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ABSTRACT 
 

Background: Bladder cancer (BLCA) is a highly aggressive and heterogeneous disease, posing challenges for 
diagnosis and treatment. Cancer immunotherapy has recently emerged as a promising option for patients with 
advanced and drug-resistant cancers. Fibroblasts, a significant component of the tumor microenvironment, play 
a crucial role in tumor progression, but their precise function in BLCA remains uncertain. 

Methods: Single-cell RNA sequencing (scRNA-seq) data for BLCA were obtained from the Gene Expression 
Omnibus database. The R package “Seurat” was used for processing scRNA-seq data, with uniform manifold 
approximation and projection (UMAP) for downscaling and cluster identification. The FindAllMarkers function 
identified marker genes for each cluster. Differentially expressed genes influencing overall survival (OS) of 
BLCA patients were identified using the limma package. Differences in clinicopathological characteristics, 
immune microenvironment, immune checkpoints, and chemotherapeutic drug sensitivity between high- and 
low-risk groups were investigated. RT-qPCR and immunohistochemistry validated the expression of prognostic 
genes. 

Results: Fibroblast marker genes identified three molecular subtypes in the testing set. A prognostic signature 
comprising ten genes stratified BLCA patients into high- and low-score groups. This signature was validated in 
one internal and two external validation sets. High-score patients exhibited increased immune cell infiltration, 
elevated chemokine expression, and enhanced immune checkpoint expression but had poorer OS and a 
reduced response to immunotherapy. Six sensitive anti-tumor drugs were identified for the high-score group. 
RT-qPCR and immunohistochemistry showed that CERCAM, TM4SF1, FN1, ANXA1, and LOX were highly 
expressed, while EMP1, HEYL, FBN1, and SLC2A3 were downregulated in BLCA. 

Conclusion: A novel fibroblast marker gene-based signature was established, providing robust predictions of 
survival and immunotherapeutic response in BLCA patients. 
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INTRODUCTION 
 

Bladder cancer (BLCA) is the 10th most common cancer 

worldwide, with uroepithelial carcinoma accounting for 

about 90% of cases. In 2020, there were approximately 

573,000 new cases and 213,000 deaths globally [1, 2]. 

Despite various treatments, the prognosis for BLCA 

patients remains poor, with a median overall survival 

(OS) of just 14 months [3]. Chemotherapy is a key first-

line treatment, but many patients eventually develop 

chemoresistance and experience tumor recurrence. 

Potential mechanisms behind this include enhanced 

chemoresistance in bladder cancer stem cells (CSCs) and 

the regulatory inactivation of oncogenes and tumor 

suppressor genes [4, 5]. 

 

Immune checkpoint inhibitors (ICIs) have become 

important for treating advanced and cisplatin-resistant 

BLCA, with PD-1/PD-L1 inhibitors approved for  

first- and second-line therapy. However, only a minority 

of patients benefit from these treatments [6, 7]. 

Biomarkers like tumor mutation burden (TMB) and 

immune checkpoint expression are used to predict 

immunotherapy response [8, 9], but do not fully capture 

the tumor microenvironment (TME) heterogeneity. 

Therefore, a tool to accurately predict BLCA prognosis 

and immunotherapy response is desperately needed. 

 

The TME includes various immune cells, stromal cells, 

extracellular matrix (ECM) molecules, and cytokines 

[10]. Changes in the TME composition can significantly 

affect tumor progression, invasion, and immunotherapy 

response [11, 12]. Fibroblasts, the main stromal cells in the 

TME, are transformed into cancer-associated fibroblasts 

(CAFs) by tumor cell-generated paracrine growth factors 

[13]. CAFs play roles in tumor cell proliferation, 

angiogenesis, ECM remodeling, and anti-tumor immunity 

[14]. They can secrete immunosuppressive cytokines like 

IL-6, CXCL1, and CXCL12, promoting immune escape 

or forming physical barriers to immune cell entry through 

ECM remodeling [15, 16]. BLCA patients with an 

immune-excluded phenotype due to CAFs and ECM 

show decreased responses to nivolumab, while muscle-

invasive BLCA patients with low CAF levels are more 

likely to achieve complete pathological remission with 

neoadjuvant chemotherapy [17]. 

 

Given the critical role of fibroblasts in anti-tumor 

immunity, further research on fibroblasts is essential for 

new BLCA treatments. Single-cell RNA sequencing 

(scRNA-seq) allows for the identification of individual 

immune cell subpopulations in the TME, providing 

insights into immune cell heterogeneity and molecular 

characteristics [18]. This study aims to identify fibroblast 

marker genes and molecular subtypes and establish a 

prognostic signature by integrating scRNA-seq and bulk 

RNA-seq data. We evaluated the correlation between the 

signature and prognosis, clinicopathological features, and 

immunotherapy response in BLCA patients. Our results 

offer promising biomarkers and potential therapeutic 

targets for BLCA patients. 

 

MATERIALS AND METHODS 
 

Data source and processing 

 

A total of 957 BLCA samples were included in this 

study. The scRNA-seq dataset GSE135337 containing 

seven primary tumor samples was obtained from  

the Gene Expression Omnibus (GEO) database 

(http://www.ncbi.nlm.nih.gov/geo/), and it was utilized 

to identify marker genes of fibroblasts. The TCGA-

BLCA dataset (411 samples) was merged with the 

GSE13507 dataset (165 samples), which were down-

loaded from UCSC Xena (https://xenabrowser.net/) and 

the GEO database, respectively. Batch effects were 

corrected with the “limma” and “sva” packages [19], 

which were used to construct the prognostic signature. 

To evaluate the predictive value of the prognostic 

signature for the effectiveness of immunotherapy in 

patients, the transcriptomic and matched clinical data  

of patients who underwent anti-PD1 and anti-PD-L1 

treatment from the GSE78220 dataset (n=26) and 

IMvigor210 cohort (n=348) were collected from GEO 

database and “IMvigor210CoreBiologies” package 

(http://researchpub.gene.com/IMvigor210CoreBiologies) 

[20]. This study was approved by the Ethics Committee 

of the Second Affiliated Hospital of Kunming Medical 

University (KYD213238). 

 

scRNA-seq analysis 

 

The scRNA-seq data were screened and analyzed using 

the R package “Seurat” [21]. Firstly, we performed 

quality control of the scRNA-seq data with the 

following criteria: 1) exclusion of genes that appeared 

in fewer than five cells; 2) removal of cells that 

expressed fewer than 300 genes; 3) elimination of cells 

with mitochondrial gene expression above 10%; 4) 

retention of cells with ribosomal genes > 3% and 5) 

inclusion of cells with hemoglobin genes < 0.1%. We 

then used the R package “harmony” to reduce batch 

effects between samples. Subsequently, we normalized 

the scRNA-seq data using the “ScaleData” and 

performed principal component analysis (PCA), and  

the uniform manifold approximation and projection 

(UMAP) [22] function to reduce the dimensionality.  

We employed the “FindAllMarkers” function to identify 

differentially expressed genes in various clusters. 

Finally, cells were clustered by a resolution of 0.8 and 

cell annotation was performed by the R package 

“singleR” [23] combined with manual adjustment. 
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Consensus clustering analysis 
 

Based on ten fibroblast marker genes, consensus 

clustering analysis was performed on the samples of the 

testing set with the R package “ConsensusClusterPlus” 

[24] to identify fibroblast subtypes. To ensure the 

stability of the clustering process, we employed a 

resampling rate of 80% and 1000 repeats. Subsequently, 

we selected cluster-effective results as the subtypes of 

BLCA patients based on survival analysis and differential 

expression of marker genes. 
 

Gene sets variation analysis (GSVA) and immune 

cell infiltration analysis 
 

For evaluation of differences in pathways between the 

three subtypes, we downloaded the HALLMARK,  

Kyoto Encyclopedia of Genes and Genomes (KEGG), 

and Reactome pathways from the MSigDB database 

(http://www.gsea-msigdb.org/gsea/index.jsp) and scored 

them utilizing the R package “GSVA” [25]. Heatmap 

plots were generated via the “pheatmap” package.  

To compare the immune cell infiltration between 

fibroblast subtypes, the immune score, stromal score, and 

ESTIMATE score of BLCA patients were measured 

using the R package “ESTIMATE” [26], and the fraction 

of immune cell infiltration was calculated by “ssGSEA” 

function of the R package “GSVA”. 
 

Construction of prognostic signature based on 

fibroblast cell marker genes 
 

Firstly, difference analysis was performed for each of 

the three subtypes, and genes that exhibited a |log2  

(fold change)|>1 and p-value<0.05 were considered as 

differentially expressed genes (DEGs). These DEGs were 

pooled to create a gene set, which we then subjected to 

the Gene Ontology (GO)/KEGG analysis using the  

R package “clusterprofiler” [27]. Next, we conducted 

univariate Cox regression analysis on all DEGs to 

identify the ten signature genes with the smallest p-value 

associated with prognosis. Subsequently, we performed 

Consensus clustering analysis on the signature genes  

to obtain two molecular subtypes. Finally, the final 

signature scores were calculated by the GSVA method 

based on ten signature genes, and prognostic signatures 

were established. In addition, the Kaplan-Meier survival 

curve was generated using the R package “survminer” 

(https://CRAN.R-project.org/package=survminer) to 

compare the differences in OS between high- and low-

score groups. 
 

Relationship between prognostic signature and 

immunotherapy 
 

To elucidate the relationship between risk score and 

tumor immune microenvironment, correlation analysis 

was used to assess the relationship between risk  

score and immune cell infiltration, as well as 50 

hallmark pathways. A significant correlation was 

defined as p<0.05. Moreover, the expression of multiple 

chemokines and immune checkpoints was compared 

between high- and low-score groups to reveal the 

relationship between risk score and immunotherapy. As 

TMB is closely related to immunotherapy efficacy, we 

analyzed the TMB levels between the two groups by the 

R package “maftools” [28]. In addition, the predictive 

ability of risk scores for immunotherapy was verified in 

the internal validation set GSE13507 and the external 

validation set GSE78220 and IMvigor210, respectively. 

 

Drug sensitivity analysis 

 

To investigate potential treatment options for 

immunotherapy-insensitive patients, we directed our 

attention toward targeted therapies. We estimated the 

50% maximum inhibitory concentration (IC50) of each 

sample to multiple anti-cancer drugs using the R 

package “pRRophetic” [29]. We then compared the 

differences in IC50 values between the high- and low-

score groups, where a higher IC50 value implies lower 

sensitivity to treatment. 

 

Quantitative real-time PCR (RT-qPCR) assays 

 

To validate mRNA levels, we performed RT-qPCR 

according to the manufacturer’s instructions. We 

purchased a normal bladder uroepithelial cell line  

(SV-HUC-1) and BLCA cell lines (UM-UC-3, RT4, 

T24, 5627, SW780, and J82) were purchased from  

the Shanghai Cell Bank of the Chinese Academy of 

Sciences and cultured them in Roswell Park Memorial 

Institute (RPMI) 1640 medium supplemented with  

10% fetal bovine serum. We extracted total RNA  

from BLCA and normal bladder uroepithelial cells 

using TRIzol reagent (Life Technology, CA, USA)  

and reverse transcribed it into cDNA using PrimeScript 

RT Master Mix (Takara, Tokyo, Japan), following  

the manufacturer’s instructions. Glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) was used as  

an internal control. The 2-ΔΔCt method was used to 

determine relative gene expression levels. Supplementary 

Table 1 lists all mRNA primers used. 

 

Immunohistochemistry (IHC) staining 

 

A total of 24 pairs of paraffin-embedded BLCA and 

adjacent samples were obtained from the Second 

Affiliated Hospital of Kunming Medical University, 

with approval from the ethics committee and written 
informed consent from each patient for the use of their 

materials. The tissue slices were baked at 65° C for  

2 hours, followed by dewaxing and antigen retrieval. 
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Endogenous enzymes were blocked using a 3% 

hydrogen peroxide solution for 10 minutes at room 

temperature. The slices were rinsed three times with 

phosphate buffer solution (PBS) for 3 minutes each time 

and then blocked with bovine serum albumin. The 

primary antibody was applied and incubated overnight 

at 4° C. After washing the slices three times with PBS 

for 5 minutes each time, the secondary antibody was 

applied and incubated at 37° C for 30 minutes. 

Diaminobenzidine was used for color rendering for 5-10 

minutes, followed by hematoxylin redyes for 3 minutes. 

The slices were observed under a microscope, and the 

integrated optical density (IOD) was measured using 

Image Pro Plus 6.0 image software. The relative 

expressions were presented as the average optical 

density (IOD/positive staining area). 

 

Statistical analysis 

 

All statistical analyses and data visualization were 

performed using the R software (Version 4.1.1) and 

GraphPad Prism (Version 9.0). We used Pearson 

correlation analysis to assess correlations between two 

continuous variables. The Wilcoxon test was employed 

to compare differences between two variables, and the 

Kruskal-Wallis test was used to compare multiple 

variables. Statistical significance was set at a two-sided 

p-value < 0.05. 

Availability of data and materials 

 

The analyzed datasets generated during the study are 

available from the corresponding author upon reasonable 

request. 

 

RESULTS 
 

Identification of fibroblast marker gene expression 

profiles 

 

After filtering the scRNA-seq data, we obtained 

information on the range of detected gene numbers,  

the number of transcripts sequenced, the percentage  

of mitochondrial/ribosomal/hemoglobin content in  

each sample, and the top 25 genes with the highest  

rate (Supplementary Figure 1). After reducing the 

dimensions, we identified 18 clusters and annotated 

them into five core cell types: T cells, malignant cells, 

monocytes, macrophages, fibroblasts, and endothelial 

cells. 21160 genes and 36532 cells were used for further 

analysis (Figure 1A). Notably, cluster 13 was defined  

as a fibroblast subpopulation. Figure 1B depicts the 

number of cells in each cell type, where the fibroblast 

subpopulation consists of 249 cells. Differential gene 

expression analysis was conducted for each cell type, 

and Figure 1C illustrates the top 5 up and down-

regulated genes in each cell type. A detailed list of 

 

 
 

Figure 1. Identification of fibroblast marker genes based on scRNA-seq data. (A) 18 cell populations and 5 cell types visualized by 
the UMAP algorithm. (B) Amount of cells and attribution of each cell type. (C) Identification of top 5 differential genes for each cell type by 
FindAllMarkers. 
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differential genes is provided in Supplementary Table 2. 

Among the fibroblast marker genes, we selected the  

top 10 differentially expressed genes, namely LUM, 

COL1A1, IGFBP7, TAGLN, COL1A2, CXCL14, 

ACTA2, SPARC, COL3A1, and DCN, and visualized 

their expression patterns in cells using “FeaturePlot” 

(Figure 2). Additionally, we observed a positive 

correlation between these marker genes (p<0.0001), and 

the results of univariate regression analysis revealed  

that all nine marker genes, except for CXCL14, were 

prognostic risk factors (Figure 3B). Following batch 

effect removal, the TCGA-BLCA and GSE13507 

datasets were combined as the testing set, which 

comprised 17147 genes and 576 samples (Figure 3A). 

The testing set was divided into gene high- and low-

expression groups according to the best cutoff value, and 

our analysis demonstrated that the OS of BLCA patients 

was significantly worse (p<0.05) in the high-expression 

group of the majority of marker genes (Figure 3C). 

 

Correlation between fibroblast marker gene 

subtypes and tumor immune microenvironment 

 

Consensus clustering analysis revealed the presence of 

three subtypes based on the expression levels of marker 

genes (Figure 4A). Kaplan-Meier survival analysis 

demonstrated that the median OS of patients in cluster  

B was substantially lower than the other two subtypes 

(p=0.018) (Figure 4B). Figure 4C shows the comparison 

of gene expression levels among the three subtypes, 

where cluster B had the highest expression levels of all 

marker genes, followed by cluster A (p<0.001). The 

distribution of the remaining clinical features in the three 

subtypes is shown in Figure 4D. We further performed 

pathway enrichment analysis for each subtype and found 

that cluster B was mainly enriched in immune, metabolic, 

and tumorigenesis-related pathways (Figure 5A–5C). 

Afterwards, we investigated the correlation between each 

subtype and the immune microenvironment by using  

the ESTIMATE algorithm. The results revealed that the 

stromal score, immune score, and estimated score of 

cluster B exhibited significantly higher values than those 

of the other two groups. (p<0.001) (Figure 6A, 6B). The 

results of the ssGSEA algorithm were similar and 

indicated that the infiltration level of most immune cells 

was higher in cluster B, with Monocyte, Myeloid-derived 

suppressor cells (MDSC), and T cells being the major 

immune cell types (Figure 6C). 

 

Development of molecular subtypes and prognostic 

signature 

 

A total of 723 DEGs were identified through a 

conjunction set following differential analysis among 

the subtypes (Figure 7A). Subsequently, GO/KEGG 

enrichment analysis revealed their association with  

an extracellular matrix structure, leukocyte migration, 

PI3K-Akt signaling pathway, and other functions 

(Figure 7B–7D). To detect prognosis-related genes, we 

performed univariate regression analysis and selected 

 

 
 

Figure 2. The expression of 10 fibroblast marker genes. 

11389



www.aging-us.com 6 AGING 

the top 10 genes with the smallest p-values as signature 

genes: EMP1, CERCAM, TM4SF1, FN1, HEYL, 

FBN1, ANXA1, LOX, SLC2A3, and SPOCD1. Among 

them, all but SPOCD1 were identified as prognostic risk 

factors (Figure 8A). Based on the signature genes,  

we classified the patients into two molecular subtypes 

(Figure 8B). Survival analysis revealed a significantly 

worse prognosis in patients belonging to gene cluster  

A (p<0.001) (Figure 8C), who also exhibited higher 

expression levels of signature genes (p<0.001). 

Furthermore, we compared the rest of the clinical 

characteristics (Figure 8D, 8E). We established a 

prognostic signature to comprehensively capture the 

differences between the two molecular subtypes. We 

calculated the signature scores through GSVA and 

divided the testing set samples into high- and low-score 

groups based on the optimal cutoff value. The median 

OS of patients in the high-score group was significantly 

lower than that of the low-score group (p<0.001) 

(Figure 8F). In repeated subgroup analysis, we observed 

that all patients in the high-score group belonged to  

the gene cluster A subtype, while most patients in the 

 

 
 

Figure 3. Significant correlation between fibroblast marker genes and prognosis of BLCA patients. (A) PCA plots of the testing set 
data before and after integration. (B) Correlation analysis and univariate regression analysis between fibroblast marker genes. Lines indicate 
a correlation between genes and p<0.0001; purple indicates a prognostic risk factor and green indicates a protective factor. (C) Kaplan-Meier 
curves for each marker gene with p<0.05. 
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Figure 4. Recognition of 3 fibroblast marker gene subtypes by consensus clustering analysis. (A) Consensus matrix plots. K = 3 

was determined as the optimal clustering number. (B) Kaplan-Meier survival analysis in clusters A, B, and C. (C) Differential expression of 
marker genes in fibroblast marker gene subtypes. (D) Heatmap of the marker gene expressions among clusters A, B, and C. 
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low-score group were in survival status. This indicates 

that the prognostic signature has good predictive value 

in BLCA (Figure 8G). Moreover, we found a significant 

positive correlation between risk score and multiple 

immune cell infiltrations (p<0.05), particularly MDSC, 

NKT cell, NK cell, and Treg cell (Figure 8H). 

 

Validation of the risk score in different clinical 

patho-characteristic subgroups 

 

The clinical characteristics of the tumor are of 

significant importance in determining its prognosis. 

Therefore, we evaluated the predictive capacity of  

the prognostic signature in patients exhibiting disparate 

states, genders, grades, N stages, T stages, and  

stages, by contrasting the discrepancies in clinical 

characteristics between high- and low-risk groups. 

Significant differences in risk scores were observed 

among all subgroups based on clinical characteristics,  

as illustrated in Figures 9A–9F. (p < 0.05). Moreover, 

the proportions of patients with death, high-grade, 

lymph node metastasis, T3/4, and stage III/IV were 

substantially higher in the high-score group than in  

the low-score group. Hence, it is suggested that risk 

scores have excellent predictive potential for clinical 

outcomes. 

 

Estimation and validation of the relationship between 

risk scores and immunotherapy response 

 

Previous studies have reported that gene mutations  

can modify the response of cancer patients to 

immunotherapy and impact the selection of clinical 

drugs and treatment outcomes. Therefore, in this study, 

we compared gene mutation differences between the 

high- and low-score groups and found that missense 

mutation was the most common type of mutation in 

BLCA patients, and most genes were mutated more 

frequently in the high-score group (Supplementary 

Figure 2A–2C). We then analyzed the expression levels 

of cytokines and immune checkpoints in both groups. 

As shown in Figure 10A, most chemokines, interferons, 

and other cytokines, except interleukins, were notably 

over-expressed in the high-score group. The results of 

pathway enrichment analysis further confirmed that the 

risk score was positively correlated with tumorigenesis 

 

 
 

Figure 5. Functional enrichment analysis of fibroblast marker gene subtypes. (A) Enrichment analysis of 3 clusters in the HALLMARK 

pathway. (B) KEGG pathway. (C) Reactome pathway. 
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and multiple immune-related pathways, including  

EMT, angiogenesis, compliment, and IL-6/JAK/STAT3 

signaling pathway (Figure 10B). 

 

Similarly, our comparative analysis revealed that the 

expression levels of five immune checkpoints, LAG3, 

CD274, CTLA4, PDCD1, and TIGIT, were significantly 

elevated in the high-score group (p<0.001) (Figure 10C). 

Collectively, these results demonstrated that the risk 

score was associated with the immunotherapy response 

in BLCA patients. To further substantiate this finding, 

we investigated the predictive value of the risk score by 

assigning patients in the GSE13507, GSE78220, and 

IMvigor210 cohorts to low-risk and high-risk groups. 

The risk score was found to have predictive value for 

immune checkpoint inhibitors. It was observed that 

 

 
 

Figure 6. Characteristics of the tumor immune microenvironment in fibroblast marker gene subtypes. (A) PCA plots of the 

distribution of different subtype samples. (B) Differences in expression levels of stromal, immune, and ESTIMATE scores between clusters A, 
B, and C. (C) Differences in immune cell infiltration among different fibroblast marker gene subtypes. 
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patients who responded to anti-PD1, anti-PDL1,  

and intravesical BCG immunotherapy had distinctly 

lower risk scores. In contrast, patients in the high-score 

group had significantly worse objective response rates  

to immunotherapy and were more inclined to poorer 

survival outcomes (p < 0.05). Additionally, we found 

that patients with high-score had a higher incidence  

of tumor progression compared to patients with low-

score (Figure 11A–11C). Taken together, these findings 

strongly suggest that the risk score may serve as  

a promising marker for immunotherapy in BLCA 

patients, potentially determining a specific immune 

profile. Patients in the high-score group are more likely 

to tolerate immunotherapy. 

 

Prediction of potential sensitive drugs 

 

Lastly, we investigated potentially sensitive chemo-

therapeutic agents for immunotherapy-tolerant patients. 

By comparing IC50 levels of chemotherapy drugs 

between the two groups, we found that patients  

in the low-score group exhibited lower IC50 values  

for anti-cancer drugs, including BIRB.0796, A.443654, 

ABT.888, AKT.inhibitor.VIII, ATRA, and BIBW2992. 

Patients with high scores were more likely to be 

sensitive to chemotherapy drugs, including AUY922, 

A.770041, AG.014699, AICAR, AMG.706, and 

AP.24534 (Figure 12). 

 

Validation of genes using IHC and in vitro assays 

 

The RT-qPCR results revealed a statistically significant 

difference in gene expression between normal bladder 

uroepithelial cells and BLCA for the nine genes 

analyzed (Supplementary Figure 3). Furthermore, the 

expression patterns of most genes observed in the  

PCR experiments were consistent with those observed 

in TCGA transcriptome data. To validate these 

experimental results at the translational level, IHC 

experiments were performed (Supplementary Figure 4). 

The expression levels of the nine genes were found  

to be consistent between mRNA and protein levels. 

 

 
 

Figure 7. Identification and functional enrichment analysis of DEGs between fibroblast marker gene subtypes. (A) Volcano 
plots of differential expression of genes among clusters A, B, and C. The red dots represent upregulated genes and the blue dots represent 
downregulated genes. (B) Bubble plots of the GO terms of differential expression of genes. (C) Bubble plots of the KEGG pathways of 
differential expression of genes. (D) Correspondence between top 5 pathway and genes in KEGG. 
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DISCUSSION 
 

Despite extensive use in tumor patients, immuno-

therapy’s response rate is not as excellent as expected. 

One of the most influential factors in the occurrence of 

immunotherapy resistance is the tumor immune escape 

mechanism. Evidence suggests that antigen-presenting 

cells are crucial for T-cell activation and tumor 

immunity, and cancers can evade this immunity through 

immune editing mechanisms such as immune 

dominance, the absence of immune checkpoints, or 

downregulating antigen-presenting cells. Recent 

advancements in cancer research have highlighted the 

TME as a key determinant of patients’ responses to 

immunotherapy [30–32]. CAFs, essential components 

of the TME, regulate tumor proliferation, angiogenesis, 

invasion, metastasis, and treatment resistance in 

numerous malignancies. The application of scRNA-seq 

technology has revealed the molecular features and 

heterogeneity of various cell types within the TME, 

primarily focusing on immune cells [33, 34]. However, 

the investigation of stromal cells within the TME has 

been limited. Fibroblasts, which constitute the majority 

of stromal cells in the TME, play a vital role in anti-

tumor immunity. At the initial stages of malignancy, 

fibroblasts can secrete TGFβ and hepatocyte growth 

factor, inducing the initiation of cancer within the 

normal human epithelium. Therefore, we employed a 

combination of bulk RNA-seq and scRNA-seq 

analyses to identify fibroblast-specific marker genes.  

 

 
 

Figure 8. Identification of molecular subtypes and prognostic signature. (A) Forest plots for the univariate regression analysis of the 

10 signature genes. (B) Consensus matrix plots based on signature genes. K = 2 was determined as the optimal clustering number. (C) Kaplan-
Meier survival analysis in molecular subtypes A and B. Patients in subtypes A were related to a poorer prognosis than those in subtypes B.  
(D) Differential expression of signature genes in molecular subtypes. *** indicates p<0.001. (E) Heatmap of the signature gene expressions 
among molecular subtypes A and B. (F) Kaplan-Meier survival analysis between high- and low-score groups. Patients in high-score groups 
were related to a poorer prognosis compared to those in low-score groups. (G) Sankey diagram showing the dynamics of individual clusters 
concerning survival status. (H) Heat map of the correlation between prognostic signature score and immune cell infiltration. Red represents a 
positive correlation, blue represents a negative correlation; * indicates p<0.05. 
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Subsequently, we classified BLCA patients into three 

distinct molecular subtypes using these markers and 

developed and validated a prognostic signature to 

predict the survival outcome and responsiveness to 

immunotherapy in these patients. 

 

Our findings demonstrate that the fibroblast-related 

prognostic signature is significantly associated with 

clinical characteristics and outcomes of BLCA patients. 

The high-score group was characterized by a higher 

grade, a more advanced stage, and an inferior OS. These 

results are consistent with previous studies that have 

linked fibroblast activity to poor cancer prognosis, but 

our study uniquely identifies specific marker genes and 

their implications in BLCA. Furthermore, the signature 

was validated across multiple datasets, demonstrating 

good stability in predicting OS. This prompted us to 

investigate the underlying mechanisms in greater depth. 

We determined ten genes (EMP1, CERCAM, TM4SF1, 

FN1, HEYL, FBN1, ANXA1, LOX, SLC2A3, and 

 

 
 

Figure 9. Correlation analysis of risk scores with clinical characteristics. Box plot for differences in risk score distribution (left) and 

bar plot for sample distribution in high- and low-risk groups (right) in different survival status (A), gender (B), grade (C), N stage (D), T stage 
(E), and tumor stage (F). 
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SPOCD1) that constituted the prognostic signature. 

HEYL, SLC2A3, and FBN1 were found to  

mediate tumor progression and chemoresistance 

mainly by facilitating angiogenesis and EMT  

[35–37], while CERCAM, ANXA1, and SPOCD1 

promoted tumor progression through the PI3K/ 

AKT and EGFR signaling pathways. The remaining 

genes were associated with immune cell infiltration 

and immunotherapeutic response [38–40]. After 

conducting GSVA analysis, we hypothesized that 

certain genes might contribute to the poorer prognosis 

observed in the high-score group. Additionally, 

studies have shown that OICR-9429 enhances the 

chemosensitivity of bladder cancer cells to cisplatin, 

increasing apoptosis rates and cisplatin cytotoxicity, 

thus holding significant clinical implications [41]. 

Remodelin, by inhibiting NAT10 expression, has been 

found to increase bladder cancer patients’ sensitivity 

to cisplatin, reducing the S phase population  

in the cell cycle, enhancing bladder cancer cell 

chemosensitivity to cisplatin, and inducing apoptosis 

[42]. This underscores the importance of discovering 

novel targets for chemoresistance in bladder cancer, 

representing a promising avenue of research. 

 

Our comprehensive investigation into the relationship 

between the prognostic signature and the tumor immune 

microenvironment revealed a positive correlation 

between the risk score and the infiltration of multiple 

immune cells, including MDSC, NK cells, and Treg 

cells. While cytotoxic T cells are critical effector 

molecules in anti-tumor immunity, CAFs and Treg cells 

can create immunologic barriers that lead to cytotoxic T 

cell dysfunction or exhaustion during cancer progression 

[43, 44]. This suggests that patients in the high-score 

group may experience reduced anti-tumor activity. 

 

 
 

Figure 10. Estimation of the relationship between risk scores and the tumor immune microenvironment. (A) Heat map of 

cytokine expression in high- and low-score groups. * indicates p<0.05, ** indicates p<0.01, *** indicates p<0.001. (B) Correlations between 
signature score and HALLMARK pathway. (C) Expression analysis of LAG3, CD274, CTLA-4, PDCD1, and TIGIT between high- and low-risk 
groups. 
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Further analysis showed that patients in the high-score 

group had significantly elevated levels of chemokine 

expression. The role of chemokines in the tumor 

immune response is bidirectional. Pro-tumorigenic 

immune cells can recruit immunosuppressive cells  

via chemokine-dependent infiltration at different 

tumorigenesis stages and immune cell activation states, 

thereby reinforcing pro-tumorigenic responses [45]. This 

 

 
 

Figure 11. Validation for the predictive role of risk score on the immunotherapeutic response. (A) Kaplan-Meier survival analysis 
and distribution of immunotherapy responses of high- and low-score groups in GSE78220. (B) Kaplan-Meier survival analysis and distribution 
of immunotherapy responses of high- and low-score groups in IMvigor210 dataset. (C) Kaplan-Meier survival analysis and progress risk of 
high- and low-score groups in the GSE13507 dataset. 
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phenomenon may partially contribute to the observed 

immunosuppression in the high-score group. 

 

Immune checkpoint molecules are crucial for immune 

function and have significant clinical implications  

in immunotherapy. Motivated by discrepancies in  

the tumor immune microenvironment, we explored  

the potential of the prognostic signature to predict 

responses to immunotherapy. We observed that patients 

in the high-score group had elevated levels of immune 

 

 
 

Figure 12. Prediction of potential sensitive drugs in high- and low-score groups. 
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checkpoints but exhibited poorer response rates to 

immunotherapy. These findings suggest immune 

exhaustion as a possible mechanism behind the 

resistance to immunotherapy in the high-score group. 

This is particularly innovative, as it indicates specific 

molecular targets for overcoming immune resistance  

in BLCA patients. 

 

The purpose of the signature is to enhance patients’ 

responses to immunotherapy and to identify methods 

of overcoming immune resistance. We predicted 

potential target drugs and found that both high- and 

low-scoring groups might benefit from six different 

anti-tumor drugs, including VEGFR inhibitors, AMPK 

activators, and PARP inhibitors, among others. For 

instance, Li et al. found that VEGFR and EGFR 

inhibition increases epithelial characteristics and 

chemotherapy sensitivity in mesenchymal bladder 

cancer cells [46]. Zhou et al. revealed that artesunate 

induces autophagy-dependent apoptosis through up-

regulating ROS and activating AMPK-mTOR-ULK1 

axis in human bladder cancer cells [47]. Moreover, 

Bhattacharjee et al. discovered that PARP inhibitors 

enhance and synergize with cisplatin to inhibit 

bladder cancer cell survival and tumor growth [48]. 

Collectively, these findings could serve as a clinical 

reference for selecting drugs, although these drugs 

need further confirmation through clinical studies 

before they can be applied. 

 

The present study has some limitations that can be 

addressed in future work. Firstly, we constructed  

the prognostic signature using the ten most relevant 

prognostic genes, but other prognostic-related genes 

were not included, which may introduce some bias.  

To avoid selection bias and enhance the accuracy  

of the analysis, future validation of this signature  

will require more prospective and multicenter  

BLCA cohorts. Secondly, the sample size of scRNA-

seq data is relatively small, and clinicopathological 

characteristic data were unavailable. Bulk RNA-seq 

analysis of a larger sample size partially compensates 

for this limitation and ensures the accuracy of  

the prognostic signature. Thirdly, it should be noted 

that the mechanisms discussed in this study and  

the sensitive drug predictions are primarily based  

on the analysis of public databases and theoretical 

descriptions. Further in vivo and in vitro experiments 

are required to confirm the predictive value and 

potential mechanisms of this signature. Lastly, 

biomarker-driven prospective clinical trials are needed 

to determine treatment decisions for advanced- 

stage tumors. Therefore, our next objective is to 
conduct a comprehensive study aimed at elucidating 

the potential mechanisms underlying this signature, 

with the ultimate goal of its clinical application. 

CONCLUSIONS 
 

After analyzing scRNA-seq and bulk RNA-seq data, 

we have successfully developed and validated a risk 

signature associated with fibroblasts. This signature 

can serve as an independent prognostic indicator for 

patients diagnosed with BLCA. The signature is reliable 

and robust and can accurately predict the outcomes for 

BLCA patients. This can help clinicians make more 

informed and rational decisions related to treatment. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Quality control of scRNA-seq data. (A) Correlation between nFeature_RNA and nCount_RNA. (B, C) 
Information of filtered scRNA-seq data from 7 BLCA samples. (D) The top 25 genes with the highest percentage of cellular expression. 
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Supplementary Figure 2. Gene mutations in the high- and low-score groups. (A, B) Distribution of gene mutations in the high- and 
low-score groups. (C) Comparison of the gene mutations in the high- and low-score groups. 
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Supplementary Figure 3. mRNA expression levels of model genes in bladder uroepithelial cell line (SV-HUC-1) and BLCA cells 
(UM-UC-3, RT4, T24, 5627, SW780, and J82). 
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Supplementary Figure 4. Reprehensive image of the expression of model genes in tumor and paired normal samples 
revealed by IHC. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 2. 

 

Supplementary Table 1. Primer sequences in RT-qPCR. 
 

Forward primer Reverse primer 

EMP1 GTGCTGGCTGTGCATTCTTG CCGTGGTGATACTGCGTTCC 

CERCAM GAGCCCAGGTTCTACCCAGAT GCAGAGTCTGATTGTTGGTCA 

TM4SF1 TGCATCGGACATTCTCTGGTG GTTCCAGCCCAATGAAGACAA 

FN1 CGGTGGCTGTCAGTCAAAG AAACCTCGGCTTCCTCCATAA 

HEYL GGAAGAAACGCAGAGGGATCA CAAGCGTCGCAATTCAGAAAG 

FBN1 TTTAGCGTCCTACACGAGCC CCATCCAGGGCAACAGTAAGC 

ANXA1 GCGGTGAGCCCCTATCCTA TGATGGTTGCTTCATCCACAC 

LOX CGGCGGAGGAAAACTGTCT TCGGCTGGGTAAGAAATCTGA 

SLC2A3 GCTGGGCATCGTTGTTGGA GCACTTTGTAGGATAGCAGGAAG 

GAPDH CCCACTCCTCCACCTTTGAC CCACCACCCTGTTGCTGTAG 

 

Supplementary Table 2. A detailed list of differential genes. 
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