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INTRODUCTION 
 

Matrix-assisted laser desorption/ionization time of 

flight mass spectrometry (MALDI-TOF MS) has 

become an invaluable tool in the rapid identification  

of microbial species. This technology employs laser 

energy to enable sample desorption and ionization 

prior to analysis in a time-of-flight mass spectrometer, 

determining the sample’s precise molecular weights 

[1–3]. MALDI-TOF MS focuses on whole bacterial 

proteins, yielding a characteristic “protein fingerprint.” 

These fingerprints are predominantly composed of 

highly-expressed, conserved ribosomal proteins, 

providing a reliable means for microbial species-level 

identification [4–6]. 

 
Despite its efficacy in rapid and accurate  

microbial identification, limitations of MALDI-TOF 

MS currently exist at the species level, owing to its 

reliance on microbial proteins [7, 8]. Strains within  

the same species exhibiting high protein expression 

similarity often remain undifferentiated. Advances in 

deep learning algorithms, especially long short-term 

memory (LSTM) neural networks, present a solution 
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ABSTRACT 
 

The current study aims to develop a new technique for the precise identification of Escherichia coli strains, 
utilizing matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) 
combined with a long short-term memory (LSTM) neural network. A total of 48 Escherichia coli strains were 
isolated and cultured on tryptic soy agar medium for 24 hours for the generation of MALDI-TOF MS spectra. 
Eight hundred MALDI-TOF MS spectra were obtained per strain, resulting in a database of 38,400 spectra. Fifty 
percent of the data was utilized for LSTM neural network training, with fine-tuned parameters for strain-level 
identification. The other half served as the test set to assess model performance. Traditional PCA dimension 
reduction of MALDI-TOF MS spectra indicated 47 out of 48 strains to be unclassifiable. In contrast, the LSTM 
neural network demonstrated remarkable efficacy. After 20 training epochs, the model achieved a loss value of 
0.0524, an accuracy of 0.999, a precision of 0.985, and a recall of 0.982. When tested on the unseen data, the 
model attained an overall accuracy of 92.24%. The integration of MALDI-TOF MS and LSTM neural network 
markedly enhances the identification of Escherichia coli strains. This innovative approach offers an effective 
and accurate tool for MALDI-TOF MS-based strain-level identification, thus expanding the analytical capabilities 
of microbial diagnostics. 
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to this limitation. LSTMs are noted for their ability  

to manage long-term information through a network  

of input, forget, and output gates, enabling them to 

identify subtle variations in complex data sequences 

[9–11]. 

 

Escherichia coli is an exemplary subject for  

extending MALDI-TOF MS applications to strain-level 

identification. Escherichia coli strains function both as a 

harmless component of human flora and as a clinical 

pathogen. Strain-level identification is essential for 

tracing the origin of nosocomial infections and reducing 

associated risks. Recognizing this pressing need and the 

limitations of existing technologies, this study seeks to 

explore the utility of integrating MALDI-TOF MS with 

LSTM neural networks for strain-level identification  

of Escherichia coli. This exploration aims to establish a 

novel method that advances the analytical capabilities 

of MALDI-TOF MS, particularly in microbial strain-

level diagnostics. 

 

This introduction provides a foundation for the research 

by first examining the current state of MALDI-TOF  

MS technology, emphasizing its limitations, and then 

exploring the potential of LSTM neural networks to 

overcome these limitations [12, 13]. It also emphasizes 

the clinical importance of strain-level identification, 

especially for Escherichia coli, thereby establishing the 

relevance and significance of this study. 

 

MATERIALS AND METHODS 
 

Material and chemicals 
 

In this study, 48 strains of Escherichia coli were 

extracted and purified from clinical biological samples. 

All isolates underwent biochemical testing and were 

subsequently confirmed as Escherichia coli via 16S 

rRNA gene sequencing. Tryptic Soy Agar (TSA) 

medium, sourced from Merck Millipore, Germany, was 

utilized for bacterial culture for MALDI-TOF MS 

analysis, α-Cyano-4-hydroxycinnamic acid (CHCA) 

served as the matrix and was obtained from Sigma-

Aldrich, USA. The key instruments included a 4800 

Plus MALDI-TOF MS mass spectrometer from 

Absciex, USA, and a DRP-9272 electric thermostatic 

microbial incubator provided by Shanghai Senxin 

Experimental Instrument Co., Ltd. 

 

MALDI-TOF MS analysis 
 

Colonies of each bacterial strain, cultured over a  

24-hour period, were prepared for analysis. A portion 
of the colony biomass was spread across assigned 

target sites on the MALDI plate. Subsequently,  

one microlitre of α-Cyano-4-hydroxycinnamic acid 

(CHCA) matrix solution was applied onto each  

sample spot. Afterward, the plate was left to air-dry, 

enabling matrix-sample co-crystallization. The prepared 

MALDI plate was then inserted into the MALDI-TOF 

MS instrument set to linear scanning mode. Laser 

intensity was adjusted to 3500 units, and the mass-to-

charge (m/z) scanning range was established from 

0 to 12,000 Da. For each bacterial strain, a total of 

40 sample points were analyzed on the plate. From 

each point, 20 individual spectra were obtained, 

accumulating in a composite dataset of 800 spectra  

per strain. The signal-to-noise ratio for the most 

intense peak in each spectrum needed to exceed 10 for 

the data to be deemed valid. Additionally, intra-strain 

spectral variability was evaluated using Hotelling’s T2 

statistical test, with an allowable variance of no more 

than 5%. 

 

Preparation of the dataset for MALDI-TOF MS 

spectral analysis 

 

A comprehensive spectral database was created from 

the 38,400 acquired MALDI-TOF MS spectra, each 

meticulously categorized according to their originating 

strains. Each entry in the database represents a unique 

spectral signature. For each bacterial strain in the 

database, the dataset is divided into two mutually 

exclusive subsets. Specifically, 50% of the individual 

spectra for each strain are chosen using a stochastic 

sampling algorithm to form the training set. The 

remaining 50% comprise the test set. Before this 

division, all spectra undergo a quality control check  

to ensure compliance with pre-defined data quality 

standards, including, but not limited to, signal-to-noise 

ratios and Hotelling’s T2 statistical thresholds. 

 

LSTM network model architecture and training 

protocol 

 

The LSTM model is built using the Tensorflow v2.0 

framework. It comprises an LSTM layer, a fully 

connected layer, and a Dropout layer, with parameters 

set at 128, 64, and 0.3, respectively. Layers are 

sequentially connected. Details such as activation 

functions and output sizes are provided in Table 1.  

The training loss function is categorical cross-entropy, 

the optimizer is Adam, and 80% of the spectra in  

the training set are randomly chosen for training,  

with the remaining 20% used for cross-validation.  

The maximum training duration is 20 epochs. Model 

training results are assessed using precision, accuracy, 

and recall metrics. The calculation formulae are 

presented in formula [1–3], where TP represents the 
positive samples correctly predicted by the model,  

TN the negative samples correctly predicted, FP the 

negative samples incorrectly predicted as positive, 
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Table 1. Structure, activation function, and parameters of the LSTM model. 

Layer Layer (type) Activation function Output size Number of parameters Total parameters 

1 Lstm (LSTM) Relu (None, 128) 1348608 

1359984 
2 Dense1 (Dense) Relu (None, 64) 8256 

3 Dropout (Dropout)  (None, 64) 0 

4 Dense (Dense) Softmax (None, 48) 3120 

 

and FN the positive samples incorrectly predicted as 

negative. 

 

 
TP

Precision
TP FP

=
+

 (1) 

 

 
TP TN

Accuracy
TP TN FP FN

+
=

+ + +
 (2) 

 

 
TP

Recall
TP FN

=
+

 (3) 

 

Model evaluation metrics and analysis 

 

The model’s predictive performance is evaluated using 

a detailed confusion matrix. This matrix classifies 

multi-class classification outcomes into categories of 

True Positives (TP), False Positives (FP), True 

Negatives (TN), and False Negatives (FN), each 

quantified with absolute numerical values. A crucial 

metric for model assessment is the Comprehensive 

Recognition Rate, defined as the ratio of accurately 

classified samples to the total number of samples in 

the test dataset. Mathematically, this rate is expressed 

as: 

 

Comprehensive Recognition Rate = Total Number of 

Test Samples/Number of Correctly Classified Samples. 

 

Availability of data and material 

 

The datasets generated and/or analyzed during the 

current study are available in the SimTK repository 

(https://simtk.org/plugins/datashare/?group_id=2836). 

The 16S rRNA sequencing data are also available  

in the SimTK repository (https://simtk.org/plugins/ 

datashare/?group_id=2836). 

 

RESULTS 
 

Strain MALDI-TOF MS spectrum database 
 

The constructed database includes a total of  

38,400 MALDI-TOF MS spectra, equally distributed 

among 48 distinct strains of Escherichia coli. Each 

strain contributes 800 individual spectra, providing  

a balanced dataset for further analysis. Figure 1 shows 

the typical MALDI-TOF MS spectra for the 48 

Escherichia coli strains. Significant peaks, specific to 

each strain, are primarily noted in the m/z range of 

2000 to 10,000. Principal Component Analysis (PCA) 

is utilized for dimensionality reduction, as shown  

in Figure 2. Interestingly, the primary component  

for the spectra of strain LHL40080 (Strain No. 23) 

appears in the upper left quadrant of the scatter plot, 

demonstrating distinct data separability from the other 

47 strains. However, the principal components for the 

spectra of the other 47 strains overlap significantly, 

making them challenging to distinguish. Upon closer 

examination, it was noted that the MALDI-TOF  

MS spectra for strain No. 23 differed markedly from 

those of other strains. This differentiation is presumed 

to result from subspecies-level variation in this 

particular strain. Further research is needed to verify 

this hypothesis. 

 

Model training and performance metrics 

 

After completing 20 training epochs, as illustrated  

in Figure 3, our Long Short-Term Memory (LSTM) 

model demonstrated exemplary performance metrics, 

validating its effectiveness for the intended application. 

Specifically, the model recorded a remarkably low loss 

value of 0.0524, reflecting optimal minimization of 

prediction errors. This was paired with an exceptional 

accuracy rate of 0.999, highlighting the model’s  

near-flawless class label predictions. Additionally, a 

precision metric of 0.985 and a recall score of 0.982 

together indicate the model’s high specificity and 

sensitivity, affirming its robustness in minimizing false 

positives and false negatives. These combined metrics 

underscore the model’s overall predictive prowess and 

reliability. 

 

Model evaluation 

 

The confusion matrix presented in Figure 4 provides 

crucial insights into classification discrepancies among 

various strains. For example, strain No. 5 was pre-
dominantly misclassified as strain No. 18 at a 71%  

rate (284 out of 400 samples), strain No. 14 was 

misidentified as strain No. 38 in 25.75% of cases (103 

out of 400 samples), and 31.25% of samples from 
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strain No. 34 were misclassified as strain No. 37 (125 

out of 400 samples). Despite these specific instances 

of misclassification, the model exhibited robust 

performance for the remaining strains, achieving an 

identification accuracy exceeding 90%. The overall 

identification accuracy across all 48 strains reached  

a commendable 92.24%. 

DISCUSSION 
 

In the realm of microbial diagnostics, traditional 

MALDI-TOF MS technology has proven to be a rapid 

and accurate tool by generating specific bacterial 

fingerprint spectra through the analysis of microbial 

cellular proteins and peptides [14, 15]. However, this 

 

 
 

Figure 1. Typical MALDI-TOF MS patterns for 48 Escherichia coli strains. 
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Figure 2. PCA dimensionality reduction results for Escherichia coli strain MALDI-TOF MS spectra. The numbers 0–47 represent 

the 48 Escherichia coli strains used in the study. The isolated cluster of points in the upper left corner corresponds to strain No. 23 
LHL40080. 

 

 
 

Figure 3. LSTM model training results. (A) Model loss curve; (B) Model accuracy curve; (C) Model precision curve; (D) Model recall 

curve. Blue represents the training sample curve, and yellow represents the test sample curve. 
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method encounters challenges in differentiating at the 

subspecies level or among similar microorganisms [16]. 

Traditional algorithms, while providing statistical validity 

to matching scores using probabilistic frameworks,  

are limited in distinguishing closely related strains due 

to the randomness in the MALDI-TOF MS sampling 

process [17, 18]. 

 

In our newly developed method, by incorporating 

LSTM neural networks, we are able to overcome  

these limitations. The unique architecture of LSTMs 

enhances control over information flow and improves 

data processing capabilities, particularly in handling 

long-term dependencies related to time series [19].  

The LSTM networks can perform finer analysis of 

subtle differences within complex biological samples, 

identifying specific spectral peaks or patterns associated 

with virulence factors, toxins, or other biomarkers. 

This ability is crucial for differentiating microbes that 

have minor variations in their biomarkers [20]. 

 

Additionally, compared to traditional methods, the 

combined MALDI-TOF MS and LSTM approach is 

more efficient in handling large datasets, as LSTM 

networks are designed to manage extensive datasets, 

offering quicker processing times and more efficient 

data handling than conventional statistical methods. 

This is particularly useful for the voluminous data 

often generated by MALDI-TOF MS. The attributes 

of LSTM networks make them an ideal choice for 

predictive modeling in the complex biological 

systems analyzed by MALDI-TOF MS, leading to the 

development of superior prognostic and diagnostic 

tools. 

 

 
 

Figure 4. Confusion matrix for model evaluation. The numbers 0–47 refer to the 48 Escherichia coli strains used in the study. 
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In this study, 800 maps of each strain were gathered 

in batches to form a training dataset, preserving the 

unique characteristics of all maps. Utilizing an LSTM 

neural network, feature extraction and classification 

training were conducted on 2505-dimensional atlas 

data [21, 22]. Retaining the feedback mechanism of 

the recurrent neural network (RNN), the LSTM 

enhances data processing by introducing gating units 

such as forgetting gates, input gates, and output gates. 

This approach enables better control over information 

transmission and addresses issues like RNN gradient 

disappearance and difficulty in capturing long-term 

sequence dependencies [20, 23–25]. Consequently, 

inputting the 2505-length map data into the LSTM 

neural network results in effective feature extraction 

and classification. Through training on 19,200 images, 

the LSTM model learned the characteristics of the 

MALDI-TOF MS spectra at the strain level, achieving 

the identification of 48 Escherichia coli strains with  

a comprehensive accuracy of 92.24%. These results 

demonstrate that MALDI-TOF MS provides high-

resolution mass spectrometry data, enabling precise 

and accurate analysis of complex biological samples. 

When integrated with LSTM neural networks, this 

precision is further enhanced as the LSTM can 

efficiently process and interpret the intricate mass 

spectrometry data. MALDI-TOF MS often generates 

large datasets. LSTM neural networks are well-suited 

for managing such large datasets efficiently, offering 

quicker processing times and more efficient data 

handling than traditional statistical methods. LSTM 

networks’ ability to learn from and remember long 

sequences makes them ideal for predictive modeling 

in complex biological systems analyzed by MALDI-

TOF MS, leading to better prognostic and diagnostic 

tools. 

 

While our study marks a significant advancement in 

the field of microbial diagnostics, we acknowledge 

certain limitations that must be considered. One of the 

most notable limitations is the absence of a direct 

experimental comparison between our novel method 

and existing microbial identification techniques. Such  

a comparison could have provided a more robust 

foundation for validating our approach. Additionally, 

the lack of a definitive determination method, like 

Multi-Locus Sequence Typing (MLST) or genome 

MLST (gMLST), to confirm whether certain strains, 

such as strain 23, are subspecies of E. coli, is a notable 

limitation of our study. Despite these constraints, the 

integration of LSTM neural networks with MALDI-

TOF MS technology represents a significant leap 

forward in microbial diagnostics. 
 

Moreover, our study delves deeper into the potential of 

this methodology in identifying specific markers for the 

accurate discrimination of E. coli categories and its 

applicability in identifying pathogenic strains. This 

exploration not only highlights the novel contributions 

of the present study but also opens new avenues for 

future research in the field of microbial diagnostics. It 

suggests the possibility of developing more refined 

tools for microbial identification that could significantly 

impact clinical diagnostics and public health. 
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