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INTRODUCTION 
 

Sepsis, a critical immune response dysregulation leading 

to organ dysfunction [1], has an incidence of 45 cases per 

10,000 individuals and a mortality rate of about 20% 

[2, 3]. Septic cardiomyopathy (SCM), characterized by 

reversible cardiac depression in early severe sepsis and 

septic shock [4], significantly impacts patient outcomes 

[5]. The primary pathologic mechanisms in SCM involve 

cardiomyocyte damage and myocardial dysfunction. 

Currently, SCM diagnosis relies on myocardial damage 

markers and echocardiography [6, 7], limiting early 

patient intervention. Identifying novel biomarkers for 

SCM could be crucial in reducing mortality. 
 

Non-coding RNAs (ncRNAs), unable to encode 

proteins, encompass both small non-coding RNAs 

(sncRNAs) and long non-coding RNAs (lncRNAs) [8]. 

MicroRNAs (miRNAs), a sncRNA type, along with 

lncRNAs, play pivotal roles in various physiological 

processes [9–11]. The competitive endogenous RNA 

(ceRNA) networks, comprising lncRNAs sharing 

miRNA response elements with mRNAs, regulate 

disease progression, including in sepsis and SCM [12, 

13]. For instance, the lncRNA TTN-AS1/miR-29a/E2F2 

ceRNA network has been implicated in SCM-related 

myocardial damage reduction [13]. 

 

In SCM, abnormal immune responses are a key factor in 

cardiomyocyte dysfunction. The innate immune system, 

including crucial neutrophil components, plays a vital 

role in sepsis progression [14–16]. Dysfunctional 

neutrophils may directly cause organ damage in sepsis 

[17], implicating their potential role in sepsis-induced 

myocardial damage. However, the exact mechanism 

remains unexplored. 

 

Our study utilized bioinformatics analysis to identify 

differentially expressed genes (DEGs) in SCM, using 

datasets GSE79962 and GSE44363. We performed 
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ABSTRACT 
 

Septic cardiomyopathy (SCM) is a critical sepsis complication characterized by reversible cardiac depression 
during early septic shock. Neutrophils, integral to innate immunity, can mediate organ damage when abnormal, 
but their specific role in sepsis-induced myocardial damage remains elusive. Our study focuses on elucidating 
the role of Neutrophil-Related Genes (NRGs) in SCM, finding early diagnosis and treatment biomarkers. We 
identified shared differentially expressed genes (DEGs) from datasets GSE79962 and GSE44363 and pinpointed 
hub DEGs using the cytoHubba plugin in Cytoscape software. The Neutrophil-Related Hub Gene (NRHG) MRC1 
was identified via intersecting hub DEGs with NRGs from WGCNA. We validated MRC1's abnormal expression in 
SCM using our data and external datasets. Furthermore, a neutrophil-related ceRNA network (AC145207.5/ 
miR-23a-3p/MRC1) was constructed and validated. Our findings reveal MRC1 as a potential NRHG in SCM 
pathogenesis, offering insights into neutrophil-mediated mechanisms in SCM and providing a novel molecular 
target for early diagnosis and intervention in SCM. 
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GO/KEGG enrichment analysis on the shared DEGs, 

followed by constructing a protein-protein interaction 

(PPI) network using the STRING database. The top  

10 hub genes were identified using CytoHubba plugin, 

and variations in immune cell infiltration in SCM  

were analyzed with the ImmucellAI tool. We also 

employed weighted gene correlation network analysis 

(WGCNA) to identify neutrophil-related hub genes 

(NRHGs), which were further validated by RT-PCR  

and additional datasets. Subsequently, we determined 

upstream miRNAs and lncRNAs of NRHGs, leading  

to the construction of significant neutrophil-related 

lncRNA-miRNA-NRHGs ceRNA networks. The study’s 

workflow is summarized in Figure 1. 

 

 
 

Figure 1. Overview of study workflow. This figure illustrates the sequential steps followed in the study, encompassing the 

identification of differentially expressed genes (DEGs), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analyses, and the construction of a protein–protein interaction (PPI) network. 
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MATERIALS AND METHODS 
 

Data sources and characteristics 

 

In our study, we sourced five datasets from  

the Gene Expression Omnibus (GEO) database 

(https://www.ncbi.nlm.nih.gov/geo/) to investigate 

septic cardiomyopathy (SCM) in both humans and 

mice, specifically focusing on datasets GSE79962, 

GSE44363, GSE179554, GSE134358, and GSE217700. 

Table 1 in our manuscript provides a detailed  

overview of these datasets. All datasets can be 

searched and downloaded from the GEO website 

(https://www.ncbi.nlm.nih.gov/geo/). We conducted 

analysis on GSE79962 and GSE44363 to identify 

NRHGs and establish a corresponding ceRNA 

network. Subsequently, we utilized additional datasets 

(GSE179554, GSE134358, and GSE217700) for 

validation purposes, verifying the screened mRNAs, 

miRNAs, and lncRNAs in the context of SCM. 

 

Screening DEGs 

 

To identify DEGs in SCM and control groups, our 

analysis utilized the limma package in R software 

(version 4.1.3). We employed the Benjamini and 

Hochberg method to control the false discovery rate 

(FDR). DEGs were selected based on the criteria of  

an adjusted p-value of less than 0.05 and an absolute 

log2 fold change (|log2FC|) of 1.0 or more. The 

datasets GSE79962, GSE44363, and GSE217700 were 

processed to generate heatmaps and volcano plots using 

the pheatmap and ggplot2 packages in R, respectively. 

 

Enrichment analyses 

 

To explore pathways associated with shared DEGs in 

both humans and mice, we analyzed shared DEGs 

from the GSE79962 and GSE44363 datasets using the 

Gene Ontology (GO) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) databases. This analysis 

was performed with the clusterProfiler package in  

R software. For visual representation of the results,  

the ggplot2 package was utilized. The threshold for 

statistical significance in these analyses was set at a  

p-value of less than 0.05. 

 

PPI analysis 

 

To construct protein-protein interaction (PPI)  

networks [18], we employed the STRING database 

(https://cn.string-db.org/), setting a medium confidence 

threshold of 0.4. Subsequently, the PPI assessment 
results were imported into Cytoscape software [19] 

(version 3.8.2) for visualization and further analysis. 

Within Cytoscape, the cytoHubba plugin [20] was 

utilized, leveraging Maximal Clique Centrality (MCC) 

calculations, to identify and highlight hub genes  

within the biological network, thus facilitating a deeper 

understanding of the interplay among shared DEGs. 

 

Immune cell infiltrate analyses 

 

To assess immune cell infiltration in the 

GSE79962 dataset, we utilized ssGSEA enrichment 

analysis through the ImmuCellAI online platform 

(https://guolab.wchscu.cn/ImmuCellAI/#!/) [21]. This 

analysis, based on the expression of immune cell-specific 

marker genes, allowed us to evaluate the presence of 24 

different immune cell types in the GSE79962 dataset. 

We compared this to a pre-defined gene matrix of 

immune cells. To illustrate our findings, we employed 

the corrplot and vioplot packages in R software to create 

a correlation heatmap and violin plot, respectively. 

These visualizations effectively demonstrate variations 

in immune cell infiltration and the correlations across 

the 24 immune cell types. 

 

Identification of neutrophil-related modules by 

WGCNA 

 

In our research, we employed Weighted Gene Co-

expression Network Analysis (WGCNA) to categorize 

genes into modules correlating with specific phenotypes. 

Utilizing the WGCNA package in R, we constructed a 

weighted co-expression network from the GSE79962 

dataset, ensuring data quality through the goodSamples 

Genes function. The selection of a minimal power for the 

soft threshold ensured a scale-free topological fit index of 

0.9, enhancing the identification of strongly correlated 

genes. Genes were clustered into modules based on 

correlation, with subsequent grouping and merging using 

average linkage hierarchical clustering. Modules with 

over 120 genes were specifically noted. We then 

calculated correlation coefficients and P-values to discern 

modules significantly linked with neutrophil infiltration. 

A heatmap created using the pheatmap package in R 

depicted the relationship between various immune cells 

and gene modules. 

 

Cell culture and treatment 

 

H9c2 rat cardiomyocyte cells, provided by Shanghai 

Zhong Qiao Xin Zhou Biotechnology Co., Ltd, were 

cultured in Dulbecco’s Modified Eagle’s Medium 

(DMEM) enriched with 10% fetal bovine serum (FBS). 

To simulate Septic Cardiomyopathy (SCM) in vitro, 

these cells were exposed to 10 g/mL Lipopolysaccharide 

(LPS) for 12 hours. A control group was treated with 
normal saline over the same duration. This approach 

facilitates the investigation of SCM mechanisms at the 

cellular level. 
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Table 1. Information of the GEO datasets. 

GEO 

accession 
Experiment type Species Source tissue 

Sample 
Data Attribute 

Control SCM 

GSE79962 Array Human Myocardial tissue 11 20 mRNA Test set 

GSE44363 Array Mice Myocardial tissue 4 4 mRNA Test set 

GSE179554 High-throughput sequencing Mice Myocardial tissue 4 4 mRNA Validation set 

GSE134358 Array Human Blood 82 158 miRNA Validation set 

GSE217700 High-throughput sequencing Human Blood 4 4 lncRNA Validation set 

 

Table 2. Primer sequences. 

Gene Direction Sequences 

MRC1 
Forward 5′-ATGGGCAACATCGAGCAGAA-3′ 

Reverse 5′-AAACCAATGCAACCCAGTGC-3′ 

GAPDH 
Forward 5′-GTTCCTACCCCCAATGTGTCC-3′ 

Reverse 5′-TAGCCCAAGATGCCCTTCAGT-3′ 

 

Real-time PCR 

 

Total RNA was isolated using the Bioteke Total  

RNA Rapid Extraction Kit. Reverse transcription was 

performed with Beyotime Biotechnology’s BeyoRT  

II M-MLV transcriptase. Real-time PCR employed 

SYBR Green (BioTeke, China) and 2Taq PCR 

MasterMix (Solarbio, China), conducted on an 

Exicycler 96 thermocycler (Bioneer, USA). Data 

analysis was executed using the 2−∆∆Ct method, with 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as 

the internal control for the target gene. Primer sequences 

used are detailed in Table 2 of our manuscript. 

 

GSEA 

 

To elucidate the biological functional implications of 

MRC1, we conducted Spearman correlation analysis 

between MRC1 and all genes within the GSE79962 

dataset. The resulting correlation coefficients were  

then ranked and utilized for Gene Set Enrichment 

Analysis (GSEA), employing Gene Ontology (GO) 

gene sets sourced from the Molecular Signatures 

Database (MSigDB, https://www.gsea-msigdb.org/gsea/ 

msigdb/index.jsp). The top 5 biological process (BP) 

enrichment results were subsequently visualized to 

highlight the most significant biological functional 

associations of MRC1. 

 

Prediction of target miRNAs 

 

To identify the target miRNAs of our gene  

of interest, we utilized three prominent online  

databases: StarBase v2.0 (https://starbase.sysu.edu.cn/)  

[22], miRDB (http://mirdb.org) [23] and TargetScan 

(https://www.targetscan.org/vert_80/) [24]. The over-

lapping miRNAs predicted by these databases were 

identified through intersection analysis. We visualized 

this intersection using a Venn diagram to present the 

prediction results clearly. Further validation of these 

intersected miRNAs was carried out using data from the 

GSE134358 dataset, enabling us to pinpoint the target 

miRNAs with higher precision. 

 

Construction of ceRNA networks 

 

To discover lncRNAs interacting with our target miRNA, 

we utilized StarBase v2.0 (https://starbase.sysu.edu.cn/) 

[22] and LncBase v3.0 (DIANA Tools - lncBase v.3 

(uth.gr)) [25] databases. The intersection of predicted 

lncRNAs in Homo sapiens from these databases with the 

differentially expressed lncRNAs from the GSE217700 

dataset led to the identification of target lncRNAs. These 

targets were further validated using the GSE217700 

dataset. Subsequently, we constructed a competitive 

endogenous RNA (ceRNA) network using Cytoscape, 

illustrating the interactions among mRNA, miRNA, and 

lncRNA. 

 

Statistical analysis 

 

For bioinformatics analyses in our study, R software 

(version 4.1.3) was employed. Statistical analyses 

comparing two groups were performed using GraphPad 

Prism 10.1, applying either the t-test or signed-rank  

test as appropriate. The results were presented as mean 

± SD, with a p-value threshold of less than 0.05 

considered indicative of statistical significance. 

 

Data availability statement 

 

The datasets utilized for the analyses conducted  

in this study were sourced from publicly accessible 

databases. These datasets are available for retrieval 
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from the following website: GEO Accession viewer 

(https://nih.gov). 

 

RESULTS 
 

Screening shared DEGs in SCM 

 

In our study, we analyzed two SCM gene expression 

profiles from the GEO database: GSE44363 (mouse-

derived) and GSE79962 (human-derived). GSE44363 

included data from 4 normal and 4 SCM mouse heart 

tissues, revealing 811 DEGs which 463 upregulated and 

348 downregulated. GSE79962, comprising 11 normal 

and 20 SCM human heart tissues, identified 201 DEGs, 

with 125 upregulated and 76 downregulated. We created 

Supplementary Table 1 to detail these DEGs. Cluster 

heatmaps and volcano plots (Figure 2A, 2B) visually 

represent the data distribution for both datasets. A cross-

analysis of these DEGs resulted in 45 shared DEGs 

(Figure 2C), which were selected for further investigation. 

 

 
 

Figure 2. Identification of shared DEGs in GSE44363 and GSE79962 datasets. (A) Heatmap and volcano plot depicting the mRNA 

expression profile in the GSE44363 dataset. (B) Corresponding heatmap and volcano plot for the GSE79962 dataset. (C) Venn diagram 
highlights the 45 DEGs common to both datasets. 
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Enrichment analysis of shared DEGs 

 

The shared DEGs in our study displayed significant 

enrichment across various biological processes, cellular 

components, and molecular functions. Notably, the top 3 

biological processes included regulation of inflammatory 

response, cellular transition metal ion homeostasis,  

and response to fungus. For cellular components, the 

top 3 key areas were collagen-containing extracellular 

matrix, secretory granule lumen, and cytoplasmic 

vesicle lumen. In molecular functions, the top 3 

prominent roles were RAGE receptor binding, Toll-like 

receptor binding, and long-chain fatty acid binding, as 

illustrated in Figure 3A. Additionally, KEGG enrichment 

analysis highlighted the JAK-STAT signaling pathway, 

Adipocytokine signaling pathway, and Hepatitis C 

signaling pathway as key pathways involved, detailed in 

Figure 3B. 

 

 
 

Figure 3. Enrichment analysis of shared DEGs. (A) A circle plot displays the top 6 enriched GO terms across Biological Process (BP), 

Cellular Components (CC), and Molecular Function (MF) categories. (B) Crosstalk analysis linking shared DEGs with KEGG pathways. 
Significance was determined using a Q-value threshold of < 0.05. 
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PPI network analysis and hub genes identification 

 

The interaction network, which maps the relationships 

between proteins encoded by shared differentially 

expressed genes (DEGs), was methodically constructed 

and visualized using the STRING online tool. This 

network is characterized by 34 nodes and 75 edges, as 

depicted in Figure 4A. Subsequently, we employed  

the Maximum Clique Centrality (MCC) algorithm  

of the cytoHubba plugin to identify the top 10 hub 

genes, illustrated in Figure 4B. These hub genes are 

hypothesized to have a significant impact on the 

pathogenesis of SCM, suggesting their critical role in 

the disease’s progression. 

 

 
 

Figure 4. PPI network construction and hub gene identification. (A) Network diagram illustrating interactions between proteins 

encoded by shared DEGs, comprising 34 nodes and 75 edges. (B) Cluster plot highlighting the top 10 hub genes; the intensity of the node 
color correlates with the MCC score. 
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The immune cell infiltration in SCM 

 

Initially, we imported the expression matrix of the 

GSE79962 dataset into the ImmuCellAI online tool. 

This process was aimed at determining the proportions of 

24 types of immune cells, as detailed in Supplementary 

Table 2. Analysis via violin plots revealed a notable 

disparity in immune cell infiltration between the SCM 

and control groups. Specifically, neutrophil infiltration 

in the SCM group was significantly higher compared to 

the control group, as depicted in Figure 5A. Conversely, 

the presence of dendritic cells (DC), B cells, CD8+ T 

cells, Tr cells, Th2 cells, cytotoxic cells, and exhausted 

cells was markedly lower in the SCM group than in the 

controls (Figure 5A). Among these, neutrophils exhibited 

the most pronounced difference when compared to 

other differential immune cells, prompting us to  

select them for further analysis. Correlation heatmap 

further underscored this selection, demonstrating a 

significant negative correlation between neutrophils and 

various immune cells, including DC, B cells, CD8+ T 

cells, Th2 cells, cytotoxic cells, and exhausted cells 

(Figure 5B). 

 

Identification of NRGs by WGCNA 

 

Utilizing WGCNA, we developed weighted gene  

co-expression networks based on the GSE79962 

dataset. This process involved categorizing genes into 

distinct modules based on their correlation with 24 

types of immune cells. Subsequently, we calculated  

and presented the correlation coefficients and P-values 

between each module and the infiltration of the 24 

immune cell types in a heatmap format. Employing 

average linkage hierarchical clustering, 13 modules 

containing over 120 genes each were identified (as 

illustrated in Figure 5C). Notably, as depicted in Figure 

5D, the linen module exhibited the highest correlation 

with neutrophil infiltration (r = 0.62, p = 0.004). 

Consequently, 804 genes within the linen module, 

detailed in Supplementary Table 3, were determined to 

have a strong association with neutrophil infiltration. 

 

 
 

Figure 5. Analysis of immune cell infiltration and module gene identification. (A) Violin plot depicting the distribution of 24 

immune cell types; significant differences between control and SCM groups are noted in red. (B) Heatmap of correlations between the 
24 immune cells, with color coding indicating the nature of the correlation. (C) WGCNA-derived co-expression modules, displayed in a 
color-coded gene dendrogram. (D) Module-trait relationship grid, where each cell shows the correlation coefficient and P-value, with color 
indicating the direction of the correlation. 
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Identification of NRHGs in SCM 

 

In our study, we overlapped the top 10 hub genes with 

the 804 genes from the neutrophil-related module, 

leading to the identification of MRC1 as a key NRHG, 

as illustrated in Figure 6A. Subsequently, we extracted 

the expression levels of MRC1 from the GSE79962  

and GSE44363 datasets and compared the differences 

between the SCM group and the control group using  

the t-test or signed-rank test, as appropriate. The  

results indicated that the expression of MRC1 was 

significantly lower in the SCM group compared to  

the control group in both datasets. Specifically, the 

GSE79962 dataset showed a p-value of less than 0.001, 

and the GSE44363 dataset showed a p-value of less 

than 0.01. These findings are illustrated in Figure 6B 

and 6C, respectively. To corroborate these findings, we 

examined the expression of MRC1 in the GSE179554 

dataset using the same methodology. We observed  

a similarly significant reduction in MRC1 expression  

in the SCM group compared to the control group  

(p < 0.05), as depicted in Figure 6D. This trend was 

consistent with the findings from the GSE79962 and 

GSE44363 datasets. Further validation was conducted 

using RT-PCR on three samples of LPS-treated H9c2 

cells and three samples of normal H9c2 cells. The 

results indicated that MRC1 expression in the LPS-

treated group was significantly lower than in the control 

group (p < 0.0001), aligning with the trends observed in 

the public datasets, as shown in Figure 6E. 

 

Function of MRC1 in SCM 

 

To further investigate the role of MRC1 in septic 

cardiomyopathy, we conducted a Spearman correlation 

analysis on the GSE79962 dataset, examining the 

 

 
 

Figure 6. Validation of neutrophil-related hub gene MRC1 in SCM. (A) Venn diagram indicates intersection between top 10 hub 

genes and 804 neutrophil-related module genes. (B–D) Bar plots showing MRC1 expression levels in GSE79962, GSE44363, and GSE178554 
datasets, respectively. (E) RT-PCR results illustrating significant downregulation of MRC1 expression. Significance levels are indicated 
(*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001). 
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relationship between the neutrophil-associated gene 

MRC1 and various immune cells. The results indicate 

that MRC1 is positively correlated with macrophages 

and negatively correlated with B cells and NK cells 

(Supplementary Figure 1A–1C). Additionally, GSEA 

analysis reveals that MRC1 is primarily enriched in  

the biological processes of complement activation, 

granulocyte activation, myeloid leukocyte activation, 

regulation of cell shape, and regulation of neutrophil 

activation (Supplementary Figure 1D). 

 

Prediction and validation of target miRNAs 

 

In this study, we utilized three online databases: 

starBase v2.0, miRDB, and TargetScan, to predict 

microRNAs (miRNAs) targeting the MRC1 gene. The 

miRNA prediction results for MRC1 are delineated in 

Supplementary Table 4. By intersecting the prediction 

outcomes from starBase v2.0, miRDB, and TargetScan, 

we identified four common miRNAs: miR-23a-3p, 

miR-23b-3p, miR-23c, and miR-582-3p, as shown in 

Figure 7A. To further refine our search for the target 

miRNAs among these four candidates, we utilized  

the GSE134358 dataset to examine the expression 

differences of these miRNAs between the SCM group 

and the control group. The analysis revealed that  

only the expression levels of miR-23a-3p and miR- 

23b-3p differed significantly between the two groups.  

Notably, miR-23a-3p demonstrated the most pronounced 

difference, with an expression trend inversely correlated 

to that of MRC1. This observation aligns with the 

miRNA sponge effect, as depicted in Figure 7B–7E. 

 

Construction of neutrophil-related ceRNA regulatory 

network 

 

Firstly, we employed two online databases, starBase v2.0 

and lncBase v3.0, to predict lncRNAs interacting with 

miR-23a-3p. The results of these lncRNA predictions 

are comprehensively presented in Supplementary Table 

5. Following this, we downloaded a dataset of sepsis 

lncRNA expression profiles, GSE217700, from the GEO 

database. This dataset, sourced from human peripheral 

blood, comprises 4 normal samples and 4 sepsis samples. 

From GSE217700, we identified 1537 differentially 

expressed lncRNAs (Supplementary Table 6), adhering 

to our criteria of an adjusted p-value < 0.05 and an 

absolute log2 fold change (|log2FC|) of at least 1.0. To 

further refine our analysis for lncRNAs interacting with 

miR-23a-3p, we intersected the predictions from the two 

databases with the differentially expressed lncRNAs  

in GSE217700, leading us to identify three target 

lncRNAs: MALAT1, Z93241.1, and AC145207.5, as 

shown in Figure 7F. Notably, among these lncRNAs, 

only the expression trend of AC145207.5 was in 

concordance with that of MRC1, as depicted in Figure 

7G–7I. Finally, we constructed a neutrophil-related 

ceRNA network (AC145207.5/miR-23a-3p/MRC1) to 

elucidate the pathogenesis of SCM, using Cytoscape 

software, showcased in Figure 7J. 

 

 
 

Figure 7. Construction of the neutrophil-related ceRNA network AC145207.5/miR-23a-3p/MRC1. (A) Venn diagram displaying 

intersecting miRNAs targeting MRC1, as predicted by three online databases. (B–E) Bar plots depict the expression of shared target miRNAs 
of MRC1 in the GSE134358 dataset. (F) Venn diagram shows intersecting lncRNAs targeting miR-23a-3p, as predicted by two online 
databases, with differential lncRNAs in GSE217700. (G–I) Bar plots for the expression of shared target lncRNAs of miR-23a-3p in GSE217700. 
(J) The constructed AC145207.5/miR-23a-3p/MRC1 ceRNA network. Significance levels are indicated (*p < 0.05; **p < 0.01; ***p < 0.001; 
****p < 0.0001). 
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DISCUSSION 
 

SCM is a reversible form of cardiac depression 

occurring in the early stages of sepsis, predominantly 

characterized by left heart dysfunction [4, 26]. SCM is 

regarded as one of the most severe complications of 

sepsis, contributing to 18–65% of all sepsis-related 

complications. The global mortality rate associated  

with SCM ranges between 36–55%, approximately 2–3 

times higher than that of sepsis alone [2, 5]. The 

immune system, encompassing both innate and adaptive 

immunity, plays a pivotal role in the progression  

of sepsis [14, 15]. Previous research has established  

the critical involvement of immune responses in the 

pathophysiology of SCM [27]. Neutrophils, as integral 

components of innate immunity, are key players in 

inflammatory-mediated organ dysfunction, often leading 

to direct organ damage [16, 17]. Previous studies have 

demonstrated that neutrophils play distinct roles at 

various stages of sepsis. During the early phase of 

sepsis, neutrophils play a critical role in combating 

bacteremia and maintaining immune homeostasis. 

However, in the later stages, the excessive infiltration of 

neutrophils often results in tissue damage and organ 

dysfunction [28]. Thus, understanding the function and 

status of neutrophils is vital for the effective treatment 

of sepsis and the prevention of organ dysfunction, 

including myocardial injury. In our study, utilizing  

the ImmuCellAI online tool, we analyzed immune  

cell infiltration in myocardial tissues from patients  

with septic cardiomyopathy within the GSE79962 

dataset. Our findings indicated a significantly higher 

concentration of neutrophils in SCM tissue compared  

to the control group. Moreover, correlation analyses 

revealed that neutrophil levels were inversely associated 

with other immune cells, including dendritic cells  

(DC), B cells, CD8+ T cells, and Th2 cells. These 

observations align with previous studies suggesting that 

excessive neutrophil infiltration or dysfunction may 

contribute to myocardial damage in sepsis. However, 

the specific underlying biological mechanisms remain 

to be elucidated. 

 

To identify NRGs intimately linked with SCM, our 

approach involved the use of Weighted Gene Co-

expression Network Analysis (WGCNA) to isolate 

neutrophil-related gene modules within the GSE79962 

dataset. Subsequently, PPI network was constructed 

using the STRING online database for shared DEGs. 

Employing the cytoHubba plugin, we pinpointed the  

top 10 hub genes: SOCS3, MYC, MRC1, ADIPOQ, 

CEBPD, JUNB, CCL2, STAT3, TIMP1, and NAMPT. 

By intersecting these hub genes with neutrophil-
associated module genes, we identified NRHG-MRC1. 

The MRC1 gene, encoding the Mannose Receptor  

C-Type 1 or CD206 receptor, is situated on human 

chromosome 10. Functionally, MRC1 is adept  

at recognizing and binding various glycosylation 

fractions, thereby playing a significant role in immune 

response modulation and pathogen elimination [29,  

30]. Predominantly expressed in dendritic cells and 

macrophages, MRC1 is implicated in processes such as 

inflammation, wound healing, and tumor-associated 

macrophages [31]. These results also confirm our 

findings that MRC1 is involved in various immune 

response processes. Previous studies have shown that 

neutrophils are activated and exhibit increased cell 

adhesion when stimulated by the CXCL4 immune 

complex. During this activation process, MRC1 is over-

expressed in neutrophils, influencing their activation 

status and function, and playing a crucial role in  

the immune response of neutrophils [32]. Based on  

our conclusions regarding the biological processes of 

MRC1 enrichment in neutrophil activation, we believe 

that MRC1 plays a significant role in the inflammatory 

process of SCM. MRC1 shows potential as a novel 

diagnostic marker and therapeutic target for NRG in 

SCM. Although the role of MRC1 in the pathogenesis 

of SCM is acknowledged, the factors influencing  

its expression within this context remain undefined.  

The concept of the ceRNA network presents a novel 

mechanism for regulating gene expression [33]. To 

date, no ceRNA network specifically associated with 

neutrophils has been established in the study of SCM. 

Consequently, we ventured to construct a ceRNA 

network targeting MRC1. This initiative aims to 

elucidate the regulatory mechanisms of MRC1 in 

modulating neutrophil infiltration in SCM, potentially 

unveiling new insights into the disease's molecular 

underpinnings. 

 

AC145207.5/miR-23a-3p/MRC1 axis 

 

Upon identifying MRC1 as a NRHG and confirming 

its targeted miRNAs through online prediction tools, 

we validated miR-23a-3p using public databases. 

Given that miRNAs primarily function to inhibit 

mRNA expression and promote mRNA degradation 

[34], their expression trends typically oppose those of 

mRNAs. In our study, the downregulation of MRC1 in 

SCM suggests an upregulation of upstream miRNA 

expression, aligning with the observed expression 

patterns of miR-23a-3p in the GSE134358 dataset. 

Notably, research by Toktam Moghiman et al. 

demonstrated that miR-23a-3p secreted by exosomes 

can mitigate myocardial ischemia [35]. Furthermore, 

several studies, including one that revealed PVT1 

exacerbates cardiomyocyte death via the miR-23a-

3p/CASP10 axis [36], and another by Dishiwen  
Liu et al., showing miR-23-3p’s role in promoting 

ferroptosis in cardiomyocytes [37], underscore the 

significance of miR-23a-3p in cardiac pathology. 
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Complementing these findings, Vasundhara Kain et  

al. conducted a transcriptome analysis of leukocytes 

(macrophages/neutrophils) from infarcted left ventricles 

in a 12/15LOX-/- mouse model. Their results highlighted 

the elevated expression of EP4 on MRC1-expressing 

repair macrophages, with the deletion of 12/15LOX 

downregulating miR-23a-3p expression and fostering 

macrophage polarization towards a repair phenotype 

[38]. This evidence collectively supports our findings, 

suggesting a critical interaction between miR-23a-3p 

and MRC1 in myocardial infarction. 

 

Further leveraging the capabilities of StarBase v2.0 

and LncBase v3.0 online databases, we screened for 

lncRNAs capable of specifically binding to miR-23a-

3p. This led to the identification of three lncRNA 

(MALAT1, Z93241.1, and AC145207.5) through 

intersection with differentially expressed lncRNAs in 

the GSE217700 dataset. Subsequent validation using 

the GSE217700 dataset confirmed the expression 

trends of these lncRNAs, culminating in the selection 

of lncRNA AC145207.5, which demonstrated a similar 

expression pattern to MRC1. Previous studies have 

shown that AC145207.5 and miR-23a-3p can form  

a ceRNA network in brain tissue [39]. AC145207.5, 

also known as RP11-498C9.15, has been primarily 

investigated in the context of prognostic model 

establishment for tumor patients and the assessment  

of immunotherapy efficacy [40–42]. Recent research 

also highlights AC145207.5’s crucial role in the 

pathogenesis of rheumatoid arthritis through the 

modulation of microRNA and gene expression [43].  

In line with this, Wang Wenwen et al. demonstrated 

that the AC145207.5/miR-101-3p axis can impede 

immune cell infiltration by upregulating CAMSAP1 

expression, contributing to adverse outcomes in 

advanced hepatocellular carcinoma patients [44]. 

These findings resonate with our observations and 

underscore the significance of AC145207.5 in the 

processes of immune cell infiltration and immune 

regulation.  

 

The AC145207.5/miR-23a-3p/MRC1 axis may play a 

pivotal role in SCM by regulating multiple key 

processes. Neutrophils are crucial in the immune 

response during sepsis, and the ceRNA network 

involving AC145207.5 and miR-23a-3p modulates 

MRC1 expression [38, 39]. This regulation influences 

neutrophil-mediated functions such as phagocytosis 

and pathogen clearance, thereby impacting the 

inflammatory response in SCM [45]. miR-23a-3p, a 

known regulator of cytokine expression, is modulated 

by AC145207.5 acting as a ceRNA [39, 46]. This 
interaction potentially affects cytokine and chemokine 

production, further influencing the inflammatory milieu 

during SCM [46]. Moreover, MRC1 is associated with 

alternatively activated (M2) macrophages, which 

contribute to tissue repair and anti-inflammatory 

responses [47]. The ceRNA network may alter 

macrophage polarization, potentially shifting the 

balance between pro-inflammatory (M1) and anti-

inflammatory (M2) macrophages in SCM. Additionally, 

miR-23a-3p targets genes involved in apoptosis [37], 

suggesting that AC145207.5 regulation could impact 

these pathways, ultimately affecting cardiomyocyte 

viability during SCM. 
 

CONCLUSION 
 

In this study, we utilized GEO datasets from human 

and mouse samples to identify excessive neutrophil 

infiltration in septic cardiomyopathy (SCM) and, for 

the first time, uncovered the critical role of NRHG-

MRC1 in SCM. Through external dataset analysis and 

RT-PCR validation, we confirmed the expression level 

of MRC1. A significant milestone of our research  

is the construction of a novel neutrophil-associated 

ceRNA network centered around MRC1, specifically 

AC145207.5/miR-23a-3p/MRC1. In summary, this 

study provides insights into the gene interactions 

within the AC145207.5/miR-23a-3p/MRC1 ceRNA 

network, highlighting the potential application value  

of MRC1 and its related network in SCM, and lays a 

foundation for future research. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Function of MRC1 in SCM. (A) Scatterplot of MRC1 correlation with macrophages. (B) Scatterplot of MRC1 

correlation with B cells. (C) Scatterplot of MRC1 correlation with NK cells. (D) Top five GO BP associated with MRC1. Abbreviation: GO: Gene 
Ontology; BP: biological process; GSEA: Gene Set Enrichment Analysis. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–6. 

 

Supplementary Table 1. The DEGs of GSE79962. 

 

Supplementary Table 2. The proportions of 24 types of immune cells in GSE79962. 

 

Supplementary Table 3. The neutrophil-related module genes in WGCNA. 

 

Supplementary Table 4. The miRNA prediction results for MRC1. 

 

Supplementary Table 5. The lncRNA prediction results for miR-23a-3p. 

 

Supplementary Table 6. The differentially expressed lncRNAs of GSE217700. 
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