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INTRODUCTION 
 

Osteoporosis and age-related fractures remain a 

significant public health burden [1–4]. In a given 

year, the number of women who sustain a fracture  

is greater than the combined number of women 

diagnosed with incident breast cancer, myocardial 

infarction, or stroke [5, 6]. Despite this burden, the 

mechanisms underlying the age-related decline in 

bone mass remain incompletely understood [7]. A 

more complete understanding of these age-related 

changes may lead to new approaches to prevent or 

reverse osteoporosis. 

 

While unbiased ‘-omics’ approaches such as RNA 

sequencing (RNA-seq) have revealed much about  

bone and how it ages [8–11], an understanding of the 

protein-level changes in aged bone remains limited. 
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ABSTRACT 
 

With aging, bone mass declines and the anabolic effects of skeletal loading diminish. While much research has 
focused on gene transcription, how bone ages and loses its mechanoresponsiveness at the protein level 
remains unclear. We developed a novel proteomics approach and performed a paired mass spectrometry and 
RNA-seq analysis on tibias from young-adult (5-month) and old (22-month) mice. We report the first correlation 
estimate between the bone proteome and transcriptome (Spearman ρ = 0.40), which is in line with other 
tissues but indicates that a relatively low amount of variation in protein levels is explained by the variation in 
transcript levels. Of 71 shared targets that differed with age, eight were associated with bone mineral density 
in previous GWAS, including understudied targets Asrgl1 and Timp2. We used complementary RNA in situ 
hybridization to confirm that Asrgl1 and Timp2 had reduced expression in osteoblasts/osteocytes in old bones. 
We also found evidence for reduced TGF-beta signaling with aging, in particular Tgfb2. Next, we defined 
proteomic changes following mechanical loading. At the protein level, bone differed more with age than with 
loading, and aged bone had fewer loading-induced changes. Overall, our findings underscore the need for 
complementary protein-level assays in skeletal biology research. 
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Importantly, many age-related changes in other  

tissues occur post-transcriptionally [12]. Liquid 

chromatography-mass spectrometry (LC-MS/MS)–

based proteomics is a technology that facilitates a 

comprehensive view of biological systems at the 

protein level [13]. It has been used with in vitro 

models to extend the understanding of the molecular 

mechanisms that regulate bone cells [14, 15]. One 

previous study compared the proteome of exosomes 

isolated from bones of young and aged mice [16],  

yet to our knowledge, an evaluation of age-related 

changes on bulk cortical bone tissue has not been 

described. In addition, while proteomic analyses of 

bone samples have been reported [17–20], no study 

has shown the feasibility of a whole-tissue proteomic 

analysis of mouse long bones, a ubiquitous model  

in skeletal biology research. We sought to assess  

the feasibility of a proteomic analysis of mouse 

cortical bone, to estimate the correlation between  

the proteome and transcriptome in bone tissue using 

LC-MS/MS and RNA-seq on paired limbs from the 

same mice, and to use proteomics to investigate the 

age-related changes at the protein-level in mouse 

cortical bone. 

 

In youth, mechanical loading potently induces bone 

formation [21, 22], but with aging, this response  

to mechanical loading declines in both humans  

[23–25] and rodents [26–30]. However, because  

the mechanisms driving bone’s age-related decrease  

in mechanoresponsiveness remain incompletely 

understood, targeting the involved processes for 

maximal clinical benefit has been limited. We have 

previously used RNA-seq to characterize the loading 

response in young-adult (5-month) and old (22- 

month) mice [11]. We showed that old mice had less 

transcriptional activity following loading compared  

to young-adult mice, and identified a number of  

targets to pursue to restore the age-related decline in 

mechanoresponsiveness. Here, we sought to extend 

these findings by assessing the age-related differences 

in the response to loading at the protein level. 

 

First, to discover age-related differences at baseline  

in the proteome and transcriptome, we performed 

paired proteomics and RNA-seq on tibias of young-

adult (5-month) and old (22-month) C57BL/6N  

female mice not subjected to any interventions. We 

used these findings to gain an understanding of how 

the bone proteome relates to the transcriptome in  

bone and to identify age-related targets. Second, to 

extend our understanding of the age-related decline  

in mechanoresponsiveness, we used proteomics to 
compare the loading responses between tibias of 

young-adult and old mice following 1 or 5 days of a 

well-characterized, axial loading protocol. 

RESULTS 
 

Protein and gene expression in bone correlate 

moderately  

 

Paired tibias from young-adult and old mice at baseline 

were analyzed by proteomics and RNA-seq (Figure 1A, 

1H). Femurs from these mice exhibited the expected 

age-related changes in bone morphology (Figure 1B–

1G). After filtering, 1903 proteins were detected by 

proteomics, and 16273 genes were detected by RNA-

seq (Supplementary Figure 1). At both the protein and 

RNA levels, multidimensional scaling (MDS) showed 

that young-adult samples separated from old samples. 

Of the detected proteins, 93% (1773/1903) were also 

detectable by RNA-seq (Figure 1I). Using the average 

peptide spectral matches (PSMs) and average counts  

per million (CPMs), the abundance of the 1773 targets 

detected by both proteomics and RNA-seq were 

correlated (Figure 1J), as reported [31]. The correlation 

was moderately positive (Spearman ρ = 0.40, p < 

0.001), consistent with results in other tissues [31, 32]. 

Differential expression analysis between young-adult 

and old bone was performed separately for proteomics 

and RNA-seq. 183 proteins and 2290 genes met the  

p-value cutoff to be age-related differentially expressed 

proteins (DEPs) and differentially expressed genes 

(DEGs), respectively (Figure 1K). 

 

Many of the most significantly up- and 

downregulated proteins and genes between young-

adult and old bone have been associated with bone 

phenotypes in GWAS 

 

We compiled the top 15 most significantly differentially 

expressed (by FDR) proteins and genes (both up- and 

downregulated) between young-adult and old bone  

at baseline (Table 1). Several of these targets have 

been associated with phenotypes related to bone [33–

49] or aging [50, 51] in genome-wide association 

studies (GWAS). The only top-15 target identified by 

both platforms was MMP13, which was more highly 

expressed in old bone at both the protein and transcript 

level. MMP13 is critical for osteocyte perilacunar 

remodeling [52] and maintains cartilage homeostasis 

[53]. 

 

The most significantly upregulated protein in old bone 

at baseline was CTSS, a cysteine protease known as 

cathepsin S that regulates extracellular matrix (ECM) 

remodeling and antigen presentation. CTSS interacts 

with osteocalcin (Bglap) and has been shown to control 

osteoblast differentiation and bone turnover [54]. 
PYCARD, which promotes apoptosis and inflammation, 

and OSTF1, which is known as osteoclast stimulating 

factor 1 and directly induces osteoclast differentiation 
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Figure 1. RNA-seq and proteomics were used to characterize cortical bone from young-adult and old mice at baseline. (A) 
Untreated 5-month-old (young-adult) and 22-month-old (old) female C57BL/6N mice were sacrificed. Paired right and left tibial mid-
diaphyses were isolated, removed of marrow, and snap frozen. From the right tibias, proteins were extracted using 4% SDS. Proteins from 5 
tibias per age were analyzed by proteomics using a tandem mass tag (TMT)-11. From the left tibias, RNA was isolated using TRIzol. RNA 
from 7 tibias per age was sequenced. (B) MicroCT of the distal right femurs from these mice confirmed the expected age-related 
differences in the cortical bone. (C, D) The distal cortical bone area and cortical thickness were lower with age. (E) MicroCT also confirmed 
age-related changes in the trabecular bone of the distal femur. (F, G) The bone volume per total volume (BV/TV) and trabecular number 
were lower with age. (H) Proteomics and RNA-seq raw data were analyzed, and differential expression analysis was performed separately. 
For both methods, a Benjamini-Hochberg-adjusted p-value cutoff of 0.05 was used to identify differentially expressed genes (DEGs) and 
differentially expressed proteins (DEPs). Downstream analyses included correlations, overlaps, weighted gene co-expression network 
analysis (WGCNA), gene ontology (GO) analysis, pathway analysis, and COMPBIO analysis. (I) 93% (1773/1904) of proteomics hits (PSM≥3) 
were detectable by RNA-seq (non-zero CPM for all samples). (J) The abundance of the 1773 targets detected by both proteomics and RNA-
seq (after PSM and CPM filtering) were correlated (Spearman). (K) Comparing young-adult and old bone at baseline, 183 proteomics targets 
and 2290 RNA-seq targets met the p-value cutoff to be DEPs and DEGs, respectively. Abbreviations: SDS: Sodium dodecyl sulfate; BV/TV: 
Bone Volume/Total Volume; DEG: Differentially Expressed Gene; DEP: Differentially Expressed Protein; CPMs: Counts per million; PSMs: 
Peptide spectral matches. 
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Table 1. Top 15 differentially expressed genes and proteins comparing old vs. young-adult at baseline, ranked 
by false discovery rate (FDR). 

 

Proteomics RNA-seq 

Protein FC FDR Relevant GWAS Gene FC FDR Relevant GWAS 

U
p

re
g

u
la

te
d

 

CTSS 2.0 4.6E-03 BMD [33] Tubb6 2.0 9.5E-05 − 

PYCARD 1.9 1.2E-02 − Pstpip1 2.0 1.6E-04 Height [36] 

OSTF1 1.8 1.2E-02 Scoliosis [34] Tfrc 1.9 2.2E-04 − 

PYGL 1.8 1.3E-02 − H6pd 1.4 2.6E-04 
BMD [36]  
Height [44] 

SET 1.5 1.3E-02 − Dock5 1.8 2.9E-04 
BMD [33]  

Scoliosis [34] 

MMP13 1.6 1.4E-02 − Tyrobp 1.8 3.2E-04 − 

IGHM 1.9 2.0E-02 − Pik3ap1 2.0 3.3E-04 
Scoliosis [34]  

Longevity [50] 

IPO5 1.9 2.0E-02 BMD [35] Cebpb 1.8 3.3E-04 − 

HMGCL 1.8 2.0E-02 − Ptpn22 2.0 3.3E-04 − 

CD36 1.8 2.0E-02 Height [36] Galnt6 2.4 3.4E-04 − 

G6PC3 1.8 2.0E-02 − H2-k1 1.6 3.9E-04 
(HLA-A) BMD [45]  

Height [42] 

DYSF 1.7 2.0E-02 BMD [36] Mapkapk2 1.5 4.1E-04 − 

ATP6V1C1 1.7 2.0E-02 − Mmp13 2.4 4.2E-04 − 

BTF3 1.6 2.0E-02 BMD [33] H2-d1 1.6 4.2E-04 
(HLA-A) BMD [45]  

Height [42] 

ATP6V1B2 1.6 2.0E-02 − Acp5 2.0 4.4E-04 − 

D
o

w
n

re
g

u
la

te
d

 

SOST −2.3 8.3E-04 
BMD [37, 38]  
Fracture [39] 

Hdac9 −3.2 2.7E-06 Height [36] 

BASP1 −1.9 1.8E-03 BMC [35] Ltbp1 −2.0 2.3E-05 Height [46] 

CTHRC1 −1.8 4.4E-03 − Magi2 −2.8 2.3E-05 Height [47] 

IGSF8 −2.2 4.4E-03 − Ndufa4l2 −3.0 2.3E-05 − 

CC194 −2.0 4.4E-03 Height [36] Chrdl1 −3.0 2.9E-05 − 

EFEMP1 −1.7 4.4E-03 
Height [40]  

Skin aging [51] 
Rab27b −2.1 3.5E-05 Height [41] 

EFEMP2 −1.7 4.6E-03 Height [41] Sytl2 −2.2 3.7E-05 Height [48] 

COL3A1 −1.8 4.6E-03 − Tcf7l2 −2.1 5.7E-05 
BMD [45]  

Longevity [137]  
Height [36] 

COL5A1 −1.5 4.6E-03 − Smad9 −2.8 5.7E-05 
BMD [45]  
Height [36] 

NIT2 −1.6 4.6E-03 − Ism1 −3.3 5.7E-05 Height [36] 

MBL1 −1.7 4.6E-03 (MBL2) BMD [39] Arnt2 −3.4 5.7E-05 − 

CD44 −1.7 4.6E-03 − Pip4kaA −2.2 6.1E-05 Height [49] 

TNN −2.1 5.0E-03 − Sdc3 −2.2 6.1E-05 − 

S100A10 −1.9 5.5E-03 − Adamts17 −3.4 6.1E-05 Height [40] 

COL11A1 −1.6 5.5E-03 
BMD [38]  
Height [42]  

Bone Size [43] 
Olfml2a −2.3 6.7E-05 Height [36] 

FC: Linear fold-change (old relative to young-adult). Bold denotes shared between proteomics and RNA-seq. Brackets denote ortholog. 
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and bone resorption [55], were almost two-fold higher 

in old bone. Additional proteins that were higher in  

old bone include IPO5, an important nuclear transport 

receptor; CD36, which is important for both osteoblast 

[56] and osteoclast [57] function; DYSF, which is 

known to act as a calcium sensor in muscle to facilitate 

membrane repair [58, 59]; and BTF3, which plays a role 

in c-Jun transcriptional activity. 

 

The most significantly downregulated protein in  

old bone at baseline was SOST, commonly called 

sclerostin. SOST is a well-known Wnt antagonist in 

bone that is highly expressed by mature osteocytes  

and is the target of the most recently approved 

osteoporosis drug romozosumab [60]. BASP1 is also 

lower in old bone, and although little is known about 

BASP1 in the context of bone, it was detected in a 

proteomic profiling of osteoblast differentiation [61]. 

COL5A1, a target of TGF-beta in bone [62], and 

COL11A1, which regulates bone microarchitecture 

during development [63], are both lower in old bone. 

Four other proteins that were lower in old bone 

included: CD44, which inhibits inflammatory bone 

loss [64]; MBL1, a mannose binding lectin that may 

suppress osteoclastogenesis [65]; TNN, the murine 

version of tenascin W [66] that is induced in bone  

cells by loading and Wnt signaling [67]; and S100A1, 

a calcium binder that is important in mineralization 

[68]. 

 

The most significantly upregulated genes in old bone at 

baseline play a role in osteoclastic resorption, including 

Tubb6 [69], Pstpip1 [70], and Dock5 [71, 72]. Tyrob 

affects the myeloid lineage (precursors of osteoclasts) 

and has been linked to a human disease involving bone 

cysts [73, 74]. Cebpb is known to be important in 

osteoblast differentiation [75]. H2-k1 and H2-d1 are 

orthologs of the human HLA-A gene, and while HLA-

A is expressed by osteoblast-lineage cells [76], the 

higher expression may reflect more inflammation and 

immune cell infiltration in older bone [77]. H6pd, of 

the pentose phosphate shunt, and Pik3ap1, a player  

in B-cell development, were also upregulated in old 

bone. Last, Acp5, better known as tartrate-resistant  

acid phosphatase (TRAP), was also higher in old bone. 

TRAP is expressed by bone-resorbing osteoclasts and 

is also expressed by osteocytes during perilacunar 

remodeling [78]. 

 

The most significantly downregulated gene in old bone at 

baseline was Hdac9, an inhibitor of osteoclastogenesis 

[79]. A number of other downregulated genes are 

related to TGF-beta or bone morphogenetic protein 
(BMP) signaling. Ltbp1, known as latent TGF-beta 

binding protein 1, directly modulates TGF-beta activity 

and is substrate of matrix metalloproteinases (MMPs) 

[80]. The lower expression of Ltbp1 may relate to lower 

levels of the identified BMP regulators Smad9 [81], 

Chrdl1 [82], and Adamts17 [83]. Nduf4l2, which has 

been suggested to be important for the metabolic 

transition of osteoblasts into osteocytes, was lower in 

old bone [84]. Similar to findings at the protein level, 

Sost was also a downregulated DEG (FC: -3.9, FDR: 

9.5E-05). Other genes more lowly expressed in old bone 

included Magi2 and Pip4k2a, which may play a role  

in PI3K-AKT signaling, and Tcf7l2, which is a Wnt 

effector transcription factor [85]. 

 

Integrated analysis of GWAS BMD hits with 

baseline proteomics and RNA-seq from young-adult 

and old bone identified eight targets including 

Asrgl1 and Timp2 

 

Between proteomics and RNA-seq, 71 shared targets 

were differentially expressed between bones from 

young-adult and old mice at baseline. To further 

narrow these candidates to those most relevant to 

human disease, we intersected them with the hits 

identified in a recent GWAS that identified genetic 

determinants of BMD [39], resulting in a list of  

eight targets (Figure 2A). These included the well-

known bone factors Sost, Col1a1, Col1a2, and Mepe, 

as well as Ncam1 [86] and Itgb5 [87, 88] which  

have also been studied in the context of bone. We  

also identified two targets Asrgl1 (Asparaginase and 

isoaspartyl peptidase 1) and Timp2 (Tissue inhibitor of 

metalloproteinases 2) that have been less described in 

the context of bone. 

 

To validate our proteomics findings, we assessed SOST 

expression histologically at the protein level in a 

separate set of mice. As expected, SOST expression was 

restricted to osteocytes, particularly the more mature 

osteocytes further from the surface (Figure 2B). Fewer 

SOST-positive and total osteocytes per transverse 

section were present in old bone (Figure 2C, 2D), 

consistent with the measured lower SOST at the protein 

level. Contrary to our expectations, the percentage of 

SOST-positive osteocytes and the areal density of 

SOST-positive osteocytes was not lower in old bone 

(Figure 2E, 2F), suggesting that the decrease in 

measured SOST at the protein level is due to the lower 

absolute number of osteocytes. 

 

To better characterize Asrgl1 and Timp2, we used RNA 

ISH to confirm mRNA expression in bone cells and 

characterize the expression pattern in young-adult and 

old bone. Periosteal Asrgl1-expressing cells cover less 

than a quarter (23%) of the surface in young-adult  
bone, and this percentage is lower in old bone (12%,  

p = 0.004, Figure 2G, 2H). Consistent with this, the 

total periosteal surface expression of Asrgl1 (based on 
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Figure 2. Integrated analysis of GWAS BMD hits with baseline proteomics and RNA-seq identified eight targets including 
Asrgl1 and Timp2. (A) Intersection of baseline proteomics DEPs, RNA-seq DEGs, and a GWAS database [39] revealed 8 targets. Of 
these, Sost, Asrgl1 and Timp2 were further evaluated histologically. (B) SOST expression was validated using IHC in tibias of young-adult 
and old mice (transverse sections cut at the proximal diaphysis). SOST expression was restricted to osteocytes. (C) Fewer SOST-positive 
and (D) total osteocytes (per 600 mm x 600 mm ROI) were present in old bone. (E) The percentage of SOST-positive osteocytes and (F) 
the areal density of SOST-positive osteocytes were not lower in old bone. (G) Asrgl1 expression was characterized using RNA ISH. (H) 
Most of the periosteal surface was covered by cells expressing Asrgl1, and this percentage of cells decreased with age. (I) Periosteal 
Asrgl1 expression was lower in old bone. (J) Slightly less than half of osteocytes (OCY) within cortical bone expressed Asrgl1, and this 
percentage of OCY was not lower in old bone. (K) The areal density of Asrgl1-positive osteocytes trended to be lower in old bone but 
did not reach significance. (L) Timp2 expression was characterized using RNA ISH. (M) Most of the periosteal surface was covered  
by cells expressing Timp2, and this percentage of cells trended to decrease with age. (N) Periosteal Timp2 expression was two times 
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lower in old bone. (O) Most osteocytes within cortical bone expressed Timp2, and this percentage of OCY decreased with age. (P) The 
areal density of Timp2-positive osteocytes decreased with age. Abbreviations: OCY: Osteocyte; CB: Cortical bone; Ma: Marrow; Mu: 
Muscle; Pos: Positive; Ps: Periosteal; Surf: Surface). Data shown as mean +/−SD. p-values calculated by unpaired, 2-tailed t-test; n = 6–7 
mice per age. 

 

DAB-positive area) decreased with age (young: 5440, 

old: 4735 µm2/mm, *p = 0.040, Figure 2I). Slightly 

less than half of osteocytes also express Asrgl1 in 

young-adult bone (43%), and this percentage of 

positive osteocytes was not significantly lower with 

age (38%, p = 0.22, Figure 2J). The areal density of 
Asrgl1-positive osteocytes trended to be lower but  

did not reach significance (340 vs. 264 cells/mm2,  

p = 0.066, Figure 2K). While Asrgl1 expression is 

detected in fewer than one half of bone cells, Timp2  

is expressed by most of the cells on the periosteal 

surface in young-adult and old bone (96% and 89%, 

respectively; Figure 2L, 2M). The total periosteal 

surface expression of Timp2 was decreased by half 

with age (young: 5115 vs. old: 2446 µm2/mm, p = 

0.007, Figure 2N). Most osteocytes in young-adult 

bone also express Timp2 (88%), but this percentage 

decreases with age (76%, p = 0.025, Figure 2O), as 

does the areal density of Timp2-positive (858 vs. 649 

cells/mm2, p = 0.019, Figure 2P). In summary, we 

observed reduced expression of Asrgl1 and Timp2 in 

bones of old mice using three methods—proteomics, 

RNA-seq, and RNA ISH. 

 

An age-related module indicating baseline 

differences in TGF-beta and Wnt signaling was 

identified through co-expression analysis of the 

RNA-seq data 

 

A co-expression network analysis (WGCNA) of the 

RNA-seq data identified 44 unique co-expression 

modules (Figure 3A). Three modules had a significant 

association with age, but only Module 40, with 2452 

genes, correctly separated all young-adult and old 

samples by hierarchical clustering (Figure 3B and 

Supplementary Figure 2). We then used COMPBIO to 

analyze the genes in Module 40, limiting the analysis to 

the 1055 genes that had an FDR <0.05 in the DEG 

analysis (young-adult vs. old). Within Module 40, we 

identified numerous themes that were enriched. The top 

three themes were TGF-beta signaling, Wnt signaling, 

and Pi3K/AKT and MAP/ERK, and notably these 

themes were interconnected in the network (Figure 3C). 

Other top themes included histone H3 acetylation, cell-

cell adherens junctions, and endochondral ossification 

(Figure 3D). PANTHER pathway analysis of all 2452 

genes reinforced differences in Wnt signaling and TGF-
beta signaling (Figure 3E). It also identified other 

pathways including gonadotropin-releasing hormone 

receptor, Alzheimer disease-presenilin, integrin signaling 

pathway, and angiogenesis. The genes driving this 

enrichment were examined for all nine pathways, and 

nearly all of the genes were more lowly expressed in old 

bone, suggesting that these pathways are less active in 

aged bones. KEGG analysis of all 2452 also identified 

differences in TGF-beta signaling and Wnt signaling 

but further identified differences that included: axon 

guidance; hippo signaling; ECM-receptor interaction; 

parathyroid hormone synthesis, secretion, and action; and 

AGE/RAGE signaling pathway in diabetic complications 

(Figure 3F). The diversity of pathways identified in this 

age-related module underscores the complexity of aging 

processes occurring simultaneously in bone. 

 

Baseline age-related differences in ECM/MMPs and 

TGF-beta signaling were identified in both the 

proteome and transcriptome 

 

To investigate the age-related processes by both 

proteomics and transcriptomics, we used COMPBIO  

to analyze the top 500 (by p-value) proteins (Figure 

4A) and genes (Figure 4B) that were differentially 

expressed at baseline between old and young-adult 

bone. At the protein level, the top themes were nuclear 

lamin/progeria, ECM/MMPs, and ER-associated 

degradation (ERAD) (Figure 4C). The most robustly 

interconnected group, which contained ECM/MMP, 

also included themes related to actin cytoskeleton, 

osteoblasts, and TGF-beta signaling. At the RNA level, 

the top themes were ECM/MMPs, dendrites, and TGF-

beta-signaling (Figure 4D). Again, the ECM/MMP-

containing group was the most robustly interconnected 

and additionally included actin cytoskeleton and  

cell-cell adherens junctions. Notably, only proteomics 

detected age-related differences related to nuclear 

lamin/progeria, ERAD, ubiquitination, and chaperone 

proteins. 

 

Collectively, the most prominent signals involved 

ECM/MMPs and TGF-beta signaling. Previously, 

osteocyte-intrinsic TGF-beta signaling has been  

shown to control perilacunar remodeling (PLR) [89],  

an important process for maintaining bone quality  

and fracture resistance [52]. Specifically, TGF-beta 

signaling is thought to control the expression of MMPs 

and other matrix-remodeling enzymes such as cathepsin 

K (CTSK) and tartrate resistant acid phosphatase 
(ACP5). Therefore, we examined baseline changes in 

PLR factors in our data. By proteomics, TGF-beta 1 

(TGFB1) was the only TGF-beta type detectable, and it 
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Figure 3. A single age-related module with perfect separation was identified using weighted gene co-expression network 
analysis (WGCNA) of the RNA-seq data. (A) Gene counts across all samples were clustered into 44 modules and correlated with age 

status. Three modules (black and orange) were significantly different between ages using a Bonferroni correction (p = 0.0011 = 0.05/44). (B) 
Only Module 40 (orange) displayed perfect separation using hierarchical clustering. (C, D) COMPBIO analysis of the subset of 1055 genes 
from Module 40 that had an FDR <0.05 between young-adult and old samples identified TGF-beta signaling and Wnt signaling as the top 
themes. (E, F) PANTHER Pathway and KEGG analyses of all 2452 genes in Module 40 also revealed Wnt signaling and TGF-beta signaling, 
among other pathways. Examination of the fold-changes of the genes from the PANTHER analysis showed that all 9 pathways are reduced 
with aging. Abbreviation: FE: fold-enrichment. 
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Figure 4. Baseline age-related differences in ECM/MMPs and TGF-beta signaling were detected in both the proteome and 
transcriptome. COMPBIO analysis of (A) the proteome and (B) the transcriptome indicated baseline changes in ECM/MMPs. (C) At the 
protein level, the top 10 themes included Lamin/Progeria, ECM/MMPs, and ER-Associated Degradation. (D) At the RNA level, the top 10 
themes included ECM/MMPs, Dendrites, and TGF-beta signaling. Examination of age-related differences in individual (E) proteins and (F) 
genes related to TGF-beta signaling and perilacunar remodeling (PLR) showed reduced TGF-beta levels but higher Mmp13. (G) RNA ISH for 
Tgfb2 showed predominant expression in osteocytes. (H) Periosteal Tgfb2 expression was minimal in young-adult bone and even lower in 
old bone. (I) Over half of osteocytes (OCY) within cortical bone expressed Tgfb2, and this percentage was lower in old bone. (J) The areal 
density of Tgfb2-positive osteocytes was about half in old versus young bone. 
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was two times lower in old bone (Figure 4E). MMP2 

was significantly lower in old bone while MMP13 

expression was significantly higher. Other proteins 

related to perilacunar remodeling such as CTSK and 

ACP5 trended higher in old bone but did not reach 

significance. At the transcript level, all three TGF- 

beta types were detected, and in young-adult bone, 

Tgfb1 and Tgfb2 were the most highly expressed at 

baseline (Supplementary Figure 3). In old bone, Tgfb2 

expression was nearly four-fold lower (Figure 4F) while 

Tgfb1 expression was also significantly lower but by  

a much smaller magnitude. At the transcript level, the 

directional changes of the PLR genes were the same as 

observed by proteomics, with Mmp13, Ctsk, and Acp5 

being significantly higher in old bone. 

 

To better localize age-related TGF-beta signaling factors, 

we used RNA ISH to examine the expression of Tgfb2. 

We found that Tgfb2 is predominantly expressed by 

osteocytes in young-adult and aged bone (Figure 4G). On 

the periosteal surface, less than 10% of periosteal surface 

cells expressed Tgfb2; this percentage significantly 

decreased with age (9% vs. 3%, p = 0.005, Figure 4H). 

On the other hand, over 50% of osteocytes in young-adult 

bone expressed Tgfb2, and this percentage also decreased 

in old bone (58% vs. 39%, p = 0.0005, Figure 4I).  

The areal density of Tgfb2-expressing osteocytes was 

approximately half in old bone (495 vs. 272 cells/mm2,  

p = 0.0005, Figure 4J). Therefore, both proteomic and 

transcriptomic approaches revealed baseline differences 

in TGF-beta signaling, particularly related to Tgfb2, 

which may be involved in PLR. 

 

The proteome differed more with age than 

mechanical loading 

 

We next sought to study the proteomes of bones from 

young-adult and old mice following a mechanical loading 

stimulus. Tibias from a separate set of young-adult and 

old mice were loaded in vivo for 1 or 5 days (Figure 5A). 

Time points were selected to sample distinct phases of 

the loading response: early mechanosensation (day 1)  

and active bone formation (day 5). Paired loaded and 

non-loaded tibias were analyzed by proteomics (Figure 

5B, 5C). After filtering, 2300 and 2140 proteins were 

detected by proteomics at days 1 and 5, respectively 

(Supplementary Figure 1). Multidimensional scaling 

(MDS) showed that young-adult samples separated from 

old samples regardless of loading status at day 1 (Figure 

5D). As expected, at day 5, when bone formation is 

actively occurring [11], samples separated marginally 

better based on loading status, but the strongest proteomic 

differences were still due to age status (Figure 5E). 
 

The top 10 upregulated and downregulated proteins 

following loading were compiled for each age and day 

combination (Table 2). Using the same DEP criterion 

of an FDR <0.05 to compare loaded and non-loaded 

samples, only five proteins (SMPD3, FKBP7, SSR3, 

EIF4G1, and EIF2S3X) reached significance across the 

entire loading experiment, all upregulated in young-

adult bones at day 5. SMPD3, a sphingomyelinase that 

produces ceramide [90], was the most significantly 

upregulated protein. Ceramides are bioactive lipids that 

play a role in triggering proliferation and differentiation 

[91]. SMPD3 has GWAS associations with both BMD 

and height and is known to be important in bone for 

development [92] and fracture healing [93]. FKBP7  

is a calcium-binding molecular chaperone. In old 

bones, neither protein was significantly upregulated 

following loading at day 5. Given that Smdp3 and 

Fkbp7 were also previously identified as upregulated 

DEGs (7- and 3-fold up, respectively) in young-adult 

mice but downregulated DEGs in old mice (3- and 2-

fold down, respectively) [11], they may play a role in 

the diminished loading-induced bone-formation with 

aging. SSR3, a signal sequence receptor important for 

protein translocation across the ER membrane, was 

also significantly upregulated at the protein level. It 

was also a loading DEG [11] and has been linked to 

BMD and height, although little is known about its 

direct role in bone cells. The last upregulated DEPs 

were EIF4G1 and EIF2S3X, which both play a role in 

translation, and may reflect increased matrix synthesis 

during the loading-induced bone formation response. 

Notably, in young-adult mice at day 5, we also  

detected a trend toward reduced MMP13, consistent 

with our recent findings using gene microarray and 

IHC [94]. 

 

Proteomes following loading showed distinct 

pathway, protein class, process enrichment 

 

As input for pathway analysis, we defined loading-

responsive proteins using the following criteria: a 

linear fold-change of at least 1.1 (up or down) and an 

unadjusted p-value < 0.05. At day 1, tibias from young-

adult mice had 150 upregulated and 109 downregulated 

loading-responsive proteins, whereas tibias from old 

mice had 38 upregulated and 38 downregulated 

loading-responsive proteins (Figure 6A). At day 5, 

tibias from young-adult mice had 88 upregulated  

and 137 downregulated loading-responsive proteins, 

whereas tibias from old mice had 59 upregulated and 

120 downregulated loading-responsive proteins. We 

next examined the pathways that changed at the  

protein level following mechanical loading using 

combined upregulated and downregulated protein lists 

with PANTHER pathways (Figure 6B). We extended 
this pathway analysis with a more expansive and 

directional (upregulated and downregulated proteins 

separately) analysis: Reactome pathways (Figure 7A), 
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gene ontology (GO) terms (Supplementary Figure  

4), protein classes (Supplementary Figure 5), and 

COMPBIO themes (Supplementary Figure 6). 

 

In young-adult bone at day 1, we observed enrichment 

of integrin signaling, nicotinic acetylcholine receptor 

signaling, Parkinson disease, and TCA cycle (Figure 

6C). Consistent with the TCA cycle signal, Reactome 

pathway analysis indicated that upregulated proteins 

were enriched for pathways related to complex I and 

the formation of ATP by chemiosmotic coupling 

(Figure 7B). Protein class analysis showed enrichment 

of ATP synthase and dehydrogenase classes while GO 

processes related to mitochondrial electron transport. 

 

 
 

Figure 5. Experimental design for proteomics loading experiment. (A) 20 female C57BL/6N mice (5 mice/day/age) were subjected 

to daily in vivo axial tibial compression for either 1 (Day 1) or 5 (Day 5) bouts and sacrificed 6 hours after their final bout of loading. (B) The 
loaded (right) and non-loaded (left) tibial mid-diaphyses were isolated, removed of marrow, and snap frozen. Proteins were extracted in 4% 
SDS. Proteins for all 40 samples were then analyzed by proteomics using a tandem mass tag (TMT)-11 design. (C) Proteomics raw data were 
analyzed, and differential expression analysis was performed using ProteoQ. An unadjusted p-value cutoff of 0.05 and a fold-change 
threshold of 1.1 were used to identify loading-regulated proteins for downstream analyses, which included gene ontology (GO), PANTHER 
pathways, COMPBIO, and correlation with previously published RNA-seq data [11]. (D) At Day 1, multidimensional scaling (MDS) showed 
that the strongest differences were between ages rather than with loading status. (E) A Day 5, MDS showed slightly better separation 
between loaded and non-loaded samples, but the strongest separation was still between ages. 
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Table 2. Top 10 differentially expressed proteins (loaded vs. non-loaded) in young-adult and old mice following 
1 or 5 days of loading, ranked by p-value. 

Young-adult 

 
Day 1 Day 5 

Protein FC pVal FDR Protein FC pVal FDR 

U
p

re
g

u
la

te
d
 

LEMD2 1.5 1.7E-04 0.09 SMPD3✱ 1.8 3.7E-06 0.01 

GTPBP10 2.3 8.1E-04 0.24 FKBP7✱ 1.5 2.7E-05 0.03 

CD36 1.6 9.4E-04 0.24 SSR3✱ 1.3 5.1E-05 0.03 

MCPT4 1.7 1.1E-03 0.25 EIF4G1 1.3 6.1E-05 0.03 

FMNL3 1.5 1.5E-03 0.27 EIF2S3X 1.3 8.5E-05 0.04 

RANGAP1 1.3 1.7E-03 0.27 HDLBP
●✱ 1.3 2.3E-04 0.06 

DNAJA2 1.3 1.8E-03 0.27 RPS17 1.4 2.7E-04 0.06 

NDUFB5 1.7 2.2E-03 0.27 VKORC1✱ 1.4 2.9E-04 0.06 

TMEM65 1.3 2.4E-03 0.27 TMED3✱ 1.4 3.0E-04 0.06 

NDUFA11 1.6 2.8E-03 0.27 RPL26 1.4 3.1E-04 0.06 

D
o

w
n

re
g

u
la

te
d
 

PGM3✱ −1.5 5.7E-05 0.06 SPP1
●
 −1.4 2.2E-04 0.06 

CA3 −1.8 1.6E-04 0.09 HSPA2 −1.3 4.5E-04 0.07 

PSMA1 −1.2 5.5E-04 0.23 F9 −1.3 1.9E-03 0.12 

PPP1CA −1.5 8.3E-04 0.24 HBA −1.7 2.8E-03 0.17 

GARS −1.3 1.8E-03 0.27 HBB-B1 −1.5 3.3E-03 0.17 

CD68 −1.3 2.7E-03 0.27 F2 −1.2 3.8E-03 0.18 

MDH1 −1.2 2.8E-03 0.27 CTSK
●
 −1.6 3.8E-03 0.18 

TUBB5 −1.3 2.9E-03 0.27 TGFB1 −1.2 3.9E-03 0.18 

OLA1 −1.2 2.9E-03 0.27 SERPINC1 −1.1 4.0E-03 0.18 

CTSH −1.4 3.3E-03 0.27 MMP13 −1.3 4.7E-03 0.20 

Old 

 
Day 1 Day 5 

Protein FC pVal FDR Protein FC pVal FDR 

U
p

re
g

u
la

te
d
 

PYGB 1.5 4.4E-03 0.96 LPAR1 1.4 8.2E-05 0.09 

BCL2L13 1.2 4.7E-03 0.96 STX4 1.3 2.1E-04 0.12 

YIPF5 1.4 5.6E-03 0.96 LOXL2✱ 1.7 3.9E-04 0.12 

RCN1✱ 1.2 6.8E-03 0.96 PLOD1 1.3 4.0E-04 0.12 

STOM 1.2 8.8E-03 0.96 SEC11A 1.3 4.3E-04 0.12 

NDUFB6 1.4 8.9E-03 0.96 EMP3 1.3 4.8E-04 0.12 

ACAN 1.6 9.4E-03 0.96 ATP2B1 1.2 5.7E-04 0.12 

PTRH2 1.3 1.2E-02 0.96 CFP 1.4 8.6E-04 0.16 

UBE2D2 1.1 1.4E-02 0.96 VIM 1.2 9.9E-04 0.16 

JUP 1.2 1.4E-02 0.96 SLC43A3 1.5 1.1E-03 0.16 

D
o

w
n

re
g

u
la

te
d
 

YBX1 −1.3 3.2E-03 0.96 CA3 −1.5 2.6E-04 0.12 

SEPTIN9 −1.2 3.5E-03 0.96 PEA15 −1.2 5.3E-04 0.12 

NRP2 −1.3 7.2E-03 0.96 GPI −1.3 2.2E-03 0.20 

LASP1 −1.2 1.1E-02 0.96 FABP3 −1.6 2.4E-03 0.20 

CAPRIN1 −1.2 1.2E-02 0.96 PGK1 −1.3 2.6E-03 0.20 

GNB4 −1.2 1.2E-02 0.96 MDH1 −1.2 3.5E-03 0.22 

MMP13 −1.2 1.3E-02 0.96 LDHA −1.4 4.9E-03 0.26 

CDC37 −1.2 1.6E-02 0.96 TPI1 −1.3 6.4E-03 0.28 

ATP6AP1 −1.2 1.6E-02 0.96 PVALB −2.0 8.4E-03 0.33 

PRDX1 −1.2 1.8E-02 0.96 PPP2R1A −1.1 9.2E-03 0.33 

FC: Linear fold-change (loaded/non-loaded). Abbreviation: FDR: False Discovery Rate. Bold: Met criterion for DEP. DEG by RNA-seq [11] in 

same age in same direction or different direction at Day 3 (
●

) or Day 5 (✱) 
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Actin-binding cytoskeletal proteins and ECM structural 

proteins showed protein class and GO enrichment, but 

interestingly, downregulated proteins were enriched for 

collagen-related processes. As expected at this early 

time point, we observed a prominent transcriptional 

signal. 

In young-adult bone at day 5, no proteins were 

significantly enriched for any PANTHER pathway, but 

Reactome analysis showed that upregulated proteins 

were enriched for collagen biosynthesis. COMPBIO 

also identified an osteoblast theme within its top ten. 

The upregulated proteins were enriched for processes 

 

 
 

Figure 6. Tibias from old mice had fewer protein-level changes following loading compared to young-adult mice. (A) Volcano 

plots for each day and age combination following the loading experiment. The total number of loading regulated proteins is shown above 
with the upregulated number in red and the downregulated number in blue. (B) Loading-related proteins were input into PANTHER to 
identify enriched PANTHER pathways. (C) Loading-related PANTHER pathways were temporally arranged. 
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related to translation, consistent with the GO, protein 

class, and COMPBIO enrichments. Downregulated 

proteins at day 5 showed enrichment for amino acid 

regulation of mTORC1 and regulation of insulin-like 

growth factor. 

 

In old bone at day 1, no proteins were significantly 

enriched for any PANTHER pathway, but Reactome 

analysis indicated an immune response. Protein class 

analysis indicated enrichment of calcium-binding 

proteins and ribosomal proteins while top COMPBIO 

themes related to ubiquitin degradation, actin filament 

dynamics, and RHO GTPase activity. 

 

In old bone at day 5, we observed enrichment of 

integrin signaling and glycolysis. Reactome pathway 

 

 
 

Figure 7. Temporal map of PANTHER Reactome Pathways for proteomics loading experiment. (A) Loading-responsive protein 

lists for each age and day combination (up and down lists separate) were input to PANTHER to identify enriched pathways. (B) Reactome 
pathways were arranged temporarily for upregulated or downregulated protein enrichment at each day and age combination. Both 
upregulated and downregulated lists were enriched for pathways. 
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analysis indicated that downregulated proteins were 

enriched for glycolysis and gluconeogenesis, consistent 

with the GO process enrichment and the protein  

class enrichment of isomerases and dehydrogenases. 

Downregulated proteins also showed enrichment for 

amino acid regulation of mTORC1, as in the young-

adult samples. Upregulated proteins were enriched  

for collagen-related pathways, consistent with the GO 

and protein class enrichment related to the ECM. 

COMPBIO analysis reinforced these findings and  

also indicated changes in nuclear lamins/envelope. In 

contrast to the GO analysis in young-adult samples at 

this time point, we observed enrichment of processes 

related to transcription rather than translation, potentially 

suggesting a delay in the bone formation cascade with 

age. 
 

DISCUSSION 
 

Our main objectives were (1) to compare the proteome 

and transcriptome of tibias from young-adult and old 

mice under baseline conditions, and (2) to define the 

changes in the bone proteome in response to mechanical 

loading. First, we successfully developed a proteomics 

method to detect protein-level changes in marrow-free 

cortical bone. Second, we employed this method to 

perform paired proteomics and RNA-seq on tibias of 

young-adult (5-month) and old (22-month) C57BL/6N 

female mice at baseline. The correlation between the 

proteome and transcriptome in bone was moderately 

positive (ρ = 0.40, p < 0.001), in line with other tissues 

[31, 32]. Differential expression analysis of young- 

adult vs. old bones at baseline identified 183 DEPs and 

2290 DEGs. Eight of the shared differentially expressed 

targets had previously been identified as being 

important determinants of BMD through GWAS. We 

used RNA ISH to characterize the expression of Asrgl1 

and Timp2, which have been understudied in bone. At 

baseline, old bones displayed diminished TGF-beta 

signaling and alterations in extracellular matrix (ECM) 

and matrix-metalloproteinases protein and transcript 

levels. We identified that Tgfb2 was the most reduced 

Tgfb transcript in old bone and showed that Tgfb2  

was predominantly expressed by osteocytes. Third, we 

used proteomics to compare the loading responses 

between tibias of young-adult and old mice. Overall, we 

defined only modest loading-related changes in the 

proteome relative to the robust age-related differences. 

Nonetheless, we identified a handful of significant DEPs 

and were able to characterize the loading-responsive 

proteins and pathways in young-adult and aged mice 

following 1 and 5 days of loading. Specifically, 

compared to young-adult mice, old mice had fewer 
protein-level changes at both days and had enrichment 

of distinct biological pathways, such as those related to 

the nuclear envelope. 

One previous study examined the proteome of exosomes 

isolated from bones of aged mice [16]. Another study 

characterized the loading response in bones from a 

small number of rats [18]; however, it is unclear 

whether these authors [18] removed the cellularly rich 

bone marrow for their analysis. Other whole-tissue 

studies of bone have been performed on relatively  

large tissue samples, namely canine skull [17], rat  

ulnas [18], mouse calvarias [19], and human femoral 

necks [20]. Here, we demonstrated the feasibility of a 

proteomic analysis of whole cortical tissue from mouse 

long bones, a widely used model system in skeletal 

biology.  

 

We also report the first estimate of the correlation 

between the proteome and transcriptome in bone tissue, 

Spearman ρ = 0.40. Initial correlations for 12 non-bone 

tissues ranged from ρ = 0.41–0.55 [32]. More recently, a 

group used data from the GTEx project [95] and human 

proteome map [96] to correlate the transcriptome and 

proteome in 14 non-bone tissues, finding a range from  

ρ = 0.36–0.5 [31]. Our value of ρ = 0.40 for bone is in 

line with these estimates for other tissues. We suspect 

that this relatively low value has both a biological  

and technical basis. First, differences between RNA  

and protein expression may result from the post-

transcriptional and post-translational regulation of many 

proteins, as has been demonstrated in bone [97]. It may 

also reflect a temporal lag between when a gene is 

transcribed and when the corresponding protein is 

expressed, and likewise may reflect the abundance  

of extracellular matrix proteins in bone that persist  

long after transcription has stopped. We note that our 

correlation estimate is for bone at a baseline state, and  

it is possible that evaluating the correlation following  

an anabolic stimulus such as mechanical loading or 

pharmacological treatment may provide a different 

result. Finally, technical differences between the 

sampling depth of sequencing versus mass spectrometry 

methods may have also contributed to our result. 

Nonetheless, our finding reinforces the idea that the 

transcriptome falls short of capturing the full biological 

picture in most model systems and shows that bone is 

no exception [98, 99]. 

 

One of the nine hallmarks of aging—loss of 

proteostasis [100]—has been relatively understudied in 

the bone outside of the context of autophagy models 

[101, 102]. Proteomics is particularly well suited for 

this application given its ability to detect both low-

magnitude transcriptional changes that accumulate over 

time and changes in protein that occur independent  

of transcriptional control (e.g., due to chaperone or 
proteosome dysfunction). At the protein level, but not 

at the RNA level, we identified age-related differences 

in ER-associated decay (ERAD), ubiquitination, and 
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chaperone proteins. It’s been hypothesized that 

chaperones in osteocytes are important for their ability 

to adapt and live for years while deeply embedded  

in mineralized matrix [103], perhaps through auto- 

phagy [104]. Thus, these changes may partly underlie 

the reported age-related death of osteocytes and 

degeneration of the osteocyte lacunocanalicular network 

[105]. Of note, osteocyte apoptosis was reported to  

be reduced by mechanical loading [106]. Given the 

finding that voluntary treadmill running can partly 

restore the muscle proteome to its youthful state [107], 

exercise-induced bone loading or a more longitudinal 

loading regimen may hold potential to rescue the age-

related changes in the bone proteome. 

 

In aged bone, we found prominent alteration of lamins 

and cytoskeletal elements at the protein level. Previous 

in vitro work has shown that prominent nuclear/lamin 

and actin cytoskeletal features can distinguish mature 

osteocytes from the earlier osteoblast lineage [103]. 

Specifically, lamins are thought to play a role in 

maintaining healthy bone by maintaining differentiation 

and survival [108], and lamins and actin cytoskeletal 

elements are thought to be important for mechano-

sensation in a variety of tissues [109]. Therefore, these 

alterations in lamins/envelope and cytoskeletal elements 

may have a mechanistic connection to the diminished 

loading response with aging. 

 

Our multi-omics approach identified the targets Asrgl1 

and Timp2, proteins that—despite showing lower 

expression with age and being associated with BMD 

[39]—remain understudied in bone. We used RNA  

ISH to validate our findings and characterize their 

expression patterns in young-adult and old bone. The 

function of Asrgl1, which has asparaginase but not 

glutaminase activity, remains unclear. We learned that 

in young-adult bone, approximately half of osteocytes 

express Asrgl1 (asparaginase and isoaspartyl peptidase 

1), while only a quarter of the periosteal surface is 

covered by Asrgl1-expressing cells. In old bone, this 

percentage of Asrgl1-expressing surface cells is halved, 

consistent with the lower abundance of Asrgl1 in old 

bones. Timp2 (Tissue inhibitor of metalloproteinases 2) 

is known to inhibit MMP function, especially in 

calvariae [110], where MMPs are known to play a role 

in osteoclastic resorption [111]. Here, we learned that in 

normally developed long bones, Timp2 is expressed by 

most osteocytes, and most of the periosteal surface is 

covered by Timp2-positive cells. In old bone, the total 

surface cell expression of Timp2 is halved and osteocyte 

expression also decreases. 

 
At baseline, old mice displayed diminished TGF-beta 

signaling and showed alterations in MMPs/ECM 

compared to young-adult mice. Our finding that Tgfb2 

is predominantly expressed by osteocytes is consistent 

with a previous developmental study that showed that 

Tgfb2 expression was localized in osteocytes but not the 

periosteum or marrow [112]. While Tgfb1 and Tgfb2 

were expressed at comparable levels in young-adult 

bones, Tgfb2 was the most reduced Tgfb transcript type 

with age. Although Tgfb1 is frequently described as the 

predominant TGF-beta isoform in bone, Tgfb2 may play 

an underappreciated role in bone homeostasis and aging; 

it is already known to be important in the development 

of both the axial and appendicular skeletons [113]. 

Additionally, the lack of phenotypic overlap between 

Tgfb2 KO, Tgfb1 KO, and Tgfb3 KO models suggests 

independent, non-compensatory functions of the isoforms 

[113]. Our results seem to differ from a report that 

TGFB1 increases with aging [114]. We speculate that 

this discrepancy may be due to differences in the 

samples; we analyzed diaphyseal cortical bone, whereas 

Li et al. analyzed the metaphysis, which contains more 

trabecular bone [114] and may be enriched for different 

progenitors. Thus, in different regions of bone, there may 

be distinct TGF-betas isoforms and how they change 

with aging may be unique. 

 

Based on previous loss-of-function models of TGF-beta 

signaling in osteocytes [89], we had expected to find 

reduced MMP expression in old bone. Nonetheless, 

despite the lower TGF-beta signaling in aged bone, 

MMP13 was also more highly expressed. Given that 

osteocytes comprise ~95% of bone cells and that 

osteocyte-derived MMP13 has been shown to be  

critical for maintaining PLR, we attribute this MMP13 

expression to osteocytes [52, 53] but efforts to 

histologically localize MMP13 at the protein level in 

these samples were not reproducible. Overall, we 

speculate that the alterations in TGF-beta, Timp2, and 

MMPs relate to dysregulated PLR with aging. 

 

We designed the loading experiment to extend our 

understanding of the loading response at the protein 

level, which has not been addressed by prior in vivo  

-omic study designs. The loading response of bone is 

known to be partly regulated post-transcriptionally 

[115]. In fact, following loading, sclerostin is actively 

degraded by lysosomes [97]. Previously, however, most 

proteomic studies into the mechanoresponsiveness  

of bone have been in vitro [103, 15]. Given that the 

mechanosensing osteocyte lacunocanalicular network 

degenerates with aging [105], we hypothesized that  

we would detect, protein-level differences at an early 

time point following loading. Therefore, we assessed 

the response at day 1, before bone formation began 

(during mechanosensation). We also expected to detect 
differences between ages during bone formation, so we 

assessed the response at day 5, when bone formation  

is actively occurring. At the protein-level, the loading-
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related changes were modest compared to the age-

related differences. As in our previous transcriptomic 

results, old bone had fewer protein-level changes at 

both days compared to young-adult bone. Transcription 

signal was observed at day 1 in young-adult bone  

but only at day 5 in old. By day 5, young-adult bone 

showed a translation signal, so this may represent  

a delay in the aged loading-induced bone formation 

cascade. Additionally, at day 5, only old bone had 

downregulation of pathways related nuclear lamins/ 

envelope, which may play a role in the blunted bone 

formation response. 

 

Overall, a proteomic analysis of bone at the whole-

tissue level presented two major challenges: (1) the 

large pre-existing pool of extracellular proteins in bone, 

and (2) the multiple cell types contained within marrow-

free bone. First, we found that the loading-related 

changes at the protein level were relatively modest. We 

hypothesize that this may be attributable to the large 

pre-existing pool of proteins contained within matrix-

rich cortical bone, which could mask acute, stimulus-

induced changes. We suggest that future efforts to study 

proteomic changes in bone following acute interventions 

employ strategies to label and enrich for newly translated 

proteins. In the present study, we did not enrich for 

post-translational modifications (i.e., phosphorylation  

or acetylation), which are thought to mediate many 

mechanosensitive pathways [116] and have been 

demonstrated to acutely change during exercise [117]. 

We hypothesize that adding such an enrichment step 

would enable a more sensitive assessment of protein 

level changes following loading. Second, we studied 

bulk cortical bone, which despite taking extreme care to 

remove all marrow and adherent muscle, still contains 

all major bone cell types (i.e., osteocytes, osteoblasts, 

osteoclasts, and bone lining cells) at a variety of 

differentiation stages in addition to investing structures 

like nerves and vessels. Due to this mixture of cell types 

and states, important changes in any one cell type  

may have been ‘averaged out’ and missed in this study 

[99]. In addition, with our present bulk design, it is 

impossible to attribute expression of a certain factor to a 

particular cell type or lineage. In the present study, we 

addressed this limitation by employing complementary 

histological validation efforts to localize key targets. 

However, histological validation is inherently low-

throughput and does not lend itself to systems biology 

approaches for studying bone. Future efforts may benefit 

from employing cell-specific markers for enrichment, 

such as using a Cre driver with the bio-orthogonal  

non-canonical amino acid tagging (BONCAT) platform 

[118]. 
 

Our study had several other limitations. First, as in  

other studies, the higher variability in aged samples was 

a challenge for detecting experimental differences. 

Second, the TMT-11 study design to facilitate optimal 

peptide quantification limited our sample number to 5 

per group and is known to cause ratio compression, 

which likely underestimated our fold-changes [119]. As 

label-free quantification becomes more common, such 

an approach should be considered in future proteomics 

studies on bone tissue [120]. Third, despite detecting 

many intracellular proteins (e.g., we detected most  

of the proteins involved in glycolysis), our proteomic 

sampling depth was relatively low for studying intra-

cellular changes. Given that numerous proteins of 

interest in bone (e.g., Wnt ligands or transcription 

factors) are lowly expressed relative to matrix proteins, 

combined targeted and multiplexed strategies may  

aide in investigating such proteins [121]. Fourth, while 

we validated several of our omics findings with in  

situ hybridization, as with other big data studies, our 

interpretations remain speculative without functional 

validation. While organ culture models hold potential 

for delving into some of these mechanisms, functional 

validation was outside of the scope of the current study. 

Future efforts using in vitro and in vivo approaches are 

required to further understand the mechanistic role of 

the targets we identified. 

 

In summary, we developed a proteomics method to  

detect protein-level changes in cortical bone with aging. 

Based on paired proteomics and RNA-seq on tibias of 

young-adult and old mice at baseline, we reported the  

first estimate of the correlation between the proteome  

and transcriptome in bone (ρ = 0.40, p < 0.001). We  

found many differences with aging at both the protein- 

and RNA-level, and characterized the expression of  

two targets (Asrgl1, Timp2), which may be important  

for skeletal aging. In addition, old bones displayed 

diminished TGF-beta signaling at baseline, and osteocyte-

derived Tgfb2 was the most reduced Tgfb transcript. 

Proteomics detected substantial age-related differences  

in proteostasis related to ERAD, chaperone proteins, and 

ubiquitination. Finally, we used proteomics to compare 

the loading responses between tibias of young-adult and 

old mice. We found that the proteome differed more with 

age than loading status and identified loading-induced 

protein-level changes in both ages, including enrichment 

of distinct pathways in aged bone. We conclude that 

proteomics is a promising approach to study bone biology 

and detect protein-specific changes in aging. 

 

MATERIALS AND METHODS 
 

Mice 

 
Female C57BL/6N mice were obtained at 5 months 

(young-adult) and 22 months (old) from the aged rodent 

colony at the National Institute on Aging, which is 
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managed by Charles River Laboratories (Figure 1A). 

Female mice were selected because: (1) osteoporosis  

is more prevalent in females [1]; (2) male mice often 

fight, which can impact the skeleton and confound the 

effects of loading [122]; and (3) to facilitate comparison 

with our previous RNA-seq study, which used female 

mice [26–30, 11]. Across all experiments, 58 mice  

(34 young-adult and 24 old) were used in this study. 

Mice were housed in groups of up to five animals of  

the same age and kept on a 12-hour light/dark cycle  

under standard conditions with ad libitum access to 

water and chow (Purina 5053 and 5058). All animal 

work was approved by and in compliance with the 

Washington University IACUC. All included mice were 

healthy throughout the experiment. For the baseline 

experiment, we performed paired proteomics and RNA-

seq on tibias of young-adult (5-month) and old (22-

month) C57BL/6N female mice not subjected to any 

interventions (Figure 1A). For the loading experiment, 

we used proteomics to compare the loading responses 

between tibias of young-adult and old mice following  

1 or 5 days of axial loading (Figure 5A). MicroCT of 

the right femurs from the mice used in the baseline 

comparison confirmed the expected age-related changes 

in bone, specifically decreases in distal cortical bone 

area, distal cortical thickness, trabecular bone volume 

per total volume (BV/TV), and trabecular number 

(Figure 1B–1G and Supplementary Figure 7). 

 

In vivo mechanical loading 

 

In the loading experiment, mice were loaded for either 1 

or 5 bouts of daily loading. Mice were anesthetized (3% 

isofluorane) and subjected to loading each morning for 

the specified number of days. With the mouse prone, 

the right leg (tibia) was placed vertically in the loading 

fixture with the knee positioned superiorly in a semi-
spherical cup (10 mm diameter) attached to the system 

actuator, and the foot held in a static fixture inferiorly 

(20° of dorsiflexion). A preload (−0.5 N) was applied, 

and tibias were subjected to axial compression for 

60 cycles/day (4Hz haversine waveform) using the 

Electropulse 1000 materials testing system (Instron). 

This loading protocol is anabolic for both cortical and 

trabecular bone in young-adult mice [123]. We used  

a strain-matched study design. Based on prior strain 

gauging analyses [124] and consistent with our RNA-

seq study, age-specific peak forces of -8N and -7N were 

selected for the 5- and 22-month-old mice, respectively, 

to engender average peak compressive periosteal strains 

of −2200 µε at the cortical mid-shaft [28]. Corresponding 

tensile strains on the anterio-medial surface were 

approximately 1200 µε [124]. After each loading bout, 
buprenorphine (0.1 mg/kg subcutaneously) was given  

to mitigate pain from loading [125], and mice were 

returned to their cages to resume unrestricted activity. 

The left tibias served as non-loaded, contralateral 

controls. Six hours after their final loading bout, mice 

were euthanized by CO2 asphyxiation. 

 

Tibial isolation  

 

For proteomics and RNA-seq analyses, right and  

left tibias were stripped of muscle, cut at the distal 

tibiofibular junction and 2 mm distal to the tibial 

plateau, placed in ice-cold PBS, centrifuged to remove 

the bone marrow [125, 126], flushed with PBS, and 

snap frozen in liquid nitrogen. Samples were stored  

at -80°C until protein or RNA extraction. For the 

histology assays, the left tibias were cut at the ankle  

and above the tibial plateau and trimmed of muscle  

with care not to disturb the periosteum; samples were 

immediately fixed in 10% neutral-buffered formalin 

(NBF). 

 
Protein extraction by homogenization and sonication 

 

Preliminary experiments were performed to compare 

the protein yield and peptide detection of several tissue 

homogenization methods (Supplementary Figure 8). 

Frozen tibial samples were homogenized with the 

cryoPREP (Covaris CP02) pulverizer in small impactor 

bags (tissueTUBES, Covaris # 520071), as previously 

described in other tissues [127]. With the bag partly 

submerged in liquid nitrogen, the bone was transferred 

into the bag, and the cap was lightly screwed on (to 

allow air to escape during the impact). The CryoPrep 

was activated on impact level 5. After impact, 100 µL 

of SDS (4 % SDS, 100 mM Tris-HCl, pH 8.0) at  

room temperature (RT) were added to the bag. A pipette 

was used to spread and agitate the buffer within the bag 

to cover all bone chips. Eventually, the bone lysate 

became ‘stringy’ and was pushed into a corner of the 

bag. Using a pipette (with cut tip), the lysate was 

transferred to a sonication vial (Covaris #520130). After 

incubating at RT for 5 min, the samples were sonicated 

in the S220X focused-ultrasonicator (Covaris) for 4 min 

with the following settings: PIP: 500 Watt, cycles per 

burst: 500, duty factor: 10%. Sonicated samples were 

transferred to 1.7 mL Eppendorf tubes and spun at 

14,000 × g for 15min at 8°C to pellet debris. The 

supernatant was collected, transferred to a new 1.7 mL 

tube, and 2 µL were reserved for protein concentration 

determination, according to BCA kit instructions 

(Pierce #23227); the remaining lysate was reduced with 

100 mM DTT followed by heating at 95°C for 10 min. 

Samples were stored at −80°C. 

 

Peptide preparation 

 

The samples were digested using a modification of  

the filter-aided sample preparation (FASP) method, as 
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previously described [128]. The reduced samples were 

mixed with 200 µL of 100 mM Tris-HCL buffer, pH  

8.5 containing 8M urea (UA buffer) and transferred  

onto the top chamber of a 30,000 MWCO cutoff 

filtration unit (Millipore #MRCF0R030) and spun in a 

microcentrifuge at 14,000 × g for 10 min. An additional 

200 µL of UA buffer was added to the top chamber of 

the filter unit and the filter was centrifuged at 14,000 × 

g for 15–20 min. The flow through was discarded, and 

the proteins were alkylated by adding 100 µL of 50 mM 

Iodoacetamide (Pierce #A39271) in UA buffer to the 

top chamber of the filtration unit and gyrating at 550 

rpm in the dark at RT for 30min using a thermomixer 

(Eppendorf #05-400-205). The filter was spun at 14,000 

× g for 15 min, and the flow through was discarded. 

Unreacted iodoacetamide was washed through the filter 

with two sequential additions of 200 µL of UA buffer 

and centrifugation at 14,000 × g for 15–20 min after 

each addition. The urea buffer was exchanged into 

digestion buffer (DB) consisting of 50 mM ammonium 

bicarbonate buffer at pH 8. Two sequential additions of 

200 uL of DB with centrifugation after each addition to 

the top chamber were performed. The top filter units 

were transferred to a new collection tube, and 1 micro 

unit of LysC (Wako Chemicals #129-02541) was added. 

Samples were digested at 37°C for 2hr. After LysC 

digestion, 1 µg of sequencing-grade trypsin (Promega 

#V5113) was added, and samples were digested 

overnight at 37°C. The filters were spun at 14,000 × g 

for 15min to collect the peptides in the flow through. 

The filter was washed with 50 µL of 100 mM 

ammonium bicarbonate buffer, and the wash was 

collected with the peptides. In preparation for desalting, 

peptides were washed 3 times in 1mL ethyl acetate 

followed by acidification to 1% (vol/vol) trifluoroacetic 

acid (TFA) final concentration. The peptides were 

desalted using porous graphite carbon two micro-tips 

(Glygen BIOMEK NT3CAR) on a Beckman robot 

(Biomek NX), as previously described [129]. The 

peptides were eluted with 60% (vol/vol) acetonitrile in 

0.1% TFA (vol/vol) and dried in a SpeedVac (Thermo 

Scientific Savant DNA 120) after adding TFA to 5% 

(vol/vol). The peptides were dissolved in 20 µL of 1% 

(vol/vol) acetonitrile in water. An aliquot (10%) was 

removed for quantification using the Pierce Quantitative 

Fluorometric Peptide Assay kit (Thermo Scientific, Cat. 

No. 23290). The remainder of the enriched samples and 

reference pool sample were transferred into a 0.5 mL 

Eppendorf tube, dried in the Speed-Vac and dissolved 

in 12 µL of HEPES buffer (100 mM, pH 8.0) (Sigma, 

H3537).  

 

The peptides were labeled with tandem mass tag 
(Thermo Scientific TMT10 or TMT11-131C) reagents 

according to the manufacturer protocol. For the baseline 

comparison between old and young-adult bones, the 

samples were analyzed in a single plex using TMT-10 

(Supplementary Figure 9). For the loading comparison 

at each time point (Figure 5A), young-adult and old 

samples (paired tibias from n = 5 mice per age) were 

analyzed on two age-specific runs separately. An 11th 

bridge sample containing pooled young-adult and  

old samples per time point was created to facilitate 

quantitative comparisons between ages. The labeled 

samples that were assigned to each ten- or eleven-plex 

were pooled, dried, and dissolved in 120 µL of 1% FA. 

The TMT-labeled samples were desalted as described 

above for the unlabeled peptides. The eluates were 

transferred to autosampler vials (Sun-Sri #200046), 

dried, and stored at −80ºC. 

 

Proteomics nano-Liquid Chromatography–Mass 

Spectrometry (nano-LC-MS) 

 

The samples in formic acid (1%) were loaded (2.5 µL) 

onto a 75 µXm i.d. × 50cm Acclaim PepMap 100  

C18 RSLC column (Thermo Fisher Scientific) on an 

EASY nanoLC (Thermo Fisher Scientific) at a constant 

pressure of 700bar at 100% A (0.1%FA). Prior to 

sample loading, the column was equilibrated to 100% A 

for a total of 11 µL at 700bar. Peptide chromatography 

was initiated with mobile phase A (1% FA) containing 

5% B (100%ACN, 1%FA) for 1 min, then increased to 

15% B over 108 min, to 25% B over 87 min, to 35% B 

over 40 min, to 70% B in 6 min, to 95% B over 2 min 

and held at 95% B for 18 min, with a flow rate of 300 

nL/min. The data were acquired in data-dependent 

acquisition (DDA) mode. The full-scan mass spectra 

were acquired with the Orbitrap mass analyzer with a 

scan range of m/z = 375 to 1500 and a mass resolving 

power set to 70,000. Twelve data-dependent high-

energy collisional dissociations were performed with  

a mass resolving power set to 35,000, a fixed lower 

value of m/z 100, an isolation width of 1.2Da, and  

a normalized collision energy setting of 32. The 

maximum injection time was 60ms for parent-ion 

analysis and 120ms for product-ion analysis. The target 

ions that were selected for MS/MS were dynamically 

excluded for 20sec. The automatic gain control (AGC) 

was set at a target value of 3e6 ions for full MS scans 

and 1e5 ions for MS2. Peptide ions with charge states of 

1 or ≥7 were excluded for HCD acquisition. 

 

Proteomics analysis 

 

PSM files were imported into ProteoQ (https://github. 

com/qzhang503/proteoQ) for normalization, quanti-

tation, and analysis. Data were further explored using  

principal component analysis and multidimensional 
scaling. At baseline, differential expression analysis was 

performed between young-adult and old samples. For 

the loading comparison, differential expression analysis 
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was performed separately within an age for each time-

point between loaded and non-loaded samples. Linear 

modeling was performed using the contrast fit approach 

in limma [130] to assess the statistical significance  

in protein abundance differences between indicated 

groups of contrasts. To facilitate the high-confidence 

assignment of proteins, we used a strict criterion  

of peptide spectral matches (PSM) ≥3 to call each 

protein. 

 

RNA isolation and library prep 

 

Frozen bones were homogenized using a mikro-

dismembrator (Braun Biotech International), and  

total RNA was extracted using TRIzol (Ambion)  

with the RNeasy Kit (Qiagen # 74004). Total RNA 

integrity was determined using the 4200 Tapestation, 

and concentrations were measured with the Qubit 

fluorometer. The median RNA integrity number (RIN) 

was 5.8 with a range of 5.1–6.8 (Supplementary Figure 

1). No samples were excluded. Library preparation was 

performed with 500 ng of total RNA, and ribosomal 

RNA was blocked using FastSelect reagents (Qiagen) 

during cDNA synthesis. RNA was fragmented in 

reverse transcriptase buffer with FastSelect reagent, and 

mRNA was reverse transcribed to yield cDNA using 

SuperScript III RT enzyme (Life Technologies) and 

random hexamers. 

 

RNA sequencing and aligning 

 

A total of 14 samples were subjected to RNA-seq 

(Figure 1B) by the Washington University Genome 

Technology Access Center. Samples were indexed, 

pooled, and sequenced on an Illumina NovaSeq 6000. 

Basecalls and demultiplexing were performed with 

bcl2fastq2 (Illumina), and the reads were aligned  

to Ensembl release 76 using STAR (2.5.1a) [131].  

Gene counts were derived from uniquely aligned, 

unambiguous reads using Subread:featureCount (1.4.6-

p5) [132]. 

 
RNA-seq analysis 

 

To adjust for differences in library size between 

samples, normalization factors from gene counts were 

calculated using EdgeR [133]. Ribosomal genes and 

genes not expressed >1 count-per-million (CPM) in at 

least six samples were excluded from initial analyses. 

The size factors and matrix of counts were then 

imported into limma [130], and weighted likelihoods 

based on the observed mean-variance relationship were 

calculated using voomWithQualityWeights [134]. For 

the downstream analysis, genes that were not expressed 

(CPM = 0) in any samples were filtered out. Statistical 

model fitting and robustness were then assessed with 

multidimensional scaling (Supplementary Figure 1). 

Next, differential expression analysis between young-

adult and old samples was performed using limma’s 

moderated t-tests, and the results were filtered for  

genes with Benjamini-Hochberg adjusted p-values < 

0.05. 

 

Co-expression network analysis for module 

construction 

 

For the RNA-seq data, weighted gene co-expression 

network analysis (WGCNA) was used to generate co-

expression networks for genes that differed between 

young-adult and old samples [135]. The Limma 
voomWithQualityWeights-moderated log2 counts-per-

million generated for the previous differential expression 

analysis were used as inputs. All genes were correlated 

across each other using Pearson correlations and 

clustered by expression similarity into unsigned modules 

using a power threshold empirically determined from  

the data. To identify modules associated with age, the 

eigengene of each module was determined and correlated 

with age status (young-adult vs. old). 

 

Gene ontology, pathway, protein class, and 

COMPBIO analyses 

 

For the gene ontology (GO), pathway, and protein class 

analyses, the differentially expressed genes (DEG), 

differentially expressed proteins (DEP), or loading-

regulated protein lists were input into PANTHER 

(version 14.1) [136] to identify enrichment. GO  

Slim was used for the GO analysis, and both 

PANTHER and Reactome pathways were analyzed in 

the pathway analysis. GO terms, pathways, and protein 

classes were arranged temporally by age and then 

alphabetically. For the COMPBIO (COmprehensive 

Multi-omics Platform for Biological InterpretatiOn, 

https://becker.wustl.edu/resources/software/compbio/) 

analysis, the described gene lists were input with the 

default parameters to determine the most prominent 

themes. The COMPBIO platform uses an ontology-free 

approach to generate a comprehensive and contextual 

map of the core biological concepts and themes 

associated with input entities. Specifically, it assembles 

the maps using contextual language processing 

algorithms to scan all PubMed abstracts to identify 

enriched concepts associated with the input entities.  

The platform utilizes conditional probability analysis  

to compute the statistical enrichment of biological 

concepts (processes/pathways) over those that occur  

by random sampling. Related concepts built from the 

input list of differentially expressed genes are clustered 
into themes (e.g., biological pathways/processes, cell 

types and structures) and further interconnected into 

groups. 
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Bone fixation for histology and RNAscope in situ 

hybridization 

 

After 32hrs of fixation in NBF at RT, tibias were washed 

in PBS and decalcified in 14% ethylenediaminetetraacetic 

acid (EDTA) for 18 days at 4°C. EDTA was changed 

daily for the first 3 days and then every other day 

thereafter. Full decalcification was confirmed with X- 

ray. The tibias were processed for transverse (cut at the 

proximal diaphysis) paraffin sectioning (5 µm) by the 

Musculoskeletal Research Center Histology Core. 

 

RNA in situ hybridization (ISH) using RNAscope 

 

The manufacturer’s protocol for the RNAscope® 2.5 HD 

Detection Reagents (ACD #322310) was followed except 

where noted. Paraffin sections were baked overnight at 

60°C and deparaffinized. Hydrogen peroxide (ACD 

#322335) was applied for 10 min to quench endogenous 

peroxides, and pepsin (Sigma #R2283) was applied  

for pre-treatment at 37°C for 45 min. The remaining 

protocol was followed for the target probe hybridization 

(Supplementary Table 1), amplification, DAB reaction, 

and counterstaining. A negative and positive control 

probe were included with each batch, and for each round, 

the control results were as expected (Supplementary 

Figure 10). Slides were cover slipped with VectaMount 

(Vector #H-5000-60). 

 

Immunohistochemistry (IHC) 

 

For MMP13, sections were deparaffinized and 

rehydrated. Antigen retrieval was accomplished using 

UNI-TRIEVE (Innovex Biosciences #NB325) at 60°C 

(water bath) for 30min. For the remaining staining, the 

Universal Animal IHC Kit (Innovex #329ANK) was 

used with slight modifications. Endogenous peroxidases 

were blocked with PEROX-BLOCK for 15 min at RT, 

and background staining was blocked using Fc-Block for 

45 min followed by Background Buster for 45 min. 

Primary anti-MMP13 antibody (1:50 dilution in PBS, 

Abcam #ab39012) or normal rabbit IgG (Cell Signaling 

Technologies #2729) was incubated overnight at 4°C  

in a humidity chamber. The Multivalent Secondary 

Antibody was incubated for 10 min, and next, the 

Peroxidase (HRP) was incubated for 10 min. Finally, the 

DAB substrate was applied for 5 min, and enhanced with 

DAB enhance for 3 min. Sections were counterstained 

with hematoxylin (Vector #H-3404) and cover slipped 

using Advantage Mounting Medium (Innovex NB300). 

For SOST, the VectaStain ABC Goat IgG Kit (Vector 

Labs #PK-40005) and ImmPACT DAB (Vector #SK-

4105) kits were used. Sections were deparaffinized and 
rehydrated, and no antigen retrieval was performed. 

Endogenous peroxidases were blocked with BLOX-ALL 

for 10 min, and background staining was blocked using 

3% BSA with 1 drop of Normal Rabbit serum for 1hr. 

Primary anti-SOST antibody was prepared in the same 

blocking buffer (1:200) and incubated overnight at 4°C 

in a humidity chamber. After washing, the rabbit anti-

goat secondary antibody was incubated for 30 min, 

followed by the ABC Elite reagent for 30 min, and 

finally the DAB reaction for 4min. Slides were 

counterstained with hematoxylin (Vector Labs #H-

3404), dehydrated, cleared with Xylenes, and cover 

slipped with VectaMount (Vector #H-5000-60). 

 

Histological analysis and cell counting 

 

Slides were imaged on a NanoZoomer 2.0-HT system 

(Hamamatsu) in brightfield at 40X. Images were 

blinded and analyzed with either BIOQUANT (OSTEO 

II) or ImageJ (Fiji) to quantify positive cells staining on 

the periosteal surface and intracortically (osteocytes). 

For the surface percent positive analysis, BIOQUANT 

was used to analyze the entire bone perimeter. If any 

part of the cell was positive or displayed puncta, that 

cell length was traced as positive. For the total surface 

expression analysis, ImageJ was used to manually isolate 

the periosteum, and the default color deconvolution (H-

DAB) was used to isolate the periosteal DAB signal. 

Finally, after converting the DAB channel image to 

binary, the pixels were counted, converted to an area, 

and normalized per surface length. For the osteocyte 

analysis, in BIOQUANT, a 600 µm × 600 µm region of 

interest (ROI) was defined on the tibial apex, and 

positive and negative osteocytes (OCY) within the ROI 

were counted. The bone area within the ROI was also 

measured, and using these measures, we calculated both 

the percent positive (posOCY/totOCY) and areal density 

(posOCY/ROI Area) measures. On the surface, only the 

periosteum was analyzed because the marrow often 

separated from the endosteal surface, preventing reliable 

analysis of this surface. 

 

Statistical analysis 

 

For both proteomics and RNA-seq in the baseline 

experiment, we defined DEGs and DEPs as targets that 

had a Benjamani-Hochberg adjusted p-value < 0.05. For 

the loading experiments, we compared loaded versus 

non-loaded samples within each age, and very few 

proteins reached the FDR <0.05. We performed a 

sensitivity analysis with a variety of parameters, and 

regardless of the criteria used, the overall trends in the 

number of loading-responsive proteins were consistent 

for each age and day combination (Supplementary 

Figure 11). Therefore, to facilitate downstream analysis 

on the most differentially expressed protein targets  
with loading, we relaxed to the following criteria: a 

linear fold-change cutoff of >1.1 (up or down) and an 

unadjusted p-value < 0.05. For the pathway analyses,  
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a Fisher’s exact test was used with an FDR of 0.05. For 

the co-expression network analysis, the significance 

threshold was set using a Bonferroni correction (p = 

0.05/44 = 0.0011). For the RNA ISH and other 

histological analyses, after observing consistent staining 

with the probes, we analyzed one slide per target (n = 7 

per age). If the periosteum lifted from the slide, that 

slide was excluded from the periosteal surface analysis, 

resulting in n = 6 per age for some targets. An unpaired 

t-test was used to compare measures between young-

adult and old bones (GraphPad Prism 9.0). 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Protein and gene filtering pipeline to define DEPs/DEGs, baseline MDS plots, and RNA information. 
(A) Proteomics filtering pipeline. (B) RNAseq filtering pipeline. (C) Baseline proteomics MDS. (D) Baseline RNAseq MDS. (E) RNA integrity 
numbers. (F) RNA concentration. 
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Supplementary Figure 2. WGCNA Supplement (A, B) Modules 18 and 34 did not display perfect separation. (C–K) Module 40 enriched 
pathways were nearly all downregulated. 
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Supplementary Figure 3. TGF-beta gene expression from RNAseq CPM data (counts per million, CPMs) of Tgfb transcripts 
from young-adult bone. This complements the old vs. young fold-change data for these transcripts shown in Figure 4E. 
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Supplementary Figure 4. Temporal map of PANTHER gene ontology analysis. (A) Loading-responsive protein lists for each age and 
day combination (up and down lists combined) were input to PANTHER GO Slim to identify enriched gene ontology processes. (B) PANTHER 
identified several enriched processes at each day and age combination. 
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Supplementary Figure 5. Temporal map of PANTHER protein classes. (A) Loading-responsive protein lists for each age and day 

combination (up and down lists combined) were input to PANTHER to identify enriched protein classes. (B) PANTHER identified several 
enriched classes at each day and age combination. 
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Supplementary Figure 6. COMPBIO loading analysis. (A–D) Loading-responsive protein lists for each age and day combination (up 

and down lists combined) were input to COMPBIO to identify enriched themes. COMPBIO identified numerous themes in each day and age 
combination. 
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Supplementary Figure 7. Mice from the baseline study displayed the expected age-related differences and increased 
variation in bone properties by MicroCT. (A–N) Expected differences in bone properties were observed in the mice used in this study. 
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Supplementary Figure 8. Covaris CryoPREP was the optimal homogenization method for bone proteomics. (A, B) First, we 
used label-free proteomics to determine the optimal homogenization method for cortical bone from four commonly used methods in the 
bone field—the Mikrodismembrator (Braun), Bullet Blender (Next Advance), chopping with scissors, and the cryoPREP (Covaris). For each 
method (n = 2 young-adult samples per method), we used a BCA assay to measure the protein mass yielded and label-free proteomics to 
determine the number of proteins identified. (C–G) We found that while the MikroDismembrator yielded the greatest mass of protein 
relative to the other methods, it identified the fewest unique proteins. In contrast, the cryoPREP, which yielded the second highest mass of 
protein, identified the highest number of unique proteins. In fact, the cryoPREP identified more than double the number of unique proteins 
compared to the MikroDismembrator. For the remaining experiments, we proceeded using the cryoPREP. 
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Supplementary Figure 9. Tandem Mass Tag-11 (TMT-11) experimental design and mice used across all experiments. (A) 

Tandem Mass Tag-11 experimental design for age and loading status. (B) Mice used across experiments. 
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Supplementary Figure 10. Representative RNA ISH positive and negative controls. RNA ISH positive (Ubc) and negative (DapB) 
controls. These are representative images of the controls for all RNA ISH probes, i.e., they represent the controls for probes shown in Figs 
2G (Asrgl1), 2L (Timp2) and 4G (Tgfb2). For each batch of RNA ISH, we ran a single positive and negative control sample. These control 
samples were selected to include one young-adult and one old sample per run. However, because of the limited number of serial sections 
available from each sample and the expense of the RNA ISH reagents, we did not run controls of all samples in each run, thus we cannot 
match 1:1 the images shown in Figures 2G, 2L and 4G with the controls shown. 
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Supplementary Figure 11. Sensitivity analysis of the criteria for defining loading-responsive proteins. (A) Day 1 Young-adult. 
(B) Day 1 Old. (C) Day 5 Young-adult. (D) Day 5 Old. A cutoff of FC >1.1 (up or down) and unadjusted p-value < 0.05 was used to identify a 
reasonable number of proteins to facilitate downstream analysis. 
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Supplementary Table 
 

Supplementary Table 1. RNAscope probes used. 

Target Catalog # Notes 

Timp2 567831 − 

Asrgl1 1076841-C1 
20ZZ probe custom designed to target Mm-Asrgl1  

(256-1215 of NM_025610.3) 

Tgfb2 406181 − 

Pos Control: Ubc 310771 − 

Neg Control: DapB 310043 − 
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