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INTRODUCTION 
 

In acute myeloid leukemia (AML), hematopoietic  

stem cells exhibit abnormal proliferation, survival,  

and differentiation [1–3]. Conventional therapies for 

AML include chemotherapy [4, 5] and stem cell 

transplantation [6, 7]. Chemotherapy destroys leukemia 

cells by using cytotoxic drugs to inhibit abnormal 

proliferation [8]. Although chemotherapy has achieved 

significant therapeutic effects in some patients, it is 

often accompanied by a series of side effects, such as 

immunosuppression, nausea, and hair loss, which have 
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ABSTRACT 
 

Immune-associated ferroptosis plays an important role in the progression of acute myeloid leukemia (AML); 
however, the targets that play key roles in this process are currently unknown. This limits the development 
of mRNA vaccines based on immune-associated ferroptosis for clinical therapeutic applications. In this 
study, based on the rich data resources of the TCGA-LAML cohort, we analyzed the tumor mutational 
burden (TMB), gene mutation status, and associations between immune and ferroptosis genes to reveal the 
disease characteristics of AML patients. To gain a deeper understanding of differentially expressed genes, 
we applied the Limma package for differential expression analysis and integrated data sources such as 
ImmPort Shared Data and FerrDb V2. Moreover, we established gene modules related to TMB according to 
weighted gene coexpression network analysis (WGCNA) and explored the functions of these modules in 
AML and their relationships with TMB. We focused on the top 30 most frequent genes through a detailed 
survey of missense mutations and single nucleotide polymorphisms (SNPs) and selected potentially critical 
gene targets for subsequent analysis. Based on the expression of these genes, we successfully subgrouped 
AML patients and found that the subgroups associated with TMB (C1 and C2) exhibited significant 
differences in survival. The differences in the tumor microenvironment and immune cells between C1 and 
C2 patients were investigated with the ESTIMATE and MCP-counter algorithms. A predictive model of TMB-
related genes (TMBRGs) was constructed, and the validity of the model was demonstrated by categorizing 
patients into high-risk and low-risk groups. The differences in survival between the high-risk patients and 
high-TMB patients were further investigated, and potential vaccine targets were identified via immune cell-
level analysis. The identification of immunity- and ferroptosis-associated signature genes is an independent 
predictor of survival in AML patients and provides new information on immunotherapy for AML. 
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significant impacts on patient quality of life [9]. 

Conversely, the application of stem cell transplantation 

has been limited due to the difficulty of donor matching 

and the possibility of rejection and other complications 

after transplantation [10, 11]. Although conventional 

therapies play a role in AML treatment, their efficacy  

is still unsatisfactory. Therefore, the search for more 

innovative and individualized treatment modalities has 

become urgent for improving outcomes and survival 

rates in patients with AML. 

 
With the rise of individualized therapy [12] and 

precision medicine, immunotherapy, an emerging field 

of cancer treatment, has provided a new treatment 

pathway for AML patients [13, 14]. Over the past  

few years, mRNA vaccine technology has developed 

rapidly [15] and has shown great potential in the field of 

cancer immunotherapy [16, 17]. By delivering synthetic 

mRNAs encoding specific antigens to the body, mRNA 

vaccines stimulate a patient’s immune system to produce 

targeted antibodies or T-cell responses, thus facilitating 

a precise fight against cancer cells [18]. Compared with 

traditional vaccines, mRNA vaccines can be designed 

and produced more rapidly and flexibly and can respond 

rapidly to the mutation of pathogens or heterogeneous 

tumors [19]. Moreover, mRNA vaccines are highly 

individualized and can be customized according to a 

patient’s genetic background and disease characteristics, 

improving the precision of treatment. This personalized 

treatment approach provides a new way to treat  

AML and other tumor types [20] and is expected to 

constitute a breakthrough in the field of treatment. 

However, nevertheless the process of preparing mRNA 

vaccines is becoming increasingly mature, it is not  

yet possible to develop a mature mRNA vaccine for 

AML; primarily because no suitable mRNA vaccine 

target has been identified [21] that can effectively 

trigger a rapid and effective antitumor immune response 

in patients [13]. 

 
In ferroptosis, reactive oxygen species (ROS) are 

upregulated in response to iron, which is different from 

other programmed cell death pathways, such as 

apoptosis, necrosis, and autophagy [22]. In ferroptosis, 

lipid peroxidation of unsaturated fatty acids on the cell 

membrane is catalyzed by Fe2+ or ester oxygenase, 

resulting in cell death by lipid peroxidation. Ferroptosis 

is intricately linked to the pathophysiology of cancer 

[23, 24], neurological diseases, and other diseases; 

therefore, ferroptosis has been an important focus of 

disease research in recent years. Several researchers 

have screened mRNA vaccine targets based on the 

mechanism of ferroptosis [25], but these targets have 

not yet been identified in AML-related studies. 

Therefore, we investigated ferroptosis as a new strategy 

for screening mRNA vaccine targets [26, 27]. 

In this context, we aimed to explore the characteristic 

genes related to immunization and ferroptosis as 

potential targets for mRNA vaccine design in  

AML patients. Through bioinformatic analysis, we 

successfully identified four characteristic genes 

associated with ferroptosis, providing us with the 

possibility of identifying new therapeutic targets. Our 

study aimed to fill this gap in the existing research 

and provide a new direction for mRNA vaccine design 

in AML patients by identifying ferroptosis-related 

genes. 

 

RESULTS 
 

Tumor-associated gene mutation landscape 

 

Figure 1 shows the flowchart of how we conducted our 

study. In the TCGA-LAML cohort, we first examined 

the mutational burden of each patient (Figure 2A–2E). 

Multiple variant types, including missense mutations 

and SNPs, were analyzed to gain a comprehensive 

understanding of the genetic variability characterizing 

the tumors. This cohort was characterized by missense 

mutations as the most common type of variation, while 

SNPs were the most common form of variation. Among 

the SNV classifications, the most common was C > T. 

We further explored the mutations in the 10 most 

common genes (Figure 2F), and additional detailed 

information about the mutations in the top 30 genes in 

each patient is shown in Figure 2G. 

 

Identification of potential ferroptosis-related genes 

 

Due to the lack of controls for the LAML cohort in the 

TCGA data frame, we performed batch correction and 

merged the TCGA-LAML data with the GTEx data; 

next, we performed differential analysis based on the 

Limma package in R to identify DEGs. Figure 3A 

shows the DEG screening and a thresholding analysis 

identified 5668 upregulated and 5316 downregulated 

genes. By integrating data from ImmPort Shared Data 

(https://immport.org/shared/home) and FerrDb V2 

(http://www.zhounan.org/ferrdb/current), a gene list of 

2257 genes was compiled. The intersection of 856 

genes was taken as a candidate gene for further analysis 

(Figure 3B). 

 

Even though LAML development is associated with 

many changes in immunity and ferroptosis regulation, 

we do not know whether all of these genes are mutated 

during the tumor process, which is especially critical to 

vaccine function. The accumulation of TMB in each 

patient was then examined (Figure 3C), defining the top 

one-third of patients with the highest TMB as “high 

mutation load patients” and the bottom one-third as 

“low mutation load patients”. Subsequently, WGCNA 
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was used to identify gene modules associated with TMB 

among immune and ferroptosis genes. 

 

In order to establish scale-free networks, the soft 

thresholding power was set to β=6 as a result of  

scale independence and mean connectivity (Figure 

3D–3E). A gene cluster dendrogram containing six 

coexpression models was generated using the dynamic 

tree cut package (Figure 3F–3G). The coexpression 

models are shown in blue, turquoise, brown, green, 

yellow, and gray and contain 146, 218, 128, 70, 81, 

and 43 genes, respectively.  Vital status and TMBRG 

have a significant module-trait relationship when  

p <0.05 was considered significant (Figure 3H). As a 

result of these analyses, the 562 genes in the blue, 

turquoise, brown, and green modules were selected 

for further analysis. 

 

Identification of AML subtypes 

 

Since the immune response to mRNA vaccines has 

different effects on different populations, we next 

continued to explore whether patients could be 

differentiated into subgroups based on TMBRGs. The 

TMBRGs were screened based on one-way Cox 

regression analysis, with p < 0.01 serving as the 

threshold for identifying TMBRGs associated with 

prognosis; the results are presented as a forest plot  

in Figure 4A. Genes associated with prognosis were 

examined to explore the correlation between the 

different genes (Figure 4B). Almost all genes expressed 

positively in response to UNC93B1. Then, based on  

the K-means clustering algorithm, different groups of 

patients were classified, namely, the C1 and C2 groups 

(Figure 4C, 4D). Through PCA, we found that the 

LAML cohort was more clearly distinguished. An 

analysis of survival data revealed that patients in the  

C2 group had a significantly better prognosis than those 

in the C1 group (Figure 4E, p<0.001). Predicting 

vaccine effectiveness requires an understanding of  

the tumor immune microenvironment [28]. Based on  

the ESTIMATE algorithm, we analyzed the tumor 

microenvironment in the LAML cohort and explored 

the differences between the C1 and C2 cohorts (Figure 

4G). As a result, the C1 patients’ stromal, immune, and 

ESTIMATE scores were significantly higher than those 

of the C2 patients (all p < 0.001), C1 and C2 patients 

had significantly different tumor microenvironments. 

We further quantified the absolute abundance of 8 

immune cell types and 2 stromal cell types in 2 

subpopulations according to the MCP-counter algorithm 

after calculating the stromal and immune components  

of the tumors via the ESTIMATE algorithm: T cells, 

CD8+ T cells, cytotoxic lymphocytes, B lineage cells, 

NK cells, monocytic lineage cells, myeloid lineage 

cells, and NK cells. The cells were classified as 

monocytic lineage cells, myeloid dendritic cells, 

neutrophils, endothelial cells, or fibroblasts (Figure 4H). 

Patients with C1 had significantly higher levels of 

monocytic lineage cells, myeloid dendritic cells, and 

neutrophils than patients with C2, and the above results 

indicate that the TMBRGs were able to differentiate 

 

 
 

Figure 1. An overview of the study procedure is shown in the flow chart above. 

11941



www.aging-us.com 4 AGING 

between the two types of patients whose tumor 

microenvironments were different. Notably, unlike in 

patients with solid tumors, in the LAML cohort, we 

found that the subgroup with the best prognosis  

had higher levels of immune cells, which may be  

due to the massive expansion of immature cancer  

cells, which are immune cells, after the onset of 

leukemia. 

Validation of the AML subtype training model 

 

The next objective was to identify a specific target  

for a candidate mRNA vaccine so that the prognosis  

of injected populations may be improved to a level 

consistent with that of the C2 in the TMBRG sub-

group. A one-way Cox regression analysis was used to 

screen the TMBRGs for prognostic genes at p < 0.05.   

 

 
 

Figure 2. Tumor mutational burden of patients in the TCGA-LAML cohort. (A–E) The multiple forms of genomic mutations in the 
AML patients. (A) Variant classification. (B) Variant type. (C) SNV class. (D) Variants per sample. (E) Variant classification summary.  
(F) Mutations in the 10 most common genes. (G) The landscape of the genomic alterations in the top 30 genes per patient. 
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Figure 3. Identification of the ferroptosis-related genes. (A) Differential gene screening revealed a total of 5668 upregulated 
genes and 5316 downregulated genes based on the threshold. (B) By taking the intersection, 856 genes were identified as candidate 
genes for subsequent analysis. (C) Accumulation of TMB in each patient. (D, E) To establish scale-free networks, the soft thresholding 
power was set to β=6 based on scale independence and mean connectivity. (F, G) The dynamic tree cut package was used to generate 
a gene cluster dendrogram containing 6 coexpression models. (H) The coexpression models are shown in blue, turquoise, brown, 
green, yellow, and gray and contain 146, 218, 128, 70, 81, and 43 genes, respectively. p <0.05 was considered to indicate a s ignificant 
module-trait relationship between the TMBRGs and vital status.  
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Multivariate Cox regression was used to analyze the 

results. Subsequently, a multifactorial Cox regression 

model was used for modeling. A ratio of 8:2 was  

used between the training and internal test groups in  

the TCGA-LAML cohort. Additionally, the GSE71014 

cohort from the GEO database was classified as an 

external test group. The final model coefficients were 

constructed as follows: risk score = [value of 

SOCS1×(0.70)] + [value of HSPA1B×(0.40)] + [value 

of PLXNB1×(-0.55)] + [value of IL2RA×(0.93)] + 

[value of INSR×(-1.47)] + [value of UNC93B1×(0.80)] 

(Figure 5A). 

 

 
 

Figure 4. Identification of AML subtypes. (A) Based on one-way Cox regression analysis, the TMBRGs were screened, and p<0.01 was 
used as the threshold to filter out the prognosis-related TMBRGs. The results are shown in the form of forest plots. (B) To explore the 
correlation between the different genes, the correlation of prognosis-related genes was evaluated. (C, D) The K-means clustering algorithm 
was used to classify the patients into different clusters resulting in the C1 and C2 clusters. (E) Survival analysis showing that the prognosis of 
patients in the C2 group was significantly better than that of patients in the C1 group (p<0.001). (F, G) Tumor microenvironment analysis of 
the LAML cohort using the ESTIMATE algorithm and further exploration of the differences in the tumor microenvironments of the patients in 
clusters C1 and C2. (H) The use of the MCP-counter algorithm to further quantify the absolute abundance of 8 immune cells and 2 stromal 
cells in the 2 subgroups after the ESTIMATE calculation of tumor stromal and immune components was performed. These cells included T 
cells, CD8+ T cells, cytotoxic lymphocytes, B lineage cells, NK cells, monocytic lineage cells, myeloid lineage cells, and NK cells, as well as the 
absolute abundance of the tumor stromal and immune components in the 2 subgroups. Monocytic lineage cells, myeloid dendritic cells, 
neutrophils, endothelial cells, and fibroblasts. 
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Figure 5. Validation of the AML subtype training model. (A) The GSE71014 cohort from the GEO database was downloaded as the 
internal test group, and the following final model coefficients were constructed: risk score = [value of SOCS1×(0.70)] + [value of 
HSPA1B×(0.40)] + [value of PLXNB1×(-0.55)] + [value of IL2RA×(0.93)] + [value of INSR×(-1.47)] + [value of UNC93B1×(0.80)]. (B–D) The 
training cohort, internal test group, and external test cohort were divided into high-risk and low-risk groups. (E, F) The risk scores and survival 
times of the different patients in the TCGA-LAML cohort and GSE71014 cohort. (G, H) The prognosis of the high-load patients was better than 
that of the low-load patients due to the presence of more mutation sites. (I) We constructed a column chart to better guide the identification 
of high-risk patients in the clinic. 
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We conducted broader research on the six genes  

we screened and found existing studies supporting 

their potential in tumor immunotherapy. Previous 

research has focused on aspects such as immunity and 

cell differentiation to explain why these genes have 

therapeutic potential. However, the premise for the 

immune system to eliminate cancer is its ability to 

induce programmed cell death. Interestingly, previous 

studies on AML have lacked information related to the 

apoptotic pathway. Therefore, we conducted analyses 

related to ferroptosis. Interestingly, the results we 

obtained coincided with those of previous research, 

mutually validating our findings. 

 

There is a close relationship between UNC93B1, IL2RA, 

HSPA1B, and SOCS1 overexpression and chemotherapy 

resistance in patients with acute myeloid leukemia 

(AML). Specifically, UNC93B1, a transmembrane 

protein involved in regulating intracellular Toll-like 

receptor (TLR) signaling, plays a crucial role in this 

process. Its expression is significantly positively 

correlated with that of CD14, CD68, and almost all 

Toll-like receptors. The high expression of UNC93B1 is 

also associated with the infiltration of innate immune 

cells. This finding suggests a critical role for UNC93B1 

in AML progression. Similarly, the α chain of IL-2RA 

encodes the IL-2 receptor, whose overexpression is 

closely associated with chemoresistance and poor 

prognosis in AML, and it has been shown that IL-2RA 

antibodies target leukemic cells without affecting 

normal hematopoietic cells. These findings show that 

this target has the potential for treating cancer and  

has a considerable degree of safety. HSPA1B is rarely 

reported in AML, but it has been shown to correlate 

with the progression of microvascular complications, 

suggesting its importance in tumorigenesis and tumor 

immunity. SOCS 1 has been identified as a negative 

regulator of the JAK/STAT pathway in several studies. 

Abnormal SOCS 1 expression not only promotes cell 

carcinogenesis but also controls the proliferation and 

differentiation of hematopoietic precursor cells via 

methylation of the SOCS 1 gene in AML patients, 

subsequently promoting the growth and proliferation of 

AML cells. 

 

In contrast, INSR and PLXNB1 are protective genes and 

are downregulated upon AML relapse. The expression 

of INSR, an evolutionarily conserved signaling protein 

that is downregulated upon relapse in AML patients, 

may be related to the inhibition of tumor cell growth 

and proliferation. As a nodal gene, INSR was found  

to be downregulated at relapse by rule modeling in  

adult AML patients. There are few reports on the role  
of PLXNB1 in AML, but it plays an important role  

in the chondrogenic differentiation of bone marrow 

mesenchymal stem cells (BMSCs) and is regulated by 

miR-362-5p. High expression of PLXNB1 promotes  

the chondrogenic differentiation of BMSCs, and its 

downregulation upon AML relapse may have a 

protective effect against disease progression. The 

changes in the expression of these two genes provide 

new perspectives on the prognosis and treatment of 

AML patients, suggesting their potential value in 

individualized treatment. 

 

The TRAINING cohort, internal test group, and 

external test group were divided into high-risk and low-

risk groups according to the calculated risk score 

(Figure 5B–5D). In all three groups, the high-risk group 

had a significantly lower survival rate than the low-risk 

group, and this difference was statistically significant  

(p < 0.05). The risk scores and survival statuses of  

the different patients in the TCGA-LAML cohort and 

GSE71014 cohort are further shown in Figure 5E, 5F. 

Interestingly, we also compared the differences in 

survival between patients with a high TMB and those 

with high-risk scores. Due to the presence of more 

mutation sites, the prognosis of high-load patients was 

better than that of low-load patients (Figure 5G). We 

further categorized the patients into 4 groups according 

to TMB and risk score: H-TMB+high risk, H-TMB+low 

risk, L-TMB+high risk, and L-TMB+low risk. Low-risk 

scores and high TMB were associated with the best 

prognosis, while high-risk scores and low TMB were 

associated with a worse outcome. Considering the small 

sample size of the cohort, this may be the reason why 

the distinction did not reach the threshold of p < 0.05 

after assessing the 4 groups. To facilitate the use of this 

model, we constructed a column-line diagram to better 

guide the identification of high-risk patients in the clinic 

(Figure 5I). 

 

Immune characteristics of the AML subtypes 

 

We further examined the immune differences between 

patients with different risk scores. The first step was  

to examine the expression of the 6 genes in the  

TCGA-LAML and GSE71014 cohorts, as shown in 

Figure 6A, 6B. Based on our ssGSEA calculations, we 

examined immune cell differences and immune function 

differences between the high- and low-risk groups and 

found that the high-risk group had higher levels of aDCs, 

B cells, CD8+ T cells, DCs, iDCs, neutrophils, NK cells, 

pDCs, T-helper cells, Tfhs, Th1 cells, Th2 cells, TILs, 

and Tregs than did the low-risk group. Only two immune 

cell types, macrophages, and mast cells, were more 

common in the low-risk group than in the high-risk 

group (Figure 6C). The high-risk group showed higher 

immune function indicators than the low-risk group 
(Figure 6D). Thus, the high expression of the above six 

genes improved patient prognosis, and these genes could 

be candidates for mRNA vaccines in further research. 
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DISCUSSION 
 

We systematically examined the tumor mutation types 

in the TCGA-LAML cohort and investigated in depth 

the genetic variants of each patient in the TCGA-LAML 

cohort, focusing on two common variant types, missense 

mutations and single-nucleotide polymorphisms (SNPs). 

As shown in Figure 2A–2E, in the TCGA-LAML cohort, 

a missense mutation was the most common variant 

classification, while a SNP was the most common 

variant type. These findings highlight the important role 

of these mutations in the development of AML. In 

addition, we examined the detailed mutation profiles  

of the top 30 genes, as demonstrated in Figure 2F, 2G. 

These genes were selected based on their importance  

in the development of AML. We focused on the 

mutation frequencies and patterns of these genes to 

explore their biological significance in the disease 

process. This detailed mutation information provides a 

solid foundation for subsequent differential expression 

analysis and screening of candidate genes. Our goal  

was to identify genes closely associated with AML 

development, especially those related to immune function 

and ferroptosis regulation. 

 

We performed differential gene analysis of the  

TCGA-LAML cohort by using the Limma package to 

clarify the changes in the expression of genes closely 

associated with AML development. To enrich our list of 

candidate genes and ensure that our subsequent studies 

 

 
 

Figure 6. Immune characteristics of the AML subtypes. (A, B) The expression levels of the six genes in the TCGA-LAML and GSE71014 

cohorts based on the ssGSEA calculations. (C, D) The differences in immune cells and immune functions between the high- and low-risk 
groups revealed that the high-risk group had more immune cells than the low-risk group for most of the immune cell types. Only two types of 
immune cells, macrophages, and mast cells, were more common in the low-risk group than in the high-risk group. The high-risk group was 
found to have greater immune function than the low-risk group. 
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covered key genes related to the regulation of  

immune function and ferroptosis in AML, we integrated 

information from ImmPort Shared Data and FerrDb  

V2. By taking the intersection, we identified a final  

list of 856 genes as candidate genes for subsequent 

analysis. Drug resistance remains a major challenge  

in cancer treatment. Interestingly, a ferroptosis-induced 

reversal of cancer resistance has been observed when 

ferroptosis is induced [29]. Moreover, Tumor research 

relies heavily on TMB [30, 31]; as a result, it is crucial 

to investigate TMB’s association with immune and 

ferroptosis genes. We examined the TMB accumulation 

of each patient in the TCGA-LAML cohort and defined 

the highest one-third of patients as “high mutation load 

patients” and the lowest one-third as “low mutation load 

patients” for further analysis. Through the application of 

WGCNA, we identified the immune- and ferroptosis-

related genes associated with TMB and divided the 

network into six coexpression modules by dynamic tree 

cutting; these modules contained different numbers of 

genes of different colors. In the ensuing association 

analysis, we specifically emphasized the relationship 

between TMBRGs and these modules and explored  

the association of each module with TMB at the p < 

0.05 significance level. During this step, immune and 

ferroptosis genes associated with TMB were identified 

and their expression patterns at different TMB levels 

were examined. 

 

Due to its heterogeneity, AML has a poor prognosis and 

a low rate of recurrence. Tumor cells are aggressive and 

sensitive to treatment based on their molecular and 

genetic characteristics [32]. Thus, integrating subtypes 

into the clinical management of AML is crucial [33]. 

We screened TMBRGs by univariate Cox regression 

analysis and constructed a prediction model to classify 

patients into two distinct subgroups, C1 and C2, to 

further investigate the association between TMB and 

patient survival. First, we performed a one-way Cox 

regression analysis of the TMBRGs and used p < 0.01 

as the threshold for screening to identify genes 

associated with patient prognosis. The purpose of this 

step was to construct a more accurate prediction model 

to ensure that the selected genes were significantly 

associated with patient survival. Survival analysis  

based on these TMBRGs showed that we successfully 

categorized the patients into two distinct groups—C1 

and C2—and that the survival of the C2 patients was 

significantly better than that of the C1 patients. This 

difference was demonstrated in the survival curves,  

p < 0.001, which strongly emphasized the significant 

difference in survival between these two subgroups. 

These findings suggest that TMBRGs play a key role  
in stratifying the survival risk of patients, providing 

important clues for further individualized treatment 

planning, which is also in line with previous findings 

[34]. The survival advantage of C2 patients may  

reflect the positive response of their tumor immune 

environment, which is related to the synergistic effect of 

TMB [35]. 

 

Several studies have demonstrated that the tumor 

microenvironment significantly influences treatment 

response and clinical outcomes [36, 37]. We used  

the ESTIMATE algorithm and the MCP-counter 

algorithm to conduct an in-depth analysis of the tumor 

microenvironment of the patients, with special attention 

given to the differences between the C1 and C2 patients, 

to explore the immune characteristics of these two 

subgroups. First, there was an overall difference in the 

tumor microenvironment between C1 and C2 patients 

based on the ESTIMATE algorithm. Compared to C2 

patients, C1 patients scored higher on stromal, immune, 

and ESTIMATE scores, implying that the tumor 

microenvironment of the C1 patients was relatively 

greater in terms of the tumor stroma and immune cell 

penetration. In the C1 and C2 patients, there was a 

significant difference in the overall composition of the 

tumor microenvironment, which may have a profound 

impact on patient treatment response and prognosis. 

Using the MCP-counter algorithm, we quantified the 

immune and stromal cell abundance. Among the eight 

immune cell types and two stromal cell types, the 

abundance of three immune cell types—monocytic 

lineage cells, myeloid dendritic cells, and neutrophils—

was significantly higher in C1 patients compared to  

C2 patients. This difference in immune cells may be 

consistent with the relatively higher stromal and 

immune scores in the C1 patients, further highlighting 

the significant difference in immune cell composition 

between the C1 and C2 patients. The significant increase 

in immune cells in the C1 patients may reflect a 

stronger immune response to tumor antigens generated 

by TMBRGs, which provides valuable clues for vaccine 

target research and development. Fully understanding 

the difference between the C1 and C2 patients at the 

immune cell level helps us to more accurately predict a 

patient’s response to immunotherapy and provides more 

information for individualized treatment planning. 

 

We ultimately screened six candidate genes, UNC93B1, 

INSR, IL2RA, PLXNB1, HSPA1B, and SOCS1. 

Although these candidate genes require functional 

validation, previous reports support their potential in 

tumor immunotherapy. For instance, IL2RA encodes 

the alpha chain of the interleukin-2 receptor and 

represents a low-affinity receptor for interleukin-2  

(IL-2). Along with IL2RB (CD122) and IL2RG 

(CD133), these proteins form the high-affinity IL-2 
receptor [38, 39]. Overexpression of IL2RA, encoding 

the alpha chain of the IL2 receptor, is linked to 

chemotherapy resistance and poor outcomes in AML 
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patients. IL2RA antibodies inhibit leukemic but not 

normal hematopoietic cells [40–42]. SOCS1 is a 

member of the SOCS protein family. SOCS1 functions 

as a negative regulator of the JAK/STAT pathway, 

suppressing intracellular signal transduction activated 

by cytokines. This regulatory role is crucial in 

controlling the proliferation and differentiation of 

hematopoietic precursor cells. Aberrant expression of 

SOCS1 promotes cell transformation and contributes  

to carcinogenesis [43–45]. The INSR gene encodes a 

highly conserved signaling protein that plays diverse 

roles in metazoan development. Furthermore, INSR is 

downregulated at relapse in adult AML patients via 

rule-based modeling, where it serves as a node gene 

[46, 47]. Furthermore, high UNC93B1 expression  

tends to be associated with the infiltration of innate 

immune cells, including macrophages, dendritic cells, 

neutrophils, eosinophils, and NK CD56dim cells [48]. 

Therefore, the UNC93B1 gene plays a critical role in 

the advancement of AML. 

 

Unlike the IL2RA, SOCS1, INSR, and UNC93B1 

genes, the PLXNB1 and HSPA1B genes have been  

less commonly reported in AML-related studies. 

PLXNB1 exhibits high expression during BMSCs’ 

chondrogenic differentiation, and its overexpression 

enhances this process. Mechanistically, PLXNB1 is a 

target of miR-362-5p [49]. The HSPA1B gene has  

long been recognized to be involved in microvascular 

complication progression. One possible reason for the 

relatively small number of reports on the HSPA1B  

gene in AML is that HSPA1B is associated with most 

microvascular complications [50], and microvascular 

complications are one of the links in tumorigenesis. 

This finding suggests a key role for the HSPA1B gene 

in follow-up studies of tumor immunity. 

 

In our study, we analyzed the close relationship 

between TMBRGs and patient prognosis and explored 

the potential value of these genes as potential vaccine 

targets. First, we screened for TMBRGs by Cox 

regression analysis and constructed a reliable prediction 

model to classify patients into high- and low-risk 

groups. This model demonstrated strong predictive 

performance in both the TCGA-LAML cohort and 

GSE71014 cohort. Patients in the high-risk group 

exhibited significantly lower survival rates compared to 

those in the low-risk group, a statistically significant 

difference observed across cohorts and subgroups. This 

provides strong support for the robustness and utility of 

our model. Furthermore, we compared the survival of 

high-load and high-risk patients. In line with our 

expectation, the survival of patients with high tumor 
loads was relatively better because they had more 

mutation sites. This result reinforces the importance of 

TMB in predicting patient prognosis and provides a 

biological rationale for the use of TMBRGs as potential 

vaccine targets. 

 

We explored the association of TMBRGs with the 

immune status of patients and focused on the potential 

role of these genes in immunotherapy and their potential 

as vaccine targets. First, we conducted a detailed 

investigation into the differences in immune cells and 

immune functions between the high-risk and low-risk 

groups using ssGSEA-based calculations. Our findings 

revealed that elevated expression of TMBRGs correlated 

with enhanced immune activity, underscoring the critical 

role of these genes in influencing patients’ immune 

status. This heightened immune cell activity may serve  

as a biological foundation for the poorer prognosis 

observed in the high-risk group. Second, we analyzed the 

association between high TMBRG expression and better 

prognosis. By comparing the survival of the high-load 

and high-risk patients, we found that the patients with 

high expressions of TMBRGs had a better prognosis. 

This result further emphasizes the positive role of  

these genes in tumor biology and provides a biological 

rationale for their use as potential vaccine targets. Finally, 

we investigated whether high TMBRG expression could 

be a potential vaccine target. Through an in-depth 

analysis of the genes identified in our study, we suggest 

that these genes may be important targets for tumor 

immunotherapy. The association of these genes with 

immune differences suggested that regulating the 

expression of these genes may affect the activity of 

immune cells and thus have a positive effect on tumors. 

Therefore, the high expression of TMBRG is potentially 

valuable as a vaccine target [51, 52] and deserves 

additional in-depth experimental studies and clinical 

validation in the future. 

 

The novelty of this study lies in the comprehensive 

analysis of tumor mutational burden (TMB) and gene 

mutations in acute myeloid leukemia (AML) patients by 

systematically integrating various bioinformatics tools and 

databases. Using TCGA-LAML cohort data, we identified 

the most common mutation types in AML, including 

missense mutations and SNPs, and further analyzed the 

distribution and biological significance of the 30 most 

frequently mutated genes. Additionally, by integrating the 

ImmPort Shared Data and FerrDb V2 databases, we 

identified 856 candidate genes related to immunity and 

ferroptosis and used weighted gene coexpression network 

analysis (WGCNA) to identify gene modules associated 

with TMB. We developed a predictive model based on 

TMB-related genes to classify AML patients into high-

risk and low-risk groups, and we validated the model’s 

efficacy. Finally, using the ssGSEA and ESTIMATE 
algorithms, we conducted a thorough analysis of the 

tumor microenvironment and immune cell variations 

among patients. This analysis identifies novel potential 
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targets for mRNA vaccine design. This comprehensive 

multilevel analysis approach is unprecedented in AML 

research and provides an important theoretical foundation 

for personalized treatment. 

 

Despite the novel findings of this study, there are 

limitations. Due to the unique nature of AML  

as a hematologic malignancy, the difficulty in sample 

collection is significantly greater than that of  

common solid tumors. This results in generally smaller 

sample sizes in bioinformatics studies of hematologic 

malignancies, including ours. This may affect the robust-

ness and generalizability of the results, necessitating 

further validation in subsequent clinical studies. Future 

research can expand on this study in several dimensions. 

For example, other biomarkers, such as proteomics  

and metabolomics, could be integrated for multi-

dimensional comprehensive analysis to further elucidate 

the complex pathogenesis of AML. Additionally, in 

vaccine development, based on the findings of this 

study, further exploration of the specific identification 

and functional research of mRNA vaccine targets is 

needed to expedite the translation of research findings 

into clinical applications. 

 

MATERIALS AND METHODS 
 

Acute myeloid leukemia dataset source and 

preprocessing 

 

The workflow of our study is shown in Figure 1. A total 

of 151 LAML patients were identified in the TCGA 

database, and their data included RNA-seq (FPKM) 

data, variant VarScan data, and clinical information.  

We excluded patients without survival information.  

For the control group, we obtained sequence data  

from the GTEx database. To mitigate batch effects 

arising from nonbiological technical biases, we applied 

the “ComBat” algorithm from the sva package and 

conducted differential gene analysis. Additionally, we 

utilized the GSE71014 cohort from the GEO database 

as an external validation dataset. 

 

Comparison of genetic alterations 

 

The cBioCancer Genomics Portal (cBioPortal, 

https://www.cbioportal.org/) was used to integrate the 

raw RNA-seq data from the TCGA and other databases 

and compare genetic alterations in AML patients. P-

values < 0.05 were considered to indicate statistical 

significance. 

 

WGCNA analyses 

 

To explore immune- and ferroptosis-related genes 

associated with TMB, we conducted weighted gene 

coexpression network analysis (WGCNA) to construct 

coexpression modules of differentially expressed genes 

(DEGs). Using the WGCNA R package (v1.68), we 

identified coexpressed modules that represented diverse 

subtypes in the TCGA cohort. These modules were 

clustered to observe similarities among them. Module 

significance indicated the relationship between modules 

and TMB status. Module membership, defined as the 

correlation coefficient between genes and module 

eigengenes, assessed the reliability of genes within each 

module. Gene significance reflected the association 

between genes and traits. Significant modules were 

identified based on their correlation with TMB-related 

characteristics, and core genes from the most correlated 

module were identified as TMB-associated genes. 

Subsequently, we used the ClusterProfiler R package 

(v3.14.3) to perform Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) analyses 

of these TMB-associated genes. 

 

Identification and validation of AML subtypes 

 

Genes from both the TCGA-LAML and GTEx cohorts 

were selected to delineate distinct ferroptosis regulation 

patterns mediated by ferroptosis-related genes (FRGs). 

Employing unsupervised clustering analysis, we aimed 

to identify these patterns based on gene expression  

and classify patients for further investigation. The 

number and stability of clusters were determined using 

the consensus clustering algorithm implemented via  

the “ConsensusClusterPlus” package, ensuring robust 

classification through 1000 repetitions. Subsequently, 

the TCGA-LAML cohort was partitioned into a training 

group and an internal test group at an 8:2 ratio. We 

validated the results of unsupervised clustering in the 

internal test group. Principal component analysis 

(PCA), a method frequently used for dimensionality 

reduction, was employed to confirm the reliability of 

the consensus clusters. 

 

Estimation 

 

The efficacy of vaccines is intricately linked to the 

tumor immune microenvironment. We used the 

ESTIMATE algorithm to perform an in-depth tumor 

microenvironment analysis of the patients in the 

LAML cohort to explore its predictive role in  

vaccine therapy. In particular, we focused on the 

significant differences in the tumor microenvironment  

between the C1 and C2 patients. The ESTIMATE  

algorithm provided comprehensive information on the  

tumor microenvironment by evaluating the relative 

proportions of immune and nonimmune cells in tumor 
tissue. Using this algorithm, we derived stromal 

scores, immune scores, and estimated scores to assess 

the relative abundance of stromal and immune cells 
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within the patients’ tumor tissues. Subsequent  

analysis uncovered notable disparities in the tumor 

microenvironment between the C1 and C2 groups. 

 

Kaplan-Meier survival analysis 

 

According to the median value of the risk score 

(calculated using the “survminer” R package), AML 

patients were categorized into high-risk and low-risk 

groups. Kaplan-Meier survival analysis was conducted 

to evaluate the survival rate and median survival time 

for each group. The log-rank test was employed to 

assess differences in survival between these groups. 

Furthermore, a time-dependent receiver operating 

characteristic (ROC) curve was generated using the 

“time ROC” R package to determine the specificity and 

sensitivity of the risk model. 

 

ssGSEA 

 

Normalized TCGA GTEx data were juxtaposed with the 

gene set utilizing the “GSVA” algorithm (R package). 

ssGSEA categorizes gene sets based on shared 

biological functionalities, chromosomal localization, and 

physiological regulation [53]. We identified 16 types of 

immune cells: activated dendritic cells (aDCs), B cells, 

CD8+ T cells, dendritic cells (DCs), immature dendritic 

cells (iDCs), neutrophils, NK cells, plasmacytoid 

dendritic cells (pDCs), T-helper cells, follicular T-helper 

cells (Tfhs), Th1 cells, Th2 cells, tumor-infiltrating 

lymphocytes (TILs), regulatory T cells (Tregs), 

macrophages, and mast cells. Additionally, 13 types of 

immune functions were categorized: antigen-presenting 

cell (APC) coinhibition, APC costimulation, chemokine 

receptor (CCR), checkpoint cytolytic activity, human 

leukocyte antigen (HLA), inflammation-promoting 

major histocompatibility complex (MHC) class I, para-

inflammation, T-cell coinhibition, T-cell costimulation, 

type I interferon (IFN) response, and type II IFN 

response. 

 

Using the ssGSEA scores of each sample, we conducted 

unsupervised classification of PDAC samples using the 

ConsensusClusterPlus R package (v1.50.0) with a 

consensus clustering algorithm. Principal component 

analysis (PCA) was employed to evaluate the clustering 

effect of the model. 

 

Statistical analysis 

 

All statistical analyses were conducted using R (version 

3.6.1). The Wilcoxon test was utilized to assess 

differences between two groups, while ANOVA was 
employed for comparisons involving multiple groups.  

A significance level of p < 0.05 was deemed indicative 

of statistical significance. 
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