCTGGGTTAC-3’ 

si-DANCR 

(Human) 

Forward, 5'-CUGCAUUCCUGAACCGUUATT-3';  

Reverse, 5'-UAACGGUUCAGGAAUGCAGTT-3’ 

miR-33a mimics 
Forward, 5'-GUGCAUUGUAGUUGCAUUGCA-3';  

Reverse, 5'-CAAUGCAACUACAAUGCACUU-3’ 

miR-33a inhibitor Forward, 5'-UGCAAUGCAACUACAAUGCAC-3'; 

GAPDH (Human) 
Forward, 5'-GGAGCGAGATCCCTCCAAAAT-3';  

Reverse, 5'-GGCTGTTGTCATACTTCTCATGG-3' 

U6 (Human) 
Forward, 5'-GCTTCGGCAGCACATATACTAAAAT-3';  

Reverse, 5'-CGCTTCACGAATTTGCGTGTCAT-3' 

U6 (Mouse) 
Forward, 5'-CTCGCTTCGGCAGCACATATACT-3';  

Reverse, 5'-ACGCTTCACGAATTTGCGTGTC-3' 
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