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INTRODUCTION 
 

Ovarian cancer (OC) is the gynecological malignant 

tumor that exhibits the highest recurrence rate and 
mortality [1]. 70% of OC will relapse and eventually 
develop into platinum resistance that displays a poor 

prognosis with overall survival (OS) time less than 12 
months [2–4]. Therefore, it is important to illustrate  
the underlying mechanisms that contribute to adverse 

clinical outcomes of OC.  

Emerging research has highlighted the significant  
role of cancer-associated fibroblasts (CAFs) in tumor 
progression and therapeutic response [5]. CAFs engage 

in frequent communication with tumor cells and 
immune cells through paracrine signaling, remodeling 
of the extracellular matrix (ECM), and direct cell-to-cell 

contact [6]. The ECM produced by CAFs, serves as a 
physical barrier for tumors, hindering effective drug 
delivery and promoting the stemness of tumor cells  

[7, 8]. Cytokines secreted by CAFs, including TGF-β, 
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poor prognosis. Moreover, dCAFs were related to platinum resistance in ovarian cancer. The dCAF-based 
prognostic signature demonstrated favorable efficacy in both training and testing cohorts. 
Conclusion: This study illustrated the heterogeneity of CAFs in ovarian cancer. Notably, a specific CAF 
subpopulation, dCAF, was identified, and it was closely associated with adverse clinical outcomes. dCAF could 
serve as a promising therapeutic target and biomarker for precise medicine. 
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IL-6, and CXCL12, contribute to the malignant 
phenotype of tumor cells [9–11]. Moreover, biglycan 

derived from CAFs, can promote immunotherapy 
resistance and serve as a prognostic indicator of clinical 
outcomes of tumor patients [6, 12]. 

 
CAFs exhibit heterogeneity, and they can be classified 

into distinct subpopulations based on specific gene 
markers. The heterogeneity is partially attributed to their 
diverse cellular origins. The majority of CAFs originate 

from resting fibroblasts, and the others are acquired 
through epithelial-mesenchymal transition from epithelial 
cells, adipocytes, pericytes, and smooth muscle cells 

[13]. Besides, the heterogeneity is from divergent 
differentiation states of cells [14].  

 
Studies have shown that CAFs are divided into 
subpopulations with distinctive biological functions 

including ECM formation, cytokines secretion, self-
proliferation, and facilitating tumor metastasis [15–18]. 
Myofibroblastic CAFs (myCAF) and inflammatory 

CAFs (iCAF) are frequently recognized. Additionally, 
CAF subgroups encompass antigen-presenting CAFs, 

developmental CAFs, etc. [15–19]. More importantly, 
CAF subpopulations are associated with therapeutic 
response. For instance, LRRC15+ CAF subgroup acts 

as a determinant factor of immunotherapy response 
[20]. SLC14A1+ interferon-regulated CAFs correlate 
with poor prognosis and chemotherapy resistance in 

bladder cancer. Therefore, CAF subgroups are potential 
therapeutic targets for precision medicine. However, the 
landscape of CAFs in OC has not been fully illustrated. 

 
This study aimed to identify CAF subpopulations of  

OC and investigate their impacts on clinical outcomes 
by integrated transcriptomics. Three CAF subgroups 
were identified: desmoplastic CAF (dCAF), iCAF, and 

myCAF. Notably, dCAF was associated with prognosis 
and chemotherapy response of OC patients. For clinical 
application, we selected dCAF-relevant prognostic 

feature genes by machine learning methods and 
constructed a risk scoring system. This study enhances 

the understanding of CAFs in OC and provides a CAF 
subpopulation as a promising therapeutic target and 
biomarker. 

 

MATERIALS AND METHODS 
 

Material 

 
The data for this study were collected from The Cancer 

Genome Atlas Program (TCGA), the Gene Expression 
Omnibus (GEO), and the International Cancer Genome 
Consortium (ICGC). Patients were eligible if they  

met the following selection criteria: (a) pathologically 
diagnosed ovarian cancer; (b) available survival data. 

RNA sequencing (RNA-seq) and clinical data of  
OC patients in TCGA were downloaded from UCSC 

XENA (http://xena.ucsc.edu/). The RNA-seq data 
include raw read counts and transcripts per million 
(TPM) values. Gene array expression datasets 

(GSE26712, GSE63885, GSE30161), single-cell RNA 
sequencing datasets (scRNA-seq) (GSE165897, 

GSE158937, GSE147082), and a spatial transcriptomics 
dataset (GSE213699) were obtained from GEO 
(https://www.ncbi.nlm.nih.gov/geo/). RNA-seq and 

survival information of OC were downloaded from  
the ICGC database (https://dcc.icgc.org/). Ensembl IDs 
were annotated and converted to gene symbols using  

the gencode.v38.annotation.gtf, and the average values 
for duplicate genes were calculated. 

 
scRNA-seq analysis 

 

The samples from GSE165897, GSE158937, and 
GSE147082 were analyzed using “Seurat” (v4.3.0) and 
“harmony” (v1.2.0) R packages [21, 22]. Firstly, quality 

control measures were applied (nFeature_RNA > 200, 
nCount_RNA > 600, percent. mt < 20). Gene expression 

was then normalized using the “LogNormalize” method, 
and variable genes were selected based on the mean of 
“vst”. To account for the impact of the cell cycle, the 

CellCycleScoring function was employed. We performed 
Principal Component Analysis (PCA) for dimension 
reduction and selected the first 50 principal components 

for further analysis. The number of clusters was 
determined using the FindNeighbors and FindCluster 
functions at a resolution of 0.5. Uniform Manifold 

Approximation and Projection (UMAP) and t-
Distributed Stochastic Neighbor Embedding (t-SNE) 

were used for nonlinear dimension reduction and 
visualization. The three major cell types were annotated 
based on recognized markers: epithelial tumor cells 

(WFDC2, PAX8, and EPCAM), stromal cells (COL1A2, 
FGFR1, and DCN), and immune cells (CD79A, 
FCER1G, and PTPRC) [23]. The stromal cells were 

extracted and subjected to the above analysis process. 
The FindMarkers function was used to define marker 

genes for cell clusters. To determine the subcellular 
localization of these marker genes, the Unified Protein 
Database (UniProt) (https://www.uniprot.org/) was 

utilized [24]. Furthermore, Gene Ontology (GO) 
analysis of the marker genes was conducted using the 
clusterProfiler R package (v4.8.3) [25]. 

 
Spatial transcriptomics analysis 

 
The spatial transcriptomic data were analyzed using the 
“Seurat” R package (v4.3.0). For normalization, we 
applied the SCTransform function. Subsequently, PCA 

and UMAP were employed for dimension reduction. 
Clustering was performed using the default resolution 
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of the first 30 principal components. The module scores 
of genes were evaluated by the AddModuleScore 

function. The SpatialFeaturePlot function was used to 
visualize gene expression and module scores.  
 

Identification of transcription factors (TFs) by 

pySCENIC 

 
The SCENIC Suite is based on SCENIC (Single-Cell 
rRegulatory Network Inference and Clustering), which 

infers TFs and gene regulatory networks from scRNA-
seq [26]. In our analysis, we utilized pySCENIC 
(v0.12.1) with the default parameter. pySCENIC 

constructs a gene co-expression network by GRNBoost2 
then employs RcisTarget to identify DNA motifs within 

10kb upstream and downstream of the transcription start 
site to select the potential direct target genes (regulons) 
of TFs, and finally quantifies the activity of regulons 

using AUCell. 
 
Cell-cell communication 

 
We used CellphoneDB (v5.0.0) to identify cell-cell 

communication mediated by ligand-receptor complexes 
[27]. CellPhoneDB stores 978 proteins sourced from 
various databases such as UniProt, Ensembl, PDB, 

IUPHAR, and others. These proteins participate in 
1,396 distinct interactions. Ligand-receptor complexes 
were included if their component genes were expressed 

in over 10% of the cells at a given cell cluster.  
 
Non-negative matrix factorization (NMF) for 

molecular subtyping 

 

NMF is a group of algorithms in multivariate analysis 
and linear algebra that decomposes a matrix V into two 
matrices W and H, with the property that all three 

matrices have no negative elements. We applied NMF 
molecular subtyping in the TCGA cohort by the “NMF” 
R package (v0.25), using marker genes selected from 

scRNA-seq. The range of clusters (k) was chosen to be 
2 to 5, and the optimal number was determined based 

on cophenetic, dispersion, and silhouette indicators 
[28]. Kaplan-Meier (KM) survival analysis of subtypes 
was conducted using the “survival” and “survminer” R 

packages (v3.5.5, v0.4.9 respectively). 
 
Gene set enrichment analysis (GSEA) identifies 

chemotherapy response 

 
GSEA is a method used to determine whether a 

predefined gene set exhibits random distribution or 
aggregation at the top or bottom of an ordered gene list. 

The gene list is typically ordered based on specific 
criteria. The “limma” R package (v3.50.3) was used to 
identify differentially expressed genes (DEGs) between 

cancer subtypes. These DEGs were ranked by log fold 
change (FC) values [29]. We incorporated genes that 

were highly expressed in platinum-resistant patients in 
GSE63885 and GSE30161 as platinum-resistance gene 
sets (False Discovery Rate (FDR) < 0.05, logFC > 0). 

GSEA analysis was applied based on these gene sets.  
 

Drug sensitivity analysis 

 
The “pRRophetic” algorithm is employed to predict drug 

response from gene expression data, utilizing models 
derived from cancer cell lines. The algorithm calculates 
predicted sensitivity according to half-maximal inhibitory 

concentration (IC50) of drugs in Cancer Genome Project 
(CGP) cell lines. The predicted drug sensitivity was 

assessed by “pRRophetic” R package (v0.5) [30]. 
 
Cellular histochemical staining and 

immunohistochemistry (IHC) 

 
Surgical specimens of OC were collected at Zhongnan 

Hospital of Wuhan University between 2018 and 2022. 
The study was approved by the Ethics Committee of 

Zhongnan Hospital of Wuhan University. The samples 
underwent Masson staining, Sinus rose BB staining, and 
IHC. The methods are as follows: 

 
(a) Masson staining: OC tissues were fixed in  
formalin and Bouin’s solution for 1 hour at 56° C,  

and then embedded in paraffin to obtain 4 μm tissue 
sections. The sections were stained with Weigert’s iron 
hematoxylin, acid fuchsin solution, phosphomolybdic 

acid solution, and aniline blue solution (BQD-BIO) 
successively. The sections were then treated with 1% 

glacial acetic acid, dehydrated with anhydrous alcohol, 
cleared twice with xylene, and mounted with neutral 
gum. Masson staining allows visualization of collagen 

fibers in blue.  
 
(b) Sinus rose BB staining: OC tissues were fixed in 

formalin and embedded in paraffin to obtain 4 μm 
tumor tissue sections. The sections were stained with 

Harris hematoxylin and Sirius red saturated picric acid 
solution (BQD-BIO) successively. The sections were 
dehydrated with anhydrous alcohol, cleared thrice with 

xylene, and mounted with neutral gum. Sinus rose BB 
staining enables the visualization of collagen fibers in 
red. 

 
(c) IHC: OC tissues were fixed in formalin and then 
embedded in paraffin to obtain 4 μm tissue sections. 

The paraffin-embedded sections were dewaxed with 
xylene and ethanol, hydrated, and blocked. The sections 

were incubated with POSTN monoclonal antibody 
(66491-1, Proteintech, China) or SFRP2 monoclonal 
antibody (66328-1, Proteintech) overnight at 4° C and 
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then treated with a secondary antibody at room 
temperature for 30 minutes. Finally, they were observed 

using a 3,3’-diaminobenzidine (DAB) substrate kit and 
counterstained with hematoxylin. 

 
The average Optical Density (AOD) is used to quantify 
the expression levels of stained targets. ImageJ can 
measure the Integrated Optical Density (IOD) and 

stained area [31]. IOD represents the sum of the optical 
density of each pixel, which is directly proportional to 

the amount of targets. The ratio of IOD to the area is  
the AOD. 

 
/AOD IOD area=  

 
Ultrasound elastography 

 
Ultrasound elastography is used to quantitatively assess 

tissue stiffness. We utilized ultrasound elastography 
(Philips, EPIQ7) to examine the stiffness of tumor 
regions in 8 newly diagnosed OC patients before 

treatment from the Department of Gynecologic Oncology 
at Zhongnan Hospital of Wuhan University. Experienced 
sonographers performed tumor extent assessment and 

conducted elasticity coefficient measurements. 

 
Selecting feature genes and constructing a prognosis 

signature 

 
Firstly, we identified genes associated with OS using 

univariate Cox regression based on data from TCGA. 
Next, we employed the Least Absolute Shrinkage and 
Selection Operator (LASSO), Random Survival Forest 

Model (RSF), and Extreme Gradient Boosting Method 
(XGBoost) to select feature genes [32–34]. For LASSO, 

we utilized the “glmnet” R package (v4.1.8) and 
implemented it with 500-fold cross-validation to 
achieve the best fit. RSF was conducted by the 

“randomForestSRC” R package (v3.1.1), and feature 
genes were selected by the minimal depth method. We 
performed XGBoost using the “xgboost” R package 

(v1.5.2.1). The xgb.importance function was utilized to 
select feature genes. We intersected the results and used 

the coefficient of multivariate Cox regression to 
construct a risk score. 
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Validation of the prognostic signature 

 
We used the receiver operating characteristic curve 
(ROC) to validate the efficacy of the prognostic 

signature. Specifically, we employed the “tdROC” R 
package (v1.0) to generate time-dependent ROC curves 

(tdROC) and calculate the corresponding area under the 
curve (AUC) values, along with their 95% confidence 

intervals (CI), by the bootstrap method with a sampling 
frequency of 1000. tdROC is plotted based on a 
cumulative dynamic model, where each individual is 

classified into the death group or the survival group 
according to their state at time t. Furthermore, we 

extended the validation in three external cohorts, 
including GSE63885, GSE26712, and ICGC_AU. 
 

Cell culture 

 
The human ovarian epithelial cancer cell lines OVCAR3 

were purchased from American Type Culture Collection 
(ATCC, USA). The cell lines were routinely tested  

for mycoplasmas (MycoAlert Mycoplasma Detection 
Kit, Lonza, Switzerland). Cells were cultured in RPMI-
1640 medium (Procell) with 10% FBS (ABW) and  

1% penicillin-streptomycin (Procell, China). Cells were 
cultured at 37° C in a humidified incubator with 5% CO2.  
 

Cell proliferation assay 

 

Cells were seeded into 96-well plates at a density of 
10,000 cells per well. Next, recombinant POSTN 
protein (1 μg/ml, MCE, USA) and recombinant SFRP2 

protein (1 μg/ml, MCE) were separately added to each 
group. After 24 hours, cells were treated with different 
concentrations of cisplatin ranging from 0 to 512 μM 

for 24 hours. 10 μl cell counting kit-8 regent (CCK-8, 
Meilune, China) was added to each well and incubated 
for 1 hour. Absorbance was measured at a wavelength 

of 450 nm. The concentration-cell viability curve was 
plotted and IC50 was estimated. 

 
Statistical analysis 

 

Student’s t-test or Wilcoxon rank-sum test was used for 
the comparison of normally or non-normally distributed 
variables in two groups. The Shapiro-Wilk test was 

used to assess the normality of the variables. The 
significance of KM survival analysis was assessed by 

the Log-rank test. The significance of GSEA was 
evaluated by multiple hypotheses testing. Univariate 
Cox regression analysis was conducted to calculate the 

hazard ratio (HR) for OS. Statistical analysis was 
conducted by R (v4.1.0) and GraphPad Prism (v9.0). P-
value<0.05 was considered statistically significant. 

 

RESULTS 
 

Identification of CAF subpopulations in OC 

 
The study followed a workflow shown in Figure 1 

Initially, analysis of integrated OC scRNA-seq was 
conducted to distinguish tumor cell, immune cell, and 
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stromal cell. Within the stromal cell population, CAFs 
were further classified into three subpopulations: dCAF, 

iCAF, myCAF. By NMF clustering of OC patients, 
dCAF was discovered to exhibit an association with 
prognosis and therapeutic response, Lastly, a prognostic 

signature was developed based on dCAF-related 
feature genes selected by LASSO, RSF, and XGBoost 

methods. 
 
We integrated scRNA-seq data including GSE165897, 

GSE158937, and GSE147082. 31 OC samples were 
obtained (Supplementary Figure 1A). Following 
quality control, we retained 67,201 cells, which were 

subsequently classified into 27 clusters (Supplementary 
Figure 1B). These cells were further categorized into 

three main groups: epithelial tumor cells (33.31%, 
marked with EPCAM, PAX8, and WFDC2), immune 
cells (50.06%, marked with DCN, FGFR1, and 

COL1A2), stromal cells (16.63%, marked with PTPRC 
and FCER1G) (Figure 2A, 2B). After extracting stromal 
cells for analysis, we identified several cell clusters: 

dCAF (marked with CTHRC1, FN1, COL1A1), 
lymphatic endothelial cell (marked with RSAD1, 

PDPN), iCAF (marked with CFD, APOE, C7, IL-6), 
mesenchymal stem cell (marked with LOX), myCAF 

(marked with RGS5, MCAM, MYH11, ACTA2), 
vascular endothelial cell (marked with ANGPT2, 
PECAM1, VWF), low quality cell without detectable 

markers (Figure 2C, 2D and Supplementary Figure  
1C, 1D). To validate the subgroups of CAFs, we 

mapped the expression of marker genes to spatial 
transcriptomics and observed that dCAFs, iCAFs, and 
myCAFs exhibited unique spatial distribution in tumor 

microenvironment (Figure 2E).  
 
Identification of membrane proteins and biological 

functions of CAF subpopulations 

 

For better isolation of CAF subpopulations, we focused 
on marker genes that encode membrane proteins. We 
extracted the top 30 genes with the highest logFC 

values that were calculated by the FindAllMarkers 
function and then queried these genes in UniProt to 
obtain their cell membrane localization. As a result, we 

identified specific membrane proteins in each CAF 
subpopulation: CTSK and SULF1 for dCAF, APOE for

 

 
 

Figure 1. Workflow of the study. 
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iCAF, RGS5 for myCAF (Figure 3A). To gain insights 
into the biological functions of the CAF subgroups, we 

performed enrichment of marker genes in GO terms 
and examined the expression level of important genes. 
In dCAF, the expression of collagens was elevated, 

and the enriched gene sets involved in ECM. In  
iCAF, several inflammatory factors were up-regulated, 

correspondingly, the marker genes were associated 
with terms related to response to stress including 

corticosteroid, oxidative stress, toxic substance, and 
chemical stress. myCAF exhibited high expression 
level of smooth muscle cell markers, and terms related 

to actin regulation, cell-substrate adhesion, and muscle 
contraction were activated (Figure 3B, 3C). 

 

 
 

Figure 2. Identification of CAF subpopulations in OC. (A) UMAP plot of all cells, colored by cell types. (B) Dot plot showing expression 
of cell type markers. (C) UMAP plot of stromal cells, colored by cell types. (D) Dot plot showing the expression of gene markers of cell types in 
stromal cells. (E) Spatial distribution of CAF-subpopulation-specific scores defined by marker genes, calculated by the AddModuleScore 
function. Representative images are shown. 
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TFs and cell-cell communication of CAF 

subpopulations 

 
We utilized pySCENIC to identify activated TFs in 
CAF subpopulations. The higher the regulon specificity 

score (RSS) is, the more likely the regulon-related TFs 
are activated in this cell cluster. We screened the top 10 

regulons with the highest RSS across the three CAF 
subgroups. In iCAF, ATF and CREB5 were enriched. 
ATF4 and CREB5 belong to the ATF/CREB TF family. 

This family of proteins can modulate their transcriptional 
activity in response to extracellular signals, such as 
energy states and hormone levels. FOXO3 and FOXO4, 

members of the Forkhead TF family, were activated in 
iCAFs. This TF family is involved in diverse cellular 

processes including cell differentiation, metabolism, cell 
cycle progression, apoptosis, autophagy, and protection 
against cellular stress. In dCAFs, TCF4 and LEF1  

were activated. These two TFs collaboratively initiate 
the transcription of target genes in Wnt/β-catenin 
signaling pathway. No CAF subgroup-specific TFs 

were discovered in myCAFs (Figure 4A). 

Results of CellphoneDB revealed that CAFs exhibited 
frequent interactions with lymphatic endothelial cells, 

while interactions with CD8+ T cells and Treg cells 
were relatively rare (Figure 4B). In terms of cell-cell 
communication, we highlighted ECM complexes and 

immune-related ligand-receptor pairs. We observed that 
dCAFs had the highest number of interactions with other 

cells through ECM complexes (Supplementary Figure 
2). Notably, FN1-related complexes were primarily 
produced by dCAFs, suggesting their significant role in 

ECM-mediated communication (Figure 4C). iCAFs 
exhibited the greatest extent of interaction with other 
cells through immune-related pathways. IL-6 was an 

important cytokine produced by iCAFs (Figure 4D). 
 

NMF identifies dCAF-based cancer subtypes with 

different prognosis and therapeutic response 

 

We identified cancer subtypes based on the three CAF 
subgroups by NMF. We select the k value when the 
cophenetic started declining (Supplementary Figure 3). 

The results revealed that the prognosis of dCAF-based 
 

 
 

Figure 3. Membrane proteins and biological functions of CAF subgroups. (A) Violin plot showing the expression level of membrane 
protein markers in CAF subgroups. (B) Enriched gene sets in GO database of CAF subgroups. (C) Heatmap displaying the expression of genes 
involving the enriched gene sets. 
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cancer subtypes was different (P=0.00044), whereas 
the prognosis of iCAF- and myCAF-based cancer 

subtypes did not exhibit significant differences (P=0.62, 
P=0.3, respectively). Therefore, we further analyzed 
the characteristics of dCAF-based cancer subtypes 

(Figure 5A). The expression level of representative 
dCAF markers was distinctive in two subtypes, so we 

defined the subtypes as high-dCAF-infiltrating subtype 
(H-dCAF) (n=100) and low-dCAF-infiltrating subtype 
(L-dCAF) (n=278) (Figure 5B).  

 
We observed distinct chemotherapy response of  
the dCAF-based cancer subtypes. By performing 

GSEA using platinum-resistant genes from GSE30161 
and GSE63885, we found that these genes were  

markedly enriched in H-dCAF. Furthermore, scRNA-seq 
analysis revealed a significant up-regulation of these 
platinum resistance genes in dCAFs compared to other 

stromal cells (Figure 5C). Additionally, we employed  
the pRRophetic algorithm to obtain the predicted 

sensitivity of subtypes to 6 chemotherapy drugs: 
cisplatin, doxorubicin, etoposide, gefitinib, gemcitabine, 
paclitaxel, and we observed an increasing predicted 

drug sensitivity in H-dCAF, indicating that H-dCAF 
was more prone to multidrug resistance (Figure  
5D). As dCAFs enhance the deposition of matrix 

 

 
 

Figure 4. TFs and cell-cell communication of CAF subgroups. (A) Heatmap of the top ten TF regulons in CAF subgroups ranked by RSS 
scores, with color representing relative RSS values. (B) Heatmap showing cell types with significant correlations. The color represents the 
number of receptor-ligand pairs between cells. (C) ECM-related receptor-ligand pairs between CAF subpopulations and tumor cells with P < 
0.05. (D) Immune-related receptor-ligand pairs between CAF subpopulations and other cell types with P < 0.05. 
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Figure 5. dCAFs were related to prognosis and platinum response in OC. (A) KM survival analysis of CAF-based cancer subtypes.  
(B) The expression level of dCAF marker genes in dCAF-based cancer subtypes. (C) GSEA of GSE30161- and GSE63885-derived platinum 
resistance gene in dCAF-based cancer subtypes. Feature plot of these genes in stromal cells. (D) IC50 of drugs including cisplatin, paclitaxel, 
gemcitabine, gefitinib, doxorubicin, and etoposide in dCAF-based cancer subtypes, calculated by pRRophetic algorithm. (***p < 0.001, **p < 
0.01, *p < 0.05). 
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components, we conducted Masson staining and Sinus 
rose BB staining on OC specimens consisting of 3 

platinum-resistant and 4 platinum-sensitive OC. The 
results displayed a significant increase of collagen  
fiber density in resistant patients (P=0.001, P=0.0011, 

respectively) (Figure 6A). Intense collagen fiber density 
indicates heightened tissue stiffness. The results of 

ultrasound elastography further confirmed higher elastic 
coefficients in tumor regions of platinum-resistant 

patients, indicating greater tumor rigidity (P=0.00072) 
(Figure 6B). By intersecting the differentially expressed 

genes (DEGs) of cancer subtypes with the top 10 dCAF 
markers, we gained POSTN and SFRP2. IHC results 
demonstrated that platinum-resistant OC exhibited 

higher expression of POSTN and SFPR2 in stromal 
sections (P<0.0001, P=0.017, respectively) (Figure 6C). 

To verify the role of POSTN and SFRP2 in cisplatin 
sensitivity in OC cells, IC50 values were estimated by  

 

 
 

Figure 6. dCAFs were related to platinum resistance in OC patients. (A) Representative plots of Masson staining and Sinus rose BB 
staining in platinum-sensitive and -resistant OC cohorts (scale bar: 50 μm). The collagen fiber density was identified by AOD. (B) Elastic 
coefficient (kPa) and representative ultrasound elastography images of OC patients with platinum treatment. (C) Representative IHC staining 
of POSTN and SFRP2 in platinum-sensitive and -resistant cohorts (scale bar: 50 μm). The expression level of POSTN and SFRP2 was identified 
by AOD. (D) Quantitative analysis of IC50 of OVCAR3 with cisplatin treatment for 24 hours in the presence or absence of recombinant POSTN 
(1 μg/ml) or recombinant SFRP2 (1 μg/ml). (***p < 0.001, **p < 0.01, *p < 0.05). 
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CCK-8 assay. We observed that OVCAR3 cells treated 
with recombinant POSTN or recombinant SFRP2 had  

a significantly higher IC50 value compared to the 
untreated cells after 24 hours of cisplatin treatment 
(Figure 6D) (P = 0.023, P = 0.012, respectively). 

 
Machine learning to select feature genes and 

construct a risk score 

 
For clinical application, we utilized machine learning 

approaches to identify feature genes and develop a  
risk score as the dCAF-related prognostic signature. 
Initially, we conducted univariate Cox regression with  

a significance threshold of 0.05 and identified 47 
survival-related genes from 397 dCAF marker genes. 
Subsequently, we applied LASSO, RSF, and XGBoost 

and intersected the results, and obtained 8 genes, 
including CHN1 (HR = 0.845, 95% CI: 0.722-0.989), 

GNAS (HR = 0.81, 95% CI: 0.661-0.993), EPB41L2 
(HR = 1.22, 95% CI: 1.05-1.4), TSPAN9 (HR = 1.37, 
95% CI: 1.12-1.66), GAS1 (HR = 1.17, 95% CI: 1.06-

1.31), GBP1 (HR = 0.882, 95% CI: 0.791-0.984), DAP 
(HR = 0.772, 95% CI: 0.617-0.985), TCEAL4 (HR = 
0.756, 95% CI: 0.584-0.979) (Figure 7A). In LASSO, 

the best fit for the model was achieved when λ was set 
to 0.03, and 14 feature genes were selected (Figure 7B). 
In RSF, the importance of variables was evaluated by 

minimal depth, where a lower depth represents a greater 
importance for the outcome (Figure 7C). In XGBoost,  

a larger gain value indicates a greater contribution  
to predicting the outcome. CHN1 was identified as  
the most important predictive factor in selected genes 

(Figure 7D). 

 
We employed multivariate Cox regression and stepwise 

regression to construct a risk score that was calculated 
by summing the coefficients and gene expression. Based 
on the median score, we divided patients into low- and 

high-risk groups and performed KM survival analysis. 
The results demonstrated a significant difference in 

prognosis between risk groups in TCGA, GSE26712, 
and ICGC_AU (P<0.0001, P=0.0051, P<0.0001, 
respectively), and a marginally significant difference  

in GSE63885 (P=0.08) (Figure 6E). We validated the 
distribution of dCAF marker genes in risk groups by 
GSEA and noted significant enrichment of dCAF 

marker genes in the high-risk group (Supplementary 
Figure 4). In TCGA (n=378) training set, the risk score 

predicted 1-year, 3-year, and 5-year survival AUCs of 
0.705 (95% CI: 0.626-0.739), 0.743 (95% CI: 0.7-
0.772), and 0.729 (95% CI: 0.708-0.78). In GSE63885 

(n=75), the AUCs were 0.704 (95% CI: 0.553-0.762), 
0.683 (95% CI: 0.574-0.753), and 0.662 (95% CI: 
0.555-0.773). In GSE26712 (n=185), the AUCs were 

0.648 (95% CI: 0.569-0.714), 0.606 (95% CI: 0.578-
0.684), and 0.662 (95% CI: 0.591-0.712). In ICGC-AU, 

the AUCs were 0.648 (95% CI: 0.569-0.714), 0.606 
(95% CI: 0.578-0.684), and 0.662 (95% CI: 0.591-

0.712) (Figure 6F). The relatively lower AUCs of 
GSE26712 may be attributed to different distribution  
of clinical data. TCGA comprises patients across Stage 

I-IV, whereas GSE26712 only includes patients in Stage 
III. 

 

DISCUSSION 
 
This study delineated the heterogeneity of CAFs in  

OC through integrated transcriptomics and identified 
three CAF subpopulations: dCAF, iCAF, and myCAF. 

dCAFs were associated with poor prognosis and 
chemotherapy resistance, suggesting the potential as 
biomarkers and therapeutic targets. Moreover, by 

machine learning methods, a dCAF-based prognostic 
signature was developed and displayed favorable 
accuracy. 

 
By integrating samples in OC scRNA-seq datasets,  

we gained 8,943 CAFs and identified three CAF 
subclasses, including dCAF, iCAF, and myCAF, with 
different biological functions. dCAFs involved in 

ECM remodeling, marked with components of ECM 
(COL1A1, FN1, and CTHRC1). iCAFs displayed a 
strong association with inflammatory responses, 

characterized by inflammatory cytokines (IL-6 and 
APOE). myCAFs were marked with smooth muscle-
related genes (MCAM, MYH11, and ACTA2) and 

possessed contractile and secretory properties. These 
three CAF subgroups have been reported in other types 

of cancers. For instance, in pancreatic cancer, CAFs 
were classified into myCAFs with ACTA2 expression 
and iCAFs with IL-6 expression [16]. In colorectal 

cancer, two CAF subgroups were identified: ECM-
related CAF-As, myCAF-like CAF-Bs [35]. A pan-
cancer study recognized CAF subgroups including 

dCAFs, iCAFs, myCAFs, and proliferating CAFs [18]. 
These results demonstrate that CAF subgroups in  

OC share certain similarities with other cancers, and 
specific CAF subgroups exhibit analogous functions. 
 

The analysis of transcription factors (TFs) revealed  
the high expression of TCF4 and LEF1 in dCAFs, 
indicating potential activation of the Wnt/β-catenin 

pathway. TCF/LEF TFs interact with β-catenin, 
forming a complex to regulate the transcription of 

downstream genes [36]. In iCAFs, ATF4 and CREB5 
were up-regulated, and they are markers of cellular 
stress response [37]. This suggests that iCAFs may  

be generated in response to toxic stress induced by 
chemotherapy [23]. For cell-cell communication, we 
noted that dCAFs specifically interacted with tumor 

cells through FN1-related complex. FN1 in ECM  
has been shown to induce gemcitabine resistance in 
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Figure 7. Development and validation of the dCAF-based prognostic signature. (A) Workflow for feature gene selection and HR 
values of the 8 feature genes with 95% CI. (B) Characteristics of coefficient changes of variables; selection of tuning parameter λ and the 
corresponding number of variables through cross-validation in LASSO model. (C) Depths of feature genes calculated by the RSF model.  
(D) Gain values of feature genes calculated by the XGBoost model. (E) KM survival analysis was performed in the low- and high-risk groups 
categorized by the median risk score in the training set (TCGA) and validation sets (GSE63885, GSE26712, ICGC_AU). (F) ROC and AUC values 
with 95% CI of 1-, 3-, and 5-year survival prediction by the dCAF-based risk score in the training set (TCGA) and testing sets (GSE63885, 
GSE26712, and ICGC_AU). (***p < 0.001, **p < 0.01, *p < 0.05). 
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pancreatic cancer cells with integrin α5β1 or αvβ3 [38]. 
The formation of FN1-related ligand-receptor pairs may 

contribute to chemotherapy resistance in OC.  

 
To further investigate the impact of CAF 

subpopulations on clinical outcomes, we employed 
NMF for unsupervised clustering based on CAF 
marker genes. NMF was chosen due to its insensitivity 

to prior gene selection or initial conditions, making  
it advantageous over other clustering methods when 

working with gene expression matrices [39, 40].  
We observed that patients with a greater abundance  
of dCAFs exhibited worse prognosis and a higher 

likelihood of chemotherapy resistance. Moreover, the 
tumor regions of platinum-resistant patients displayed 
increased infiltration of collagen fibers and greater 

stiffness. Additionally, the dCAF markers, POSTN 
and SFRP2, also showed a positive expression in 

platinum-resistant patients and were associated with 
decreased sensitivity to cisplatin in epithelial OC  
cells. These results illustrate that dCAFs may play a 

significant role in the adverse clinical outcomes of OC.  

 
The risk score based on CAF-related genes has proven 

to be effective in predicting the prognosis of tumor 
patients [41]. Therefore, we aimed to select feature 
genes to construct a prognostic signature. LASSO, 

RSF, and XGBoost models are suitable for feature 
selection in survival data. By intersecting the results of 
these models, we identified 8 genes and constructed a 

risk score. The risk score demonstrated good efficacy 
in both the training and testing sets, suggesting its 

potential as a prognostic tool for OC patients. 

 
Currently, most anti-CAF therapies target CAFs as a 
whole without sufficient specificity [42–44]. However, 

the investigations into therapies that focus on specific 
CAF subpopulations are ongoing. One promising 

example is the use of GPR77 monoclonal antibodies, 
which specifically target CD10+ GPR77+ CAFs, can 
increase chemotherapy sensitivity in solid tumors  

in vivo [45]. Targeting dCAFs and the related marker 
genes may be a promising therapy for OC. 

 
In summary, the study characterized the landscape of 
CAFs in OC by integrative transcriptomics. Importantly, 
a specific CAF subpopulation, dCAF, was identified, 

and it was associated with adverse clinical outcomes. 
dCAF holds promise as both a potential therapeutic 
target and biomarker for OC. 

 

CONCLUSION 

 
We identified three CAF subpopulations in OC, dCAF, 
iCAF, and myCAF, by comprehensive transcriptomics. 

dCAF was found to be associated with poor prognosis 

and chemotherapy resistance. Furthermore, we selected 
dCAF-related feature genes and constructed a prognostic 

signature that displayed favorable efficacy. Overall, the 
study deepens the understanding of CAF heterogeneity  
in OC and identifies a CAF subpopulation, dCAF, related 

to adverse clinical outcomes. dCAF could serve as a 
potential therapeutic target and biomarker for precision 

medicine.  
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. UMAP plot of integrated scRNA-seq data including GSE147082, GSE158937, and GSE165897.  
(A) UMAP plot of all cells, colored by samples in datasets. (B) UMAP plot of all cells, colored by samples in datasets, colored by Seurat 
clusters. (C) t-SNE plot of stromal cells, colored by cell types. (D) Feature plot of gene markers of cell types in stromal cells. 
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Supplementary Figure 2. ECM-related receptor-ligand pairs between CAF subpopulations and other cell types (P < 0.05). 
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Supplementary Figure 3. Cophenetic, dispersion, evar, residuals, rss, silhouette coefficients, and sparseness concerning the 
number of clusters in dCAF, iCAF, and myCAF. 
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Supplementary Figure 4. GSEA of dCAF marker genes in risk groups. 


