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INTRODUCTION 
 
The broad interest in ELOVL2 (Elongation of Very Long 
Chain Fatty Acids Protein 2) in the field of aging research 
is highlighted by more than a hundred scholarly articles 

discussing its link with epigenetic aging. This extensive 
body of research confirms its critical role and widespread 
recognition within the scientific community. Consistently 
heralded as a potent epigenetic biomarker, ELOVL2 has 
proven indispensable in elucidating the biological 
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ABSTRACT 
 
This study introduces EpiAgePublic, a new method to estimate biological age using only three specific sites on the 
gene ELOVL2, known for its connection to aging. Unlike traditional methods that require complex and extensive 
data, our model uses a simpler approach that is well-suited for next-generation sequencing technology, which is a 
more advanced method of analyzing DNA methylation. This new model overcomes some of the common 
challenges found in older methods, such as errors due to sample quality and processing variations. 
We tested EpiAgePublic with a large and varied group of over 4,600 people to ensure its accuracy. It performed 
on par with, and sometimes better than, more complicated models that use much more data for age 
estimation. We examined its effectiveness in understanding how factors like HIV infection and stress affect 
aging, confirming its usefulness in real-world clinical settings. 
Our results prove that our simple yet effective model, EpiAgePublic, can capture the subtle signs of aging with 
high accuracy. We also used this model in a study involving patients with Alzheimer’s Disease, demonstrating 
the practical benefits of next-generation sequencing in making precise age-related assessments. 
This study lays the groundwork for future research on aging mechanisms and assessing how different 
interventions might impact the aging process using this clock. 
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processes associated with aging [1, 2]. ELOVL2 has been 
integrated into epigenetic clocks to accurately determine 
age-related differences across various disease groups, 
highlighting its utility in age prediction [3]. Research 
indicates that ELOVL2 affects the aging process through 
its role in regulating lipid metabolism, with its epigenetic 
alterations closely linked to age prediction capabilities (Li 
et al., 2022). Additionally, the CpG sites within 
ELOVL2’s regulatory regions play a crucial role in age 
prediction models, underscoring the gene’s central 
importance in epigenetic clocks [4]. Since it is well 
known that there is a close correlation in methylation 
between juxtaposed CpG positions [5–8], we reasoned 
that including additional CpGs in the region could 
increase the accuracy of the analysis. Therefore, we 
designed the primers to cover not only the three CpGs 
discussed (cg16867657, cg21572722, and cg24724428) 
but also to capture ten additional CpGs within the same 
region. 
 
Further research has shown that DNA methylation 
patterns of ELOVL2 are associated with age-related 
macular degeneration, establishing it as a reliable 
biomarker for aging in ocular tissues (Saptarshi et al., 
2021). In addition, ELOVL2 methylation has been 
utilized in forensic science for age estimation, which 
underscores its critical value in age prediction 
applications (Brenna & Kothapalli, 2021).  
 
In summary, ELOVL2 is a fundamental gene in the 
development of epigenetic clocks and age prediction 
models. Its methylation patterns serve as a robust 
indicator of biological age, demonstrating significant 
utility across various research and clinical contexts. 
 
Nevertheless, traditional epigenetic clocks primarily 
utilize Illumina Infinium BeadChips, which analyze 
hundreds of thousands of CpG sites. However, this 
approach is prone to technical variances from sample 
preparation, probe hybridization, chemistry, and batch 
effects, which often compromise data reliability [9]. 
Despite efforts to mitigate these issues through 
normalization and batch correction, significant 
challenges persist, particularly affecting the clocks' 
utility in both basic and translational research, including 
short-term longitudinal studies like clinical trials. 
 
Next-generation sequencing (NGS) significantly 
enhances the precision and scope of epigenetic studies 
by addressing the limitations of traditional array 
technologies, such as technical noise and reliance on 
predefined sequences. With its high-throughput 
capability, base-resolution accuracy, and broader 
genomic coverage, NGS not only allows for detailed 
examination of methylation patterns across diverse 
genomic contexts but also facilitates the discovery of 

novel methylation sites. This comprehensive approach 
allows for more accurate identification of differentially 
methylated regions, providing a robust alternative that 
surpasses traditional methods in both detail and 
scalability [10]. The accuracy of DNA methylation 
determination of bisulfite-converted DNA by next-
generation sequencing is dependent on the number of 
reads to achieve statistical power because of the 
heterogeneity of methylation profiles even in the same 
tissue. Therefore, reducing the number of regions that 
are required to be sequenced for a given biomarker 
would increase the depth of sequencing and, thus,  
the power for accurate determination of its DNA 
methylation, especially when samples are multiplexed, 
to increase the cost-effectiveness of the biomarker. We, 
therefore, examined in this study whether we need the 
hundreds or thousands of regions that are used in all 
current epigenetic clocks to develop an accurate and 
cost-effective epigenetic clock.  
 
Most current clocks use blood as a biological sample. 
Saliva has become a valuable resource for epigenetic age 
estimation due to its non-invasive collection, ease of 
handling, and rich DNA content from both epithelial and 
white blood cells. This mixed cellular composition 
captures systemic biological signals, reflecting both oral 
health and broader immune responses, making it suitable 
for large-scale studies and clinical settings where less 
invasive methods enhance participant compliance. 
Additionally, saliva mirrors the methylome of blood and 
other tissues, which supports its use in epigenetic studies 
exploring the effects of environmental exposures, 
lifestyle, and disease states on aging [11]. Research shows 
saliva's relevance in studying various health conditions, 
such as its association with Parkinson's disease and certain 
carcinomas through differential methylation patterns [12, 
13]. Additionally, saliva has been utilized to evaluate 
epigenetic age acceleration, with adjustments made for 
cell type proportions in the samples [14]. It has also been 
instrumental in developmental studies linking birth weight 
with DNA methylation [15] and evaluating childhood 
BMI and social disparities through epigenetic markers 
[16]. 
 
This utility highlights saliva's potential to advance our 
understanding of biological aging and age-related 
diseases. In this study, we assess the performance of 
various biological clocks in saliva versus blood. 
 
This study introduces EpiAgePublic, a new epigenetic 
aging model that leverages just three strategically selected 
CpG sites within the ELOVL2 gene, a key marker strongly 
associated with aging. Inspired by minimal-marker 
models like the “Epigenetic age-predictor for mice based 
on three CpG sites [17], EpiAgePublic is optimized  
for next-generation sequencing technologies. Unlike 
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traditional array-based clocks that rely on hundreds to 
thousands of CpG sites, this model demonstrates the 
effectiveness of using fewer markers to accurately predict 
age, thus addressing common limitations of older 
methods. This method not only mitigates issues related to 
DNA quality and batch effects but also enhances the 
model’s specificity and clinical applicability. 
 
Validated against a comprehensive dataset comprising 
4,625 individuals, EpiAgePublic has shown predictive 
accuracies on par with, or even exceeding, those of 
well-established epigenetic clocks such as DNAmAge 
(Horvath’s Clock) and DNAmPhenoAge. The model’s 
performance was rigorously evaluated in various 
clinical contexts, including its correlation with HIV 
infection and stress levels, underscoring its utility 
alongside more traditional, complex clocks. 
 
Our results affirm that EpiAgePublic, despite its 
simplicity in focusing on only three CpG sites, 
effectively captures the biological intricacies of aging. 
This demonstrates its viability as a powerful tool for 
aging research and clinical application. We also 
determined that the clock performs well on saliva 
samples. We next developed a targeted amplification-
next-generation sequencing assay that captures 13 CpG 
sites around the ELOVL2 gene and used a proprietary 
model on DNA methylation data from the ELOVL2 
region. The model was further employed in a clinical 
study on Alzheimer’s Disease, where next-generation 
sequencing was utilized to assess epigenetic age. This 
application not only highlighted EpiAgePublic’s 
precision but also illustrated the significant advantages 
of next-generation sequencing in enhancing the 
accuracy of epigenetic age evaluations. By using saliva 
as the biological sample, we increase the feasibility of 
wide usage of this clock. 
 
MATERIALS AND METHODS 
 
Estimation of DNA methylation age 
 
The Horvath’s DNAmAge, Hannum’s DNAm-
AgeHannum, DNAmPhenoAge, DNAmAgeSkin-
BloodClock, and DNA GrimAge (both versions 1 and 
2) methylation ages were determined using the online 
DNA Methylation Age Calculator, provided by the 
Clock Foundation: https://dnamage.clockfoundation. 
org/. 
 
EpiAge for next-generation sequencing data from 
individuals in the Alzheimer’s Disease study was 
obtained through a commercial service provided by 
HKG epiTherapeutics. This service utilizes a 
proprietary model based on DNA methylation data 
within the same ELOVL2 region discussed in this paper, 

specifically designed for next-generation sequencing 
applications. The analysis was performed in triplicate. 
 
Development and application of the EpiAgePublic 
model to investigate biological aging dynamics 
 
In this study, we developed the EpiAgePublic model to 
explore the impact of various clinical outcomes on 
biological aging. Linear regression was employed to 
assign weights to three targeted CpG sites: cg16867657, 
cg21572722, and cg24724428. We selected these three 
CpG sites from a set of 13 CpGs used in our previous 
study [18] due to their presence on standard DNA 
methylation microarray platforms. This enabled us to 
validate the model across a wide range of publicly 
available datasets derived from these platforms. The 
model calculates beta values using the formula:  
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Model training 
The model was trained using a comprehensive DNA 
methylation dataset aggregated from four public 
databases: GSE55763, GSE157131, GSE40279, and 
GSE30870, as detailed in Table 1. This training 
dataset, derived from Illumina 450K and Epic array 
platforms, encompasses a demographic range of 
individuals aged 0 to 103 years, including Caucasian-
European, Hispanic Mexican, and African American 
ethnic groups. The sex distribution was balanced, 
comprising 2506 males, 2079 females, and 40 
individuals with unspecified gender. 
 
The selection of this diverse dataset was critical for 
developing an inclusive and representative 
EpiAgePublic model. The model achieved an R-
squared value of 0.7512 in the training cohort, 
indicating its robust ability to accurately reflect the 
relationship between DNA methylation patterns and 
biological age.  
 
Model validation 
 
After development, the EpiAgePublic model was 
validated on independent datasets, which included 
several additional public cohorts listed in Table 1. 
These validation datasets were not part of the training 
cohort and were used to test the generalizability and 
robustness of the model across different populations 
and clinical contexts. The validation results showed 
that the model maintained high accuracy and 
robustness, supporting its effectiveness as a reliable 
indicator of biological aging across diverse 
populations. 

https://dnamage.clockfoundation.org/
https://dnamage.clockfoundation.org/
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Table 1. Comprehensive dataset summary for epigenetic age model development and clinical studies. 

GSE ID Sample tissue 
type Total samples Age range Cohort description Methylation 

platform Dataset application Purpose 

GSE55763 Blood 2711 23.7 - 75 General Population 450K epiAgePublic model Training 
GSE157131 Blood 1218 26.41 - 94.74 General Population 450K/Epic epiAgePublic model Training 
GSE40279 Blood 656 31 - 68 General Population 450K epiAgePublic model Training 
GSE30870 Blood 40 30 - 48 General Population 450K epiAgePublic model Training 
GSE78874 Saliva 258 36-88 General Population 450K epiAgePublic validation Validation 
GSE150643 Saliva 240 9.19-15.85 General Population 450K epiAgePublic validation Validation 
GSE92767 Saliva 54 18-73 General Population 450K epiAgePublic validation Validation 
GSE99029 Saliva 57 21-91 General Population 450K epiAgePublic validation Validation 
GSE67751 Blood 92 24 - 68 Healthy and HIV Patients 450K HIV Validation 
GSE117859 Blood 608 25 - 75 HIV Patients 450K HIV Validation 
GSE53840 Blood 120 31 - 68 HIV Patients 450K HIV Validation 
GSE185391 Blood 86 30 - 48 HIV Patients 450K HIV treatment Validation 
GSE167202 Blood 525 17-96 Healthy, COVID-19 and other 

infections 
Epic COVID-19 Validation 

GSE168739 Blood 407 19-61 COVID-19 patients Epic COVID-19 Validation 
GSE72680 Blood 422 18-77 Trauma and Psychiatric 

Symptoms in African 
Americans 

450K Stress Validation 

GSE128235  Blood 533 18-87 Depression 450K Controls, Depression Validation 
GSE125105 Blood 847 17-87 Depression 450K Controls, Depression Validation 
GSE144858 Blood 300 52-90 Alzheimer’s 450K Controls, MCI, Alzheimer’s Validation 
 

Epigenetic age acceleration (EAA) 
 
Epigenetic Age Acceleration (EAA) measures 
biological aging dynamics. It is computed as the 
difference between DNA methylation age and chrono-
logical age. A positive EAA value indicates that an 
individual’s biological age surpasses their chronological 
age, suggesting accelerated aging. This metric is used to 
compare aging rates across different clinical conditions 
by analyzing the differences in EAA between a specific 
condition and a control group. 
 
Data source 
The DNA methylation data used in this study were 
derived from publicly available datasets and newly 
collected original data. The Down syndrome and 
Alzheimer’s Disease cohorts represent the original data 
collected specifically for this study. Details regarding 
the sample collection, processing, and DNA extraction 
for these cohorts are provided below. 
 
Demographic characteristics of the study sample 
cohorts Down syndrome study 
The study protocol was approved by the Institutional 
Review Board (IRB) of the Oasi Research Institute—
IRCCS, Troina, Italy (Protocol Number: 
2016/1.0/122/CE-IRCCS-OASI). Participants or their 
legal representatives gave written informed consent, as 
approved by the Ethics Committee of the Oasi Research 
Institute-IRCCS. This study included 22 control 
participants (9 males and 13 females) and 22 individuals 

with Down syndrome (9 males and 13 females). The 
mean age for the control group was 40.95 years (SD = 
9.276), and for the Down syndrome group, it was 40.65 
years (SD = 8.969). An unpaired parametric t-test 
showed no significant age difference between the two 
groups (p-value = 0.9146). 
 
Alzheimer’s disease study 
This research was approved by the IRB of Oasi Research 
Institute—IRCCS, Troina, Italy, under Protocol Number: 
2019/03/18/CE-IRCCS-OASI/18. Participants or their 
legal representatives gave written informed consent, as 
approved by the Ethics Committee of the Oasi Research 
Institute-IRCCSS. The study involved 55 participants, 
with a demographic composition of 10 males and 17 
females in the control group and 7 males and 21 females 
in the Alzheimer’s disease (AD) group. The mean age 
was 72.25 years (SD = 9.26) for the controls and 73.01 
years (SD = 8.91) for the AD group. Due to technical 
difficulties, methylation analysis was performed on 54 
participants, excluding one from the original cohort. An 
unpaired parametric t-test revealed that the age 
difference between the two groups was not statistically 
significant (p-value = 0.0585), although this value 
approaches the conventional threshold for significance. 
 
Plasma sample processing and white blood cell 
isolation 
 
Plasma samples were collected according to standard 
procedures. Briefly, fasting venous blood was collected in 
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lavender EDTA-K2 BD vacutainer tubes and centrifuged 
at 1900 rpm for 10 minutes for the separation of the 
plasma component from the cellular constituents. After a 
second centrifugation (3900 rpm for 10 min) to purify 
from biological debris, plasma samples were separated in 
aliquots and stored at –80° C until use. The blood was 
used for peripheral blood mononuclear cells (PBMCs) 
isolation by using the Lympholyte®-H density gradient 
separation medium (Cedarlane, Burlington, NC, USA) 
according to the manufacturer’s instructions, with slight 
modifications. Briefly, the blood was diluted with an 
equal volume of 1X PBS, mixed gently and added to one 
part of Lympholyte®-H. After a centrifugation step (400 
rcf for 30 min), a well-defined lymphocyte layer appeared 
at the interface, which was removed and transferred by 
using a serological pipette to a new sterile centrifuge tube. 
After a washing step by using 5 ml of 1X Red Blood Cell 
Lysis Buffer (Abcam, ab204733) for optimal lysis of 
erythrocytes in a single-cell suspension and after two 
additional washing steps (1X sterile PBS, 1600 rpm for 10 
min), the isolated PBMCs fraction was counted by using 
LUNA-II Automated Cell Counter (Logos Biosystems). 
 
DNA extraction from isolated lymphocytes 
 
DNA was isolated from lymphocytes using the AllPrep 
DNA/RNA Mini Kit (Qiagen, Cat: 80204) according to 
the manufacturer’s protocol. To enhance DNA 
concentration, it was eluted twice with 50 μl of Buffer 
EB following a 1-minute incubation at room 
temperature. The amount and purity of the extracted 
DNA were assessed using spectrophotometry and by 
measuring the A260/280 ratio, which ranged between 
1.9 and 2.1, indicating high-quality DNA suitable for 
subsequent analyses. 
 
Targeted DNA methylation sequencing with illumina 
NGS 
 
DNA was bisulfite-converted using the EZ-96 DNA 
Methylation MagPrep kit (D5041, Zymo Research), 
followed by two stages of polymerase chain reaction 
(PCR). In the first round of PCR, primers, including an 
anchoring sequence targeted at a specific region of the 
ELOVL2 gene, were used (Bio-Rad C1000 Touch 
Thermal Cycler, Bio-Rad Laboratories, CA, USA). 
Primer sequences are available upon request. Five 
microliters from the first PCR reaction were then used in a 
second round of PCR to amplify and barcode the samples 
using indexing primers. The PCR products were pooled, 
purified twice using AMPure XP Beads (Beckman 
Coulter Life Sciences, CA, USA), and quantified via real-
time PCR (NEBNext® Library Quant Kit for Illumina, 
New England Biolabs, MA, USA). The barcoded libraries 
were sequenced on the Illumina platform using a MiSeq 

Reagent Nano Kit V2 with a 250 × 2 paired-end 
sequencing protocol (Illumina, CA, USA). 
 
For data processing, raw paired-end reads were trimmed 
of sequencing adapters and low-quality sequences using 
Trim-galore (parameters: trim_galore –illumina –paired 
–fastqc; available at https://zenodo.org/record/ 
5127899#.Y7RxfOzMJqs). Cleaned data were aligned to 
the ELOVL2 reference genome using Bismark [19], and 
reads deduplicated using UMIs in the forward primers to 
minimize PCR amplification bias (deduplicate_bismark --
paired --barcode –bam). Methylation levels at each CpG 
site were determined using the Bismark methylation 
extractor (bismark_methylation_extractor --p --bedGraph 
--counts --scaffolds --no_overlap), with a minimum 
threshold of 100 reads per gene for inclusion in the 
analysis. 
 
DNA methylation data processing and epigenetic age 
calculation 
 
IDAT files were processed using the champ.load function 
from the ChAMP R package [20, 21]. Initial beta values 
were computed directly from the loaded data to represent 
methylation levels before normalization. 
 
Following initial data processing, we applied BMIQ 
(Beta Mixture Quantile dilation) normalization to adjust 
the beta values. This normalization technique 
specifically corrects for the technical variation between 
type I and type II probes by aligning the distribution of 
type II probe beta values to match those of type I 
probes. This step ensures that the methylation data are 
more statistically reliable and comparable across 
different probe types [22]. Epigenetic age (EpiAge) was 
calculated for each individual both before and after 
normalization using the EpiAgePublic algorithm. 
 
Statistical analysis 
 
For multilinear regression analysis, we utilized Python’s 
statsmodels library to fit an Ordinary Least Squares 
(OLS) model. This model was employed to examine the 
relationship between epigenetic age and several 
predictors, including cell composition and sex. Our 
analysis encompassed data preparation, model fitting, 
and the extraction of key statistics, such as coefficients 
and p-values.  
 
In addition to multilinear regression, our study also 
involved other statistical techniques to address specific 
research questions: 
 
T-tests and Mann-Whitney U tests were used to 
compare epigenetic ages across different conditions and 

https://zenodo.org/record/5127899#.Y7RxfOzMJqs
https://zenodo.org/record/5127899#.Y7RxfOzMJqs
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cohorts, ensuring that we appropriately addressed the 
distribution characteristics of the data. 
 
Receiver Operating Characteristic (ROC) analysis was 
conducted to assess the discriminatory power of various 
epigenetic clocks in distinguishing between different 
clinical conditions. 
 
ANOVA was utilized to analyze the impact of clinical 
interventions on epigenetic age across different 
treatment groups. Statistical tests applied in each figure 
are described in the figure legend. 
 
RESULTS 
 
Development of the EpiAgePublic model across 
blood and saliva samples 
 
The ELOVL2 gene has been consistently linked to 
chronological age across various studies [2]. Analysis of 
20 public datasets derived from whole blood using the 
Illumina BeadChip technology identified ELOVL2 and 
FHL2 as showing the highest correlation between age 
and DNA methylation [23]. 
 
Our research focused on three CpG sites within the 
ELOVL2 gene: cg16867657, cg21572722, and 
cg24724428. Notably, cg16867657 has been recognized 
as a key age-associated marker with a robust pattern of 
age-related methylation changes [24]. This was 
supported by a study examining 421 individuals, which 
found cg16867657 showing a strong positive correlation 
with age among 137993 sites (R = 0.957, P-value = 
1.20e-228) [25]. The proximity of cg21572722 and 
cg24724428 to cg16867657, coupled with their known 
associations with aging (Bell et al., 2012; Christiansen 
et al., 2016; Hao et al., 2021; Horvath & Raj, 2018; Li 
et al., 2022; Marioni et al., 2015), justified their 
inclusion in our EpiAgePublic model. The development 
of the EpiAgePublic model utilized data from four 
specific datasets: GSE55763, GSE157131, GSE40279, 
and GSE30870 (Table 1). The detailed methodology 
and analysis for model development are outlined in the 
Methods section of our study. 
 
Comparative analysis of epiAgePublic with 
established epigenetic clocks 
 
We conducted comparative analyses to evaluate the 
EpiAgePublic model’s performance relative to 
established epigenetic clocks. This analysis utilized the 
same datasets originally employed for the development 
of the EpiAgePublic model: GSE55763, GSE157131, 
GSE40279, and GSE30870, all derived from blood 
samples. This included comparisons of cg16867657, 
cg21572722, and cg24724428, as well as the 

EpiAgePublic model, against established epigenetic age 
models such as DNAmAge (Horvath’s Clock) [26], 
DNAmAgeHannum [27], DNAmPhenoAge [28], 
DNAmAgeSkinBloodClock [29], as well as DNA 
methylation GrimAge versions 1 (DNAGrimAge v1) 
[30] and 2 (DNAGrimAge v2) [31] (Figure 1A). 
 
The analysis revealed high correlation coefficients for 
all models. The EpiAgePublic model, which integrates 
the three CpG sites, exhibited a correlation of  
0.87, surpassing individual CpGs (cg16867657, 
cg21572722, and cg24724428) and closely following 
DNAmAgeSkinBloodClock, which scored the highest 
with 0.93. Other clocks displayed slightly lower 
correlations, with DNAmAgeHannum showing the 
lowest at 0.65 (Figure 1A). 
 
Assessing the impact of cell composition and sex on 
epigenetic age predictions 
 
Our next objective was to determine whether epigenetic 
age predictions could be affected by blood cell 
composition and the individual’s sex. To precisely 
assess the potential confounding effects and correct for 
variations related to blood cell composition (CD8T 
cells, CD4T cells, NK cells, B cells, monocytes (Mono), 
and granulocytes (Gran)), which are inferred from DNA 
methylation patterns indicative of these cells’ presence 
[32], we executed multilinear regression analyses 
adding these confounders as covariates. This detailed 
examination focused individually on the cg16867657, 
cg21572722, and cg24724428 CpG sites within the 
ELOVL2 gene, as well as collectively within the  
context of the EpiAgePublic model, comparing  
these values against DNAmAge (Horvath’s  
Clock), DNAmAgeHannum, DNAmPhenoAge, 
DNAmAgeSkinBloodClock, DNAGrimAge v1, and 
DNAGrimAge v2. These analyses validated the 
significant and consistent predictive value of 
chronological age across all individual CpG sites and 
the EpiAge, even when these confounders are included 
in the regression (Supplementary Table 1).  
 
Intriguingly, a distinct feature of EpiAgePublic 
emerged during our analysis: both the individual CpG 
site assessments and the aggregated EpiAgePublic 
model demonstrated no significant correlation with 
sex, exhibiting a P-value of 0.182. This finding 
contrasts with other epigenetic clocks, where sex 
showed a significant influence with a P-value of less 
than 0.05. Specifically, the regression analysis for 
EpiAgePublic indicated a sex coefficient of 0.388 (std 
err: 0.291), which was not statistically significant 
(P>|t|: 0.182), diverging from the trends observed in 
other epigenetic clocks where the P-value for sex  
was effectively 0, signifying a highly statistically 
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significant correlation. This distinctive attribute of 
EpiAgePublic underscores its robustness by 
highlighting its ability to provide age predictions that 
are unbiased by sex differences. 
 
Validating epiAgePublic on saliva samples 
 
Following the development of the EpiAgePublic 
model, we aimed to validate its applicability to saliva, 
a noninvasive biological matrix different from blood. 
The rationale was based on the distinct cellular 
compositions of saliva, which differ significantly 

between children and adults in terms of epithelial and 
immune cells. 
 
Using datasets from GSE78874, GSE150643, GSE92767, 
and GSE99029, we processed samples from 609 healthy 
individuals ranging from 9 to 91 years, including 310 
males and 294 females from diverse ethnic backgrounds 
such as Hispanic, Caucasian, African, and Asian using 
Illumina 450K and Epic array platforms (Table 1).  
 
The comparative analysis of EpiAgePublic and other 
clocks demonstrated EpiAge’s strong predictive 

 

 
 

Figure 1. Comprehensive analysis of epigenetic aging across diverse datasets and demographics. (A) This figure illustrates the 
correlation between chronological age (y-axis) and measures of epigenetic age including EpiAge, DNAmAge, DNAmAgeHannum, 
DNAmPhenoAge, DNAmAgeSkinBloodClock, DNAGrimAge v1, and DNAGrimAge v2 (x-axis), as well as individual CpG sites cg16867657, 
cg21572722, and cg24724428. Data were aggregated from the datasets GSE55763, GSE157131, GSE40279, and GSE30870 (refer to Table 1), 
encompassing 4625 individuals with ages ranging from 0 to 103 years. The cohort exhibits a rich demographic diversity, including Caucasian-
European, Hispanic Mexican, and African American ethnicities, comprising 2506 males, 2079 females, and 40 individuals with unspecified gender. 
The correlations were assessed using the Pearson r correlation coefficient, denoted by ‘R’ on each plot, highlighting the linear relationship 
between chronological and epigenetic age across the datasets. All plots achieved a significant p-value of < 0.0001, indicating a strong and 
statistically significant correlation. Visualization includes a solid black line representing the mean correlation and flanking red lines depicting the 
95% confidence interval, illustrating the precision of the correlation estimates and the degree of agreement between chronological and 
epigenetic age measures across the studied population. (B) This figure presents the correlation between chronological age (y-axis) and various 
measures of epigenetic age (x-axis), including EpiAge, DNAmAge, DNAmAgeHannum, DNAmPhenoAge, DNAmAgeSkinBloodClock, DNAGrimAge 
v1, and DNAGrimAge v2, alongside individual CpG sites cg16867657, cg21572722, and cg24724428. The data are derived from saliva samples 
collected from 609 healthy individuals aged 9 to 91 years, detailed in datasets GSE78874, GSE150643, GSE92767, and GSE99029 (referenced in 
Table 1). The study population includes 310 males and 294 females from diverse ethnic backgrounds—Hispanic, Caucasian, African, and Asian. 
Correlations are quantified using the Pearson r coefficient, denoted by ‘R’ on each plot, signifying the linear relationship between the two age 
measures. All correlations are marked by a significance level of p < 0.0001. Visuals include a solid black line indicating the average correlation and 
red lines showing the 95% confidence interval, emphasizing the reliability and consistency of epigenetic age measures with chronological age 
across the cohorts. (C) This figure presents scatter plots comparing Epigenetic Age Acceleration (EAA) across various age groups. Each dot 
represents an individual’s EAA value, plotted against their chronological age group. The age groups are categorized as 0 years, 19-30, 31-40, 41-
50, 51-60, 61-70, and 71+ years. The vertical axis indicates the EAA, while the horizontal axis delineates the age groups. A horizontal line at zero 
on the plot marks the threshold between age acceleration and deceleration; points above this line indicate epigenetic age acceleration, while 
points below indicate deceleration. This visualization highlights trends and patterns in EAA across the lifespan, offering insights into how 
biological aging progresses relative to chronological aging across different stages of life. 
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relationship with chronological age, achieving  
a correlation coefficient of 0.93. DNAmAge-
SkinBloodClock exhibited the highest correlation at 
0.99 (Figure 1B). These findings validate the utility of 
EpiAgePublic for non-invasive biological age 
estimation across different tissues, including saliva, 
which has obvious advantages as far as accessibility and 
compliance over blood. 
 
Age-related epigenetic deceleration across the 
human lifespan 
 
Our comprehensive dataset encompassed a diverse 
range of 4,625 individuals, spanning the entire human 
lifespan from birth to 103 years. The study of 
Epigenetic Age Acceleration (EAA) traditionally 
focuses on its clinical significance, often in relation to 
the acceleration or deceleration of aging and its 
associated health impacts. Considering that age 
acceleration may be influenced by various factors such 
as lifestyle, stress, and socioeconomic conditions, which 
vary across different age groups, we categorized the 
dataset into specific age brackets: Newborns, Young 
Adults (19-30 years), Thirties (31-40 years), Forties 
(41-50 years), Fifties (51-60 years), Sixties (61-70 
years), and Seventies and Beyond (Figure 1C). 
 
To analyze aging acceleration/deceleration patterns within 
each category, we examined all the epigenetic clocks, 
consistently observing a trend of epigenetic age 
deceleration with increasing chronological age among the 
majority of participants (Figure 1C). Further exploring 
this phenomenon, we calculated the Pearson r correlation 
between chronological age and EAA for each clock, 
assessing the strength and direction of their relationships. 
 
The analysis revealed negative correlations across all 
clocks, indicating that the rate of epigenetic aging 
decreases as chronological age increases. Specifically, 
DNA GrimAge v1 and DNA GrimAge v2 displayed the 
most significant negative correlations with chrono-
logical age (r=-0.6389 and r=-0.6697, respectively), 
with tight 95% confidence intervals of -0.6556 to -
0.6215 and -0.6853 to -0.6535, respectively, under-
scoring a strong inverse relationship. Other clocks also 
showed significant negative correlations, as follows: 
DNAmAge r=-0.5943 (CI: -0.6126 to -0.5753), 
EpiAgePublic r=-0.4988 (CI: -0.5201 to -0.4768), 
DNAmAgeHannum r=-0.4424 (CI: -0.4653 to -0.4189), 
DNAmAgeSkinBloodClock r=-0.4420 (CI: -0.4649 to -
0.4185), and DNAmPhenoAge r=-0.3220 (CI: -0.3476 
to -0.2959). These highly significant Pearson r 
correlations (P<0.0001 for all clocks) confirm a 
consistent inverse relationship between chronological 
age and EAA, reinforced by a substantial sample size 
(N=4625 for each clock). 

These findings not only corroborate the anticipated 
pattern of biological aging but also highlight the 
effectiveness of EpiAgePublic, based on the single gene 
ELOVL2, compared to other clocks that incorporate 
hundreds or even thousands of CpG sites, as biomarkers 
for the aging process. The observed age-related trends 
across the lifespan provide insights into the complex 
interplay between biological and chronological aging. 
 
Comparing EpiAgePublic to other epigenetic clocks 
across cohorts in the context of HIV-related 
accelerated aging 
 
Early research has indicated a link between HIV and 
accelerated epigenetic aging, suggesting that HIV-
positive individuals may exhibit an advanced biological 
age [33]. Inspired by findings that demonstrated 
accelerated aging due to CMV infection using the 
EpiAge model based on Elovl2 regions in healthy older 
adults [18], we aimed to explore whether similar 
patterns could be observed with HIV. We examined the 
impact of HIV on epigenetic aging using four distinct 
cohorts: GSE53840, GSE67751, GSE117859, and 
GSE185391. Our objective was to assess whether the 
EpiAge model shows accelerated aging in HIV-positive 
individuals and to compare its performance with other 
established epigenetic clocks. 
 
We compared EpiAge alongside other  
epigenetic clocks, including DNAmAge (Horvath’s 
Clock), DNAmAgeHannum, DNAmPhenoAge, 
DNAmAgeSkinBloodClock, DNAGrimAge v1, and 
DNAGrimAge v2. Our analysis employed an unpaired 
parametric t-test, which passed the normality test, as 
most data points are normally distributed. Specifically, 
we compared HIV-positive individuals from the cohorts 
GSE53840, GSE67751, GSE117859, and GSE185391 
against HIV-negative controls from GSE67751. Within 
the GSE185391 cohort, our focus was on one-time point 
w0, marking the week immediately preceding the 
commencement of HIV treatment. 
 
Our comprehensive analysis across a spectrum of 
epigenetic clocks revealed a significant impact of HIV 
infection on epigenetic aging. Each clock offers a 
distinctive view of the aging acceleration that 
accompanies HIV. Notably, EpiAge displayed 
pronounced acceleration in epigenetic age among HIV-
positive individuals compared to HIV-negative controls, 
with an average age advancement of 12.04 years 
(P<0.0001), strongly suggesting a link between HIV 
and expedited epigenetic aging. Similarly, DNAmAge 
(Horvath’s Clock) and DNAmAgeHannum showed 
significant age acceleration in HIV-positive subjects, 
with increases of 6.612 years (P<0.0001) and 6.230 
years (P<0.0001), respectively. The DNAmPhenoAge 
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clock indicated a significant acceleration of 12.79 years 
(P<0.0001). 
 
Further analysis highlighted that the 
DNAmAgeSkinBloodClock and DNAGrimAge v1 also 
demonstrated significant aging acceleration, with 
observed differences of 7.664 years (P<0.0001) and an 
exceptional 19.97 years (P<0.0001), respectively. These 
findings are consistent with the hypothesis that HIV 
infection accelerates biological aging. The consistency 
of epigenetic clocks, including EpiAge, in revealing 
accelerated aging in HIV-positive individuals further 
supports this hypothesis (Figure 2A). 
 
Assessing the discriminatory power of EpiAge and 
other epigenetic clocks for HIV status using ROC 
analysis 
 
To further assess the discriminatory power of EpiAge 
and other epigenetic clocks in distinguishing between 

HIV-negative and HIV-positive individuals, we 
conducted a Receiver Operating Characteristic (ROC) 
analysis. This method provides a nuanced 
understanding of each clock’s ability to accurately 
classify individuals based on their HIV status beyond 
the significance revealed by t-tests. 
 
In our ROC analysis, EpiAge demonstrated an 
impressive Area Under the Curve (AUC) of 0.9109, 
with a sensitivity of 56.37% and specificity of 100% 
(P<0.0001), indicating appreciable discriminatory 
power. This suggests that EpiAge is highly capable of 
differentiating between the two groups based on 
epigenetic aging patterns. 
 
By comparison, DNAmAge showed an AUC of 0.7835, 
with a sensitivity of 14.57%, but maintained the same 
specificity of 100% (P<0.0001), indicating moderate 
discriminatory ability. DNAmAgeHannum improved 
upon DNAmAge’s performance, achieving an AUC of 

 

 
 

Figure 2. Impact of HIV on epigenetic age acceleration across multiple cohorts and treatment Phases. (A) Scatter plots 
comparing epigenetic age acceleration (EAA) across multiple epigenetic clocks: EpiAge, DNAmAge, DNAmAgeHannum, DNAmPhenoAge, 
DNAmAgeSkinBloodClock, DNAGrimAge v1, and DNAGrimAge v2, between HIV-negative individuals from the GSE67751 cohort (n=69) and 
HIV-positive individuals from cohorts GSE67751 (n=23), GSE117859 (n=609), GSE53840 (n=120), and GSE185391 (n=86). The plots display 
median EAA values, with error bars denoting 95% Confidence Intervals (CI). The significance of differences in EAA was tested using unpaired, 
two-tailed t-tests. A horizontal line at zero on the plot marks the threshold between age acceleration and deceleration; points above this line 
indicate epigenetic age acceleration, while points below indicate deceleration. (B) These scatter plots track changes in EAA from baseline 
(week 0) through weeks 1, 6, 10, and 24 of a combined HIV treatment strategy, which includes therapeutic vaccination and a latency-
reversing agent using multiple epigenetic clocks. We employed repeated measures ANOVA for the analysis. To address potential deviations 
from the assumption of sphericity, we applied the Geisser-Greenhouse correction as determined by Mauchly’s test. This correction ensures 
accurate and reliable results in repeated measures analysis, particularly when the equality of variances across the differences between all 
pairs of groups is not met. (C) These scatter plots focus on comparing epigenetic age acceleration (EAA) from baseline (week 0) to the 
monitored antiretroviral pause (MAP) phase of the BCN02 clinical trial, using various epigenetic clocks: EpiAge, DNAmAge, 
DNAmAgeHannum, DNAmPhenoAge, DNAmAgeSkinBloodClock, DNAGrimAge v1, and DNAGrimAge v2. Differences were assessed using 
paired two-tailed t-tests, chosen for their appropriateness given the normal distribution of data. 
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0.8275 with a sensitivity of 14.44% and maintaining 
100% specificity (P<0.0001). 
 
DNAmPhenoAge demonstrated strong performance 
with an AUC of 0.9041, sensitivity of 40.40%, and 
specificity of 100% (P<0.0001), nearly matching 
EpiAge’s discriminatory capacity. DNAmAge-
SkinBloodClock exhibited a slightly higher AUC of 
0.9168, with a sensitivity of 54.30% and perfect 
specificity (P<0.0001). 
 
Remarkably, DNAGrimAge v1 displayed the highest 
AUC among the clocks at 0.9795, with an impressive 
sensitivity of 82.39% and specificity of 100% 
(P<0.0001), indicating exceptional performance in 
discriminating between HIV-negative and HIV-
positive statuses. DNAGrimAge v2 also showed 
strong results with an AUC of 0.9595, sensitivity of 
72.54%, and unchanged specificity (P<0.0001) 
(Figure 2A). 
 
Influence of an HIV treatment strategy on epigenetic 
aging 
 
Building on these findings, we explored the dynamics 
of epigenetic aging among HIV-positive individuals to 
assess how a specific treatment strategy influenced 
these patterns. 
 
We evaluated the impact of a combined HIV  
treatment strategy—comprising therapeutic HIV-1 
vaccination and the latency-reversing agent romidepsin 
—using EpiAge, DNAmAge (Horvath’s 
 Clock), DNAmAgeHannum, DNAmPhenoAge, 
DNAmAgeSkinBloodClock, DNAGrimAge v1, and 
DNAGrimAge v2. This regimen also incorporated a 
monitored pause in antiretroviral therapy (MAP), as 
outlined by Oriol-Tordera et al. [34]. We tracked 
epigenetic aging from baseline (week 0, before 
treatment initiation) through several key intervals: 
weeks 1, 6, 10, and 24, as shown in Figure 2B. 
 
EpiAge uniquely responded to the treatment, showing a 
significant deceleration in epigenetic aging by week 24, 
with an adjusted P-value of 0.0061, corresponding to an 
epigenetic age reduction of approximately 3.93 years 
from baseline. 
 
DNAmAgeHannum also demonstrated a notable 
response by week 24, revealing a significant reduction 
in epigenetic age of 12.96 years (adjusted P-value < 
0.0001). DNAmAgeSkinBloodClock displayed a 
moderate but significant deceleration of 1.88 years over 
the same period (adjusted P-value = 0.0215). The 
responses of other clocks did not reach statistical 
significance (Figure 2B). 

Further, we specifically assessed changes from baseline 
to the Monitored Antiretroviral Pause (MAP) phase, 
employing paired t-tests to determine if the observed 
changes in epigenetic age were directly induced by the 
treatment regimen. This analysis, illustrated in Figure 
2C, focused on the unique impacts of the therapeutic 
vaccination and latency-reversing agent during the 
pause in antiretroviral therapy. Unlike the continuous 
treatment period captured in Figure 2B, the MAP phase 
analysis aimed to isolate the effects of the intervention 
components without the confounding influence of 
ongoing antiretroviral therapy (ART). 
 
Among the clocks evaluated, EpiAge and DNAm-
AgeHannum showed marked responses to the combined 
therapy despite the MAP. EpiAge demonstrated a 
significant deceleration in epigenetic aging with a  
mean difference of -4.811 years (P < 0.0001), while 
DNAmAgeHannum also indicated substantial 
deceleration with a mean difference of -12.23 years (P < 
0.0001). DNAmAgeSkinBloodClock responded more 
modestly, showing a deceleration with a mean 
difference of -2.036 years (P = 0.0129). Surprisingly, 
DNAGrimAge v1 indicated an unexpected significant 
acceleration of aging, with a mean difference of +2.628 
years (P < 0.0001). 
 
These results underscore the distinct responses of 
epigenetic clocks to the HIV treatment regimen. EpiAge 
and DNAmAgeHannum, in particular, stood out for 
their sensitivity to treatment-induced changes, offering 
potential as reliable markers for assessing the impact of 
HIV therapies on biological aging. 
 
Impact of COVID-19 on epigenetic aging: 
comparative analysis across multiple epigenetic clocks 
 
Our findings indicated that the EpiAge clock showed an 
age acceleration that varied as a function of the 
COVID-19 severity score. As such, in our analysis of 
DNA methylation data from the GSE167202 dataset 
[35], we found that the EpiAge clock demonstrated a 
significant age acceleration in COVID-19 severity score 
1 compared to negative controls (P=0.0002), with an 
acceleration of 5.766 years (Figure 3A). Lesser or no 
significant differences were observed in higher 
severity scores or in response to an infection by other 
viruses.  
 
Similarly, DNAmAge indicated significant age 
acceleration in patients with other infections and mild 
COVID-19 cases, with age accelerations of 2.514 years 
(P=0.0166) and 3.935 years (P=0.0035), respectively. 
DNAmAgeSkinBloodClock mirrored this pattern, 
showing significant age accelerations for other 
infections (2.312 years, P=0.0010) and mild COVID-19 
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severity (2.268 years, P=0.0225), while no significant 
changes were observed for higher severity levels. 
 
Hannum’s clock only found COVID-19 severity to be 
significantly associated with age acceleration (3.506 
years, P=0.0064), with other severity levels and 
infections showing no significant differences. 
PhenoAge displayed significant acceleration for other 
infections (3.535 years, P=0.0031) and remarkably for 
COVID-19 severity levels 3 (4.284 years, P=0.0059) 
and 4 (6.249 years, P=0.0205), but not for level 1. 
 
GrimAge v1 did not show significant differences across 
groups. GrimAge v2 revealed that COVID-3 severity 
had a significant age acceleration (3.892 years, 
P=0.0402) compared to negative control, indicating 
nuanced responses across different epigenetic clocks to 
COVID-19 severity and other infections (Figure 3A). 
 
In conjunction with our investigation, we analyzed 
dataset GSE168739, which was also utilized in a study 
by Cao et al. [36] This previous study examined the 
influence of COVID-19 on epigenetic aging in blood 
samples using a range of established epigenetic clocks, 
such as Horvath’s DNAmAge, Hannum’s DNAmAge, 
PhenoAge, SkinBloodClock, and GrimAge. The 
findings indicated that individuals with COVID-19 
experienced a notable increase in DNAm age across all 
clocks compared to healthy individuals. Extending these 
observations, our application of the EpiAge clock to 
these samples demonstrated a significant acceleration in 
epigenetic aging among COVID-19 patients, with an 
average advancement of nearly four years (p < 0.0001) 
(Figure 3B). Similarly, DNAmAge revealed a moderate 
yet significant age acceleration (p = 0.0114, difference 
= 1.457 years). The SkinBloodClock also showed 
significant acceleration (p < 0.0001, difference = 2.648 
years), while other clocks displayed no significant 
changes or, surprisingly, opposite effects such as those 
seen with GrimAge v1 and PhenoAge. 
 
Based on our analyses, the EpiAge clock demonstrated 
the most pronounced acceleration in epigenetic aging in 
response to COVID-19 infection (COVID-19), markedly 
exceeding the age advancements detected by other clocks. 
This stark contrast highlights the EpiAge clock’s 
sensitivity and effectiveness in capturing the impact of 
COVID-19 on biological aging processes, thus affirming 
its utility in clinical and epidemiological settings focused 
on the implications of infectious diseases on aging. 
 
Current stress, not cumulative stress, is associated 
with epigenetic age acceleration  
 
To investigate the link between stress and epigenetic 
age acceleration (EAA), we analyzed whole blood 

samples from African American individuals using the 
GSE72680 dataset [37–39]. 
 
The original study employed a DNA methylation-based 
age prediction method, utilizing DNAmAge developed 
by Horvath [26]. They found that cumulative lifetime 
stress, as opposed to childhood maltreatment or current 
stress alone, predicted accelerated epigenetic aging in 
an urban African American cohort [39].  
 
In our study, we expanded the analysis by using EpiAge, 
DNAmAge (Horvath’s Clock), DNAmAgeHannum, 
DNAmPhenoAge, DNAmAgeSkinBloodClock, DNA-
GrimAge v1, and DNAGrimAge v2. Contrary to the 
original findings, we did not detect any significant 
correlation between epigenetic age acceleration and 
cumulative life stress after correction for blood cell-type 
composition and lifestyle parameters, such as age, sex, 
body mass index (BMI), alcohol use, tobacco use, 
childhood sexual or physical abuse, childhood trauma, 
cocaine use, heroin use, marijuana use, posttraumatic 
stress disorder symptom scale, Beck Depression Inventory 
total score, and treatment for anxiety disorder, bipolar 
disorder, depression, and posttraumatic stress disorder. 
 
Our investigation into the impact of stress on epigenetic 
age acceleration (EAA) across different epigenetic 
clocks reveals a complex relationship (Figure 4A). 
Initially, simple correlations between current stress and 
various clocks were established, with notable results as 
follows: 
 
For Horvath’s DNAmAge, a correlation coefficient (r) 
of 0.1517 and a p-value of 0.0064 were observed. After 
adjusting for confounders, a significant regression 
coefficient (β) of 0.5171 was noted, highlighting an 
association between higher current stress levels and 
increased EAA (p = 0.030). Cumulative life stress, 
however, did not exhibit a significant association (p = 
0.425). 
 
Hannum’s clock displayed an initial r of 0.1556 and a p-
value of 0.0051. Post-correction analysis revealed a β of 
0.4831 (p = 0.030), reaffirming the significance of 
current stress, while cumulative life stress again showed 
no significant effect (p = 0.399). 
 
PhenoAge presented an r of 0.117 and a p-value of 
0.0347 between current stress and EAA. However, the 
relationship did not remain significant after 
correction. 
 
DNAmAgeSkinBloodClock demonstrated an initial r of 
0.1204 and a p-value of 0.0308 of the association 
between current stress and EAA, but this significance 
was not maintained post-correction. 
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The EpiAge clock showed a stronger initial correlation 
with current stress (r = 0.1975, p-value of 0.0004), 
which remained significant after correction (p ≤ 0.037). 
 
For Grimage v1, we found an initial r of 0.2367 with a 
p-value of <0.0001 association with current stress, 
which persisted as significant after correction (p = 
0.011). 

Grimage v2 revealed an r of 0.235 and a p-value of 
<0.0001, with the association remaining significant 
post-correction (p = 0.005). 
 
Cumulative life stress did not demonstrate a significant 
association with EAA across any of the clocks, both 
before and after applying corrections for confounding 
factors. This analysis underscores the specific impact of 

 

 
 

Figure 3. (A) Scatter plot analysis of epigenetic age acceleration (EAA) across individuals without COVID-19 (Neg, n=296) from GSE167202 
and COVID-19 patients (Pos, n=407) from GSE168739. EAA is calculated by subtracting chronological age from EpiAge estimates. Median EAA 
values for each group are plotted. Non-parametric two-tailed Mann-Whitney U test reveals significant EAA in COVID-19 patients compared to 
non-COVID-19 individuals (P < 0.0001), with a median difference of 3.974 years, indicating accelerated biological aging in infected patients. 
(B) Scatter plot analysis comparing epigenetic age between healthy controls (GSE167202, n=296) and COVID-19 patients (GSE168739, n=407), 
utilizing clocks including EpiAge, DNAmAge, DNAmAgeHannum, DNAmPhenoAge, DNAmAgeSkinBloodClock, DNAGrimAge v1, and 
DNAGrimAge v2. Due to the non-normal distribution of data, a Mann-Whitney U test was employed. Significance levels are denoted as ns 
(not significant), * (p < 0.05), ** (p < 0.01), *** (p < 0.001), **** (p < 0.0001). 
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current stress on epigenetic aging, which remained after 
corrections for blood cell-type composition and lifestyle 
parameters. These findings highlight the importance of 
current stress as a significant factor in epigenetic age 
acceleration across multiple epigenetic clocks. 
 
We further categorized individuals from the GSE72680 
dataset [37] into five groups based on the intensity or 
severity of stress: No Stress (Level 0), Low Stress 
(Levels 1-4) for mild stress experiences, Moderate 
Stress (Levels 5-7), High Stress (Levels 8-10), and 
Severe Stress (Levels 11-15). We examined the 
association of these stress levels with Epigenetic Age 
Acceleration (EAA) using the EpiAge clock (Figure 
4B). The analysis revealed a gradual increase in EAA 
from the No Stress Group to the Severe Stress  
Group. Specifically, we noted a borderline significant 
difference between the Low Slow-stress and No Stress 

groups (P = 0.1811) and the Moderate Stress Group (P 
= 0.0604), a significant difference between the High 
Stress and No Stress groups (P = 0.0268), and the most 
pronounced difference was observed between the 
Severe Stress and No Stress groups (P = 0.0143). 
 
A similar trend was observed across various clocks: For 
DNAmAge, the comparisons yielded P-values of 0.4334 
(Low vs. No Stress), 0.2114 (Moderate vs. No Stress), 
0.195 (High vs. No Stress), and 0.0443 (Severe vs. No 
Stress). Hannum’s clock followed suit with P-values of 
0.3713, 0.2711, 0.1466, and 0.0476, respectively. The 
trend persisted with PhenoAge and DNA-
mAgeSkinBloodClock, with PhenoAge showing a 
borderline significant difference at high-stress levels 
(P=0.0428) compared to no stress and DNAmAge-
SkinBloodClock revealing a significant difference at 
severe stress levels (P=0.0352). DNA_GrimAge_v1 

 

 
 

Figure 4. (A) Relationship between current stress levels (Axe X) and epigenetic age acceleration (EAA) (axe Y) across various epigenetic clocks 
(EpiAge, DNAmAge, DNAmAgeHannum, DNAmPhenoAge, DNAmAgeSkinBloodClock, DNAGrimAge v1, and DNAGrimAge v2) from the study 
GSE72680, analyzed using Pearson’s r. Stress level severity is represented by increasing numbers where a score of 0 means No Stress, and 15 
is the most severe stress. Each plot in this figure represents a different clock, highlighting the strength and significance of their relationships 
with current stress. The central line in each plot represents the regression line, accompanied by two red lines which delineate the 95% 
confidence intervals, underlining the precision of the correlation estimates. (B) Scatter plots illustrate the relationship between varying stress 
levels and epigenetic age acceleration across different epigenetic clocks. The plot compares five groups categorized by stress intensity: No 
Stress (Level 0, n=9), Low Stress (Levels 1-4, n=149), Moderate Stress (Levels 5-7, n=106), High Stress (Levels 8-10, n=48), and Severe Stress 
(Levels 11-15, n=13). Each point represents an individual’s epigenetic age acceleration, with group comparisons analyzed using ordinary one-
way ANOVA and Dunnett’s multiple comparisons test to assess statistical differences between the No Stress group and each of the stress 
intensity groups. (C) Scatter plots depicting the relationship between stress levels and epigenetic age acceleration (EAA) across various 
epigenetic clocks, incorporating control groups for a comprehensive analysis. This plot includes six groups: No Stress (Level 0, n=9), Low Stress 
(Levels 1-4, n=149), Moderate Stress (Levels 5-7, n=106), High Stress (Levels 8-10, n=48), Severe Stress (Levels 11-15, n=13), and an added 
Control group (n=419, combining subjects from datasets GSE128235 and GSE125105). Each point illustrates an individual’s EAA. Group 
differences were statistically evaluated using ordinary one-way ANOVA with Dunnett’s multiple comparisons test, comparing each stress level 
group as well as the Control group against the No Stress group to identify significant variations in EAA. 
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and v2 showed increasingly significant differences with 
rising stress levels, underscoring a clear association 
between stress and epigenetic age acceleration. 
Specifically, DNA_GrimAge_v1 and v2 displayed 
significant differences at even low-stress levels 
(P=0.0110 and P=0.0009, respectively), becoming more 
pronounced at moderate to severe stress levels, 
culminating in P<0.0001 for severe stress. 
 
These analyses, conducted using one-way ANOVA 
with Dunnett’s multiple comparisons test, highlight a 
consistent trend across all clocks, indicating a 
significant relationship between stress levels and 
epigenetic age acceleration. 
 
The GSE72680 dataset had a limited number of 9 
samples in the no stress group, which might explain the 
loss of power to detect EAA differences in the lower 
stress groups. We therefore included additional control 
(normal stress) subjects from a different data set 
GSE128235 (209 subjects) and GSE125105 (210 
subjects) datasets in the analysis, as illustrated in 
Figure 4C. Importantly, there was no significant 
difference in EpiAge between these newly added 
control samples and the no-stress group included in the 
GSE72680 data (Adjusted P-value >0.9999), which 
suggested that these control groups could be combined 
in our analysis. When the analysis included a larger 
sample of “normal” controls, a marked increase in 
Epigenetic Age Acceleration (EAA) was associated 
with stress from low to severe stress levels, which was 
significant even in the low stress group (Adjusted P-
value < 0.0001). 
 
For DNAmAge, the no-stress group exhibited 
significantly higher EAA than the control group (p = 
0.0197), with a more pronounced EAA observed across 
all stress levels in comparison to the control group. 
 
The DNAmAgeHannum analysis indicated a borderline 
acceleration in EAA within the no-stress group 
compared to the added control group (Adjusted P-value 
=0.0720). However, EAA was notably higher in the 
control group than in both the low and moderate stress 
groups, with no significant differences noted when 
compared to the high and severe stress levels. 
 
The PhenoAge analysis aligned with that of EpiAge, 
showing no distinction between the control and no-
stress groups. Yet, there were significant escalations in 
EAA from low to high-stress levels in comparison to 
the control group. Intriguingly, PhenoAge suggested 
an overall deceleration of EAA across all  
groups, regardless of stress level. Similarly, 
DNAmAgeSkinBloodClock analysis showed no 
variance between the control and no-stress groups but 

revealed significant increases in EAA from low to 
severe stress levels. 
 
Notably, DNA GrimAge v1 indicated a significantly 
higher EAA across all groups except for the severe 
stress group when compared to the control group. DNA 
GrimAge v2 exhibited significantly higher EAA in the 
control group than in the no-stress group but did not 
show marked differences from other stress levels. 
 
Altogether, these findings indicate that EpiAge showed 
the clearest sensitivity in detecting the stress-induced 
epigenetic age acceleration, whereby the differences in 
EAA were only observed between stressed and both 
controls and non-stressed controls. Furthermore, 
although all clocks were sensitive to stress, there was 
observed variability across different epigenetic clocks. 
These may be attributed to the varied number of CpGs 
analyzed in the different clocks and the absence of 
CpGs included in some clocks in the datasets that used 
different array designs. For example, there was a 
consistent issue with missing probes in the GSE72680 
dataset for DNAmGrimAge2 (ranging typically from 57 
to 64 out of 1331 probes) and DNAmFitAge 
(consistently 48 out of 789 probes). Furthermore, the 
unexpected results seen with GrimAge v1 and v2 in 
control groups, derived from diverse studies, may 
reflect batch effects. It is advised against attempting to 
correct or process the array data in ways that might lead 
to the exclusion of CpGs. These observations emphasize 
the consistency and reliability offered by utilizing fewer 
CpGs in the EpiAge analysis, which appears to yield 
more stable results across different conditions. 
 
Epigenetic age acceleration in Down syndrome 
 
To further assess the value of the EpiAge clock in 
detecting epigenetic age acceleration in disease states, in 
this study, we analyzed 22 healthy individuals and 20 
individuals with Down syndrome (DS) using the Epic 
array. Down syndrome is the most common chromosomal 
anomaly in humans that causes mild to significant 
developmental, physical, and intellectual disabilities. Due 
to the trisomy of chromosome 21, which harbours the 
gene encoding for the amyloid precursor protein (APP), 
people with Down syndrome progressively develop 
Alzheimer’s disease neuropathology starting early in life. 
 
The two groups showed no significant chronological 
age difference, with the mean age for the healthy group 
at 40.95 and for the Down syndrome group at 40.65, 
and a p-value of 0.9146 as revealed using an unpaired 
parametric T-test (applied due to normal distribution). 
We then calculated epigenetic age using the 
EpiAgePublic model, among others and assessed 
epigenetic age acceleration (EAA) (Figure 5A). 
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Significant age acceleration in the Down syndrome 
group was observed across all clocks using T-tests and 
Receiver Operating Characteristic (ROC) analysis to 
examine the differences. Specifically, for EpiAgePublic, 

the p-value was 0.0002, with a mean difference ± SEM 
of 10.26 ± 2.539 and an ROC of 0.8205. DNAmAge 
showed a p-value of 0.0004, with a mean difference of 
9.613 ± 2.481 and an ROC of 0.8341. 

 

 
 

Figure 5. Scatter plot of epigenetic age acceleration (EAA) in healthy individuals and those with Down syndrome. This scatter 
plot illustrates the Epigenetic Age Acceleration (EAA) for each participant in our study, contrasting healthy controls (n=22) with individuals 
diagnosed with Down syndrome (DS, n=20). EAA, determined by the discrepancy between epigenetic age and chronological age, is plotted for 
each individual, utilizing various epigenetic clocks: EpiAgePublic, DNAmAge, DNAmAgeHannum, PhenoAge, DNAmAgeSkinBloodClock, 
GrimAge v1, and GrimAge v2. Each point represents one individual’s EAA, with separate color codes for healthy controls and DS individuals. 
Unpaired t-tests were conducted to examine the differences in EAA between the groups, showing significant increase in EAA in DS: 
EpiAgePublic (p=0.0002), DNAmAge (p=0.0004), DNAmAgeHannum (p=0.002), PhenoAge (p=0.0002), DNAmAgeSkinBloodClock (p=0.0013), 
GrimAge v1 (p=0.0081), and GrimAge v2 (p=0.0016). ROC analysis, discussed in the results section, was performed to further assess the 
discriminative capability of each clock between the healthy and DS groups. This plot highlights the significant epigenetic age acceleration 
observed in individuals with Down syndrome in comparison to healthy controls. 
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DNAmAgeHannum had a p-value of 0.002, with a 
mean difference of 9.177 ± 2.771 and an ROC of 
0.7932. PhenoAge’s p-value was 0.0002, with a mean 
difference of 13.16 ± 3.272 and an ROC of 0.8318. The 
DNAmAgeSkinBloodClock had a p-value of 0.0013, 
with a mean difference of 8.439 ± 2.446 and an ROC of 
0.8523. GrimAge v1 had a p-value of 0.0081, with a 
mean difference of 7.799 ± 2.798 and an ROC of 
0.7818, while GrimAge v2 showed a p-value of 0.0016, 
with a mean difference of 9.404 ± 2.779 and an ROC of 
0.8227. (The mean difference ± SEM represents the 
difference in the mean epigenetic age acceleration 
(EAA) between the Down syndrome and healthy 
control groups, along with the standard error of that 
difference.) 
 
Overall, the EpiAgePublic clock performs comparably 
to other established epigenetic clocks in detecting age 
acceleration in individuals with Down syndrome. 
 
Epigenetic age and Alzheimer’s disease 
 
In all previous analyses, we utilized array technology, 
which is known for its limitations. This technology 
requires normalization methods such as BMIQ and 
others to adjust for variability in methylation data. 
However, a major concern with array technologies, such 
as the Illumina Infinium Methylation BeadChip often 
used in epigenome-wide association studies (EWAS), is 
the presence of batch effects. These effects can reduce 
experimental power and potentially lead to false 
positive results due to variations in the day of 
processing, the individual glass slide, and the array’s 
position on the slide. Despite employing batch-effect 
removal tools like ComBat and Harman, residual batch 
effects persist and require significant correction [40]. 
 
In contrast, targeted next-generation sequencing offers 
advantages over array technologies, including higher 
resolution and greater specificity for detecting 
methylation changes across diverse biological samples. 
This method is less susceptible to batch effects and does 
not rely on pre-designed probes, allowing for a more 
comprehensive analysis of the methylome. 
 
To validate the EpiAge model using targeted NGS, we 
conducted an observational longitudinal clinical study 
where we analyzed DNA extracted from the 
lymphocytes of peripheral blood mononuclear cells 
(PBMCs) from 55 individuals, categorized into 
Alzheimer’s disease patients and control participants. 
One participant was excluded from the analysis due to 
technical issues, leaving a total of 54 participants. 
Among these, there were 10 males and 16 females in 
the control group and 7 males and 21 females in the 
Alzheimer’s disease (AD) group. The mean age of the 

control group was 71.53 years (SD = 9.36), while the 
AD group had a mean age of 72.57 years (SD = 8.89). 
A parametric t-test showed no significant difference in 
age between the control and AD groups (p = 0.6793). 
 
For this study, we expanded the region analyzed in the 
ELOVL2 gene to include not only the well-established 
CpG sites—cg16867657, cg21572722, and 
cg24724428—from the Illumina array but also an 
additional ten CpG sites, totaling 13 sites. This broader 
scope was intended to enhance the technical robustness 
of the EpiAge model. 
 
First, we examined the replication consistency across 
our samples. Due to limitations in the amount of DNA 
obtained, only 41 out of the total 54 individuals had 
sufficient DNA to perform analyses in four replicates. 
 
In our analysis, the coefficient of variation (CV) was 
calculated for each of the 13 CpG sites to evaluate the 
consistency of methylation measurements obtained via 
next-generation sequencing. The CV was determined by 
dividing the standard deviation by the mean methylation 
level for each site and expressed as a percentage. The 
results, depicted in box plots (Figure 6A), indicate that 
the CVs for the first nine CpG sites were relatively low, 
ranging from 0.28% to 6.7%, as these CpGs exhibited 
high percentages of methylation. In contrast, the CVs for 
sites 10 through 13, which are characterized by lower 
methylation levels (around 10% or less), showed greater 
variability, ranging from 1% to 25% across individuals. 
This increased variability at lower methylation levels 
aligns with statistical expectations, where measurements 
near the extremes tend to have lower relative variability, 
while those closer to the midpoint or at lower levels tend 
to fluctuate more [41, 42]. 
 
In our study, we assessed the technical accuracy of 
EpiAge in a cohort of 41 participants (Figure 6B), each 
tested four times using targeted next-generation 
sequencing (NGS). We first evaluated the Confidence 
Interval (CI) Range as a measure of variability in  
the epigenetic age estimation across repeated 
measurements: 
 
CI Range <1: Observed in 14 individuals, suggesting a 
high precision in epigenetic age estimation for 
approximately 34% of the participants. 
 
CI Range >1 and <1.5: Found in 15 individuals, 
indicating moderate variability in epigenetic age 
estimates, affecting about 37% of the study population. 
 
CI Range >1.5 and <2: Present in 7 individuals, 
reflecting a greater variability in measurements, 
impacting around 17% of the participants. 
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CI Range >2 and <3: Noted in 4 individuals, 
demonstrating significant variability, which was evident 
in approximately 10% of the cohort. 
 
CI Range >3: This highest variability was observed in 1 
individual, accounting for about 2% of the participants. 

Additionally, we summarized key descriptive statistics, 
including mean, standard deviation (SD), and 
coefficient of variation (CV) for each participant in 
Supplementary Table 2. The results showed that the 
CVs ranged from 0.57% to 6.10%, demonstrating 
varying levels of technical accuracy. 

 

 
 

Figure 6. (A) Box plots of coefficient of variation (CV) for methylation levels across 13 CpG sites. This figure illustrates the distribution of the 
coefficient of variation (CV) for each of the 13 CpG sites within the ELOVL2 gene, analyzed using next-generation sequencing. The CV was 
calculated by dividing the standard deviation of methylation measurements by the mean for each site, expressed as a percentage. The box 
plots show the interquartile range (25th to 75th percentile) with whiskers extending to the 5th and 95th percentiles. Sites 1-9 exhibit lower 
CVs, ranging from 0.28% to 6.7%, indicative of high methylation consistency. Sites 10-13 display higher CVs, ranging from 1% to 25%, 
reflecting increased variability in regions of lower methylation. This variability highlights the influence of methylation levels on the precision 
of epigenetic age assessments. (B) The figure displays a scatter plot of epigenetic age measurements using our newly developed EpiAge next-
generation sequencing assay for 41 study participants, using the linear regression model developed for EpiAgePublic in samples that had four 
technical replicates. Each point on the x-axis corresponds to the average EpiAge calculated for a blood sample (buffy coat) of an individual 
participant. The y-axis indicates the epigenetic age calculated for each replicate. Error bars represent the 95% confidence intervals for the 
mean epigenetic age of each individual. (C) Comparison analysis between EpiAgePublic (red dots) and EpiAge calculated using the HKG 
epiTherapeutics proprietary model (blue dots) relative to chronological age (Axe X). Correlation analysis was performed using Pearson’s R. 
The table provides a comparison of the correlation coefficient (r), 95% confidence interval, and R-squared values. (D) Epigenetic Age 
Acceleration (EAA) Comparison between control and AD patients calculated using EpiAge next-generation sequencing assay. This scatter plot 
compares the EAA between control participants (n=26) and Alzheimer’s Disease (AD) patients (n=28). Each dot represents an individual, and 
the plot shows the mean with SEM. The epigenetic age was calculated using the HKG epiTherapeutics proprietary model. Differences in EAA 
between the groups were analyzed using a two-tailed parametric t-test to assess statistical significance. (E) The left panel displays the 
Pearson correlation between Epigenetic Age Acceleration (EAA) and Mini-Mental State Examination MMSE in 7 male Alzheimer’s patients, 
while the right panel displays the correlation in 21 female Alzheimer’s patients. The middle line in each plot represents the linear regression 
fit, while the two lines surrounding it represent the 95% confidence bands, which indicate the variability of the correlation. (F) Comparative 
Analysis of Epigenetic Age Acceleration Across Alzheimer’s Disease, Mild Cognitive Impairment, and Control Groups Using Multiple Epigenetic 
Clocks. This figure presents the comparison of Epigenetic Age Acceleration (EAA) using multiple clocks: EpiAge, DNAmAge, 
DNAmAgeHannum, DNAmPhenoAge, DNAmAgeSkinBloodClock, DNAGrimAge v1, and DNAGrimAge v2. The data were derived from 96 
control individuals, 111 with mild cognitive impairment (MCI), and 93 with Alzheimer’s Disease from dataset GSE144858, using DNA from 
human blood. The plot shows means with Standard Error of the Mean (SEM). For statistical analysis, we employed an ordinary one-way 
ANOVA to compare AD (Alzheimer’s) to controls and MCI to controls. Parametric ANOVA was used due to the normal distribution of the data. 
‘Ns’ stands for not significant; * for p < 0.05; **’ for p < 0.01; *** for p < 0.001; and **** for p < 0.0001. 
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• These results show that the targeted NGS-based 
EpiAge exhibited high reliability, with most 
participants displaying low CI ranges and low 
coefficients of variation. 

 
• The CVs indicate that the method’s precision varies 

across individuals but generally falls within 
acceptable limits for biological measurements. 

 
• NGS offers improved accuracy compared to 

traditional array-based methods, but some 
variability remains, potentially due to noise in the 
replicates. 

 
• The findings highlight the accuracy of EpiAge by 

NGS, although further optimization could improve 
consistency and reduce noise in repeated 
measurements. 

 
These findings demonstrate that while most study 
participants exhibited relatively low to moderate 
variability in epigenetic age estimates, a smaller group 
showed significant variability. This distribution 
underscores the importance of considering technical 
variability in such analyses. While targeted next-
generation sequencing provides high-resolution and 
specific detection of methylation changes, there is 
inherent variability that must be accounted for in 
clinical and research settings. The analysis of CI 
Ranges provides important insights into the reliability 
of epigenetic age measurements and their potential 
application in longitudinal studies and interventions 
aimed at aging and related neurodegenerative 
disorders. 
 
Furthermore, these results highlight the importance of 
evaluating confidence intervals when interpreting 
epigenetic age to ensure robust conclusions. This is 
particularly vital in clinical or research contexts where 
precision is paramount. Relying solely on single 
measurements without technical replicates, which is 
common with less accurate array technologies, 
overlooks the importance of accuracy and the 
limitations of study design. Without this consideration, 
it becomes challenging to discern whether observed 
changes in epigenetic age across multiple time points 
are due to actual biological effects, batch effects, or 
merely technical noise. 
 
We subsequently calculated the epigenetic age using 
the bisulfite-targeted next-generation sequencing data 
and the EpiAgePublic model (including 3 CpGs: 
cg16867657, cg21572722, and cg24724428), which 
was trained on GSE55763, GSE157131, GSE40279, 
and GSE30870 (Table 1), as discussed above. We also 
calculated EpiAge using a proprietary model 

developed by HKG epiTherapeutics, as discussed in 
the Methods section, which was originally developed 
using saliva samples (Figure 6C). A comparison 
analysis between the two models revealed a slightly 
better performance for the proprietary model (r = 
0.5349) compared to EpiAgePublic (r = 0.5143). The 
Epigenetic Age Acceleration (EAA) was determined 
by subtracting the EpiAge value from the proprietary 
model from the chronological age for 26 control 
participants and 28 patients with Alzheimer’s Disease 
(AD). Our analysis revealed no significant difference 
between the two groups (parametric t-test, p = 0.8188) 
(Figure 6D). 
 
We further analyzed whether Mini-Mental State 
Examination (MMSE) is associated with EAA 
separately in females and males. Interestingly, a strong 
negative correlation between MMSE T0 and epigenetic 
age acceleration was observed in males (r = -0.8883, p = 
0.0075) (Figure 6D), while no significant correlation 
was observed in females (Figure 6E). 
 
To examine EAA in AD patients in other studies, we 
analyzed the Epic Array dataset GSE144858 [43], 
derived from the EU-funded AddNeuroMed Cohort, a 
large cross-European AD biomarker study using human 
blood DNA [44, 45]. This dataset included 96 control 
individuals, 111 with mild cognitive impairment (MCI), 
and 93 with Alzheimer’s Disease (AD).  
 
We applied the EpiAgePublic model and other 
epigenetic clocks (Figure 6E). Consistent with the 
bisulfite next-generation sequencing EpiAge assay, we 
did not observe any significant EAA differences 
between AD and controls, based on the Kruskal-Wallis 
test, since the data did not pass the normality test. 
Notably, EpiAgePublic was the only model showing 
significant age deceleration in MCI compared to 
controls (adjusted p-value = 0.0339). 
 
DISCUSSION 
 
This study introduces epiAgePublic, a novel epigenetic 
aging model utilizing only three CpG sites within the 
ELOVL2 gene, traditionally known for its strong 
association with aging [24, 25]. 
 
The simplicity and precision of epiAgePublic, designed 
for compatibility with next-generation sequencing 
(NGS) technologies, mark a significant step forward in 
the field of epigenetic research. Our findings 
demonstrate that epiAgePublic can effectively estimate 
biological age with an accuracy comparable to more 
complex, established epigenetic clocks. This could 
potentially streamline and reduce the cost of biological 
age assessments in clinical settings. 
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In developing the epiAgePublic model, we focused on 
three CpG sites within the ELOVL2 gene—cg16867657, 
cg21572722, and cg24724428—known for their links to 
aging, supported by a body of research (Bell et al., 
2012; Christiansen et al., 2016; Hao et al., 2021; 
Horvath & Raj, 2018; Li et al., 2022; Marioni et al., 
2015). Employing linear regression, we trained a model 
utilizing a training cohort compiled from four public 
databases (GSE55763, GSE157131, GSE40279, and 
GSE30870), capturing a wide demographic range 
(Table 1). The diversity of this training cohort was 
crucial for developing an inclusive EpiAgePublic 
model, which achieved an R-squared value of 0.7512. 
 
The model was validated on several cohorts (Table 1 and 
Figure 1) and was highly correlated with chronological 
age. Furthermore, our comparative analysis with 
established epigenetic clocks revealed EpiAgePublic’s 
robustness and its ability to assess biological aging. 
epiAgePublic remains significantly correlated with 
chronological age even when potential confounding 
factors like blood cell composition and sex are included in 
the model. Age consistently emerged as a significant 
predictor across all models, underscoring its fundamental 
role in epigenetic aging, while sex exhibited a nuanced 
influence, revealing subtle but significant associations 
with all models except epiAgePublic. 
 
The deceleration of epigenetic aging relative to 
chronological age, as individuals grow older suggests a 
nuanced interaction between genetics, environment, and 
aging processes. This phenomenon (Figure 1C) might 
reflect adaptive mechanisms or biological resilience in 
response to environmental stressors and lifestyle factors 
across the lifespan. This deceleration of epigenetic 
aging in long-livers also aligns with findings from other 
studies [46]. 
 
After developing the EpiAgePublic model, a crucial 
validation step was undertaken to confirm its utility not 
just for blood samples but also for saliva, thereby 
expanding its application range. This validation is pivotal, 
serving both as an independent test on fresh datasets and 
as an extension of the model’s utility beyond its initial 
scope, moreover increasing the feasibility and availability 
of the test as a tool for monitoring public health without 
requiring invasive blood draw. 
 
The cellular composition of saliva, as well as blood, 
could vary across individuals, reflecting varied 
proportions of epithelial and immune cells. Specifically, 
saliva in children comprises approximately 35% 
epithelial cells and 65% immune cells [47], whereas 
adult saliva contains around 80% epithelial cells and 
20% immune cells [48, 49]. Nevertheless, our data 
show a high correlation across ages between the EpiAge 

predicted in blood and saliva. This is consistent with 
previous studies. The ELOVL2 gene has been 
consistently identified as a predictive marker of age in 
saliva samples [50, 51]. The EpiAgePublic model, 
originally developed for blood, could be effectively 
applied to saliva, enabling a highly accessible biological 
tool for measuring biological age. 
 
Sex confounding effects; EpiAge versus other clocks 
 
Unlike other epigenetic clocks that exhibit a significant 
correlation with sex, EpiAge’s lack of association with 
sex may indicate a more refined capacity to isolate the 
biological essence of aging from sex-based epigenetic 
variation. This positions EpiAge as a more universally 
applicable tool for assessing biological age. Therefore, 
EpiAge could offer a clearer, more focused lens through 
which to study the aging process, unencumbered by the 
variation introduced by sex. This advantage underscores 
the importance of developing and utilizing epigenetic 
clocks that can accurately reflect the aging process in a 
manner that is as inclusive and representative as 
possible of the general population. 
 
Thus, EpiAgePublic, despite being nimble, relying on a 
single small genomic region is nevertheless an effective 
measure of the aging process comparable or even 
superior to other clocks that incorporate hundreds or 
even thousands of CpG sites. 
 
Understanding HIV-related accelerated epigenetic 
aging 
 
The investigation into HIV-related accelerated 
epigenetic aging represents a critical aspect of our 
study, shedding light on the intricate relationship 
between HIV infection and biological aging. Building 
upon previous research linking HIV to expedited 
epigenetic aging processes, our study delved into the 
specific impacts of HIV infection on epigenetic aging 
using multiple cohorts and compared the performance 
of various epigenetic clocks, including EpiAge, in 
elucidating these patterns. 
 
Our findings corroborate earlier observations [52] 
suggesting a significant association between HIV 
infection and accelerated epigenetic aging. Notably, 
EpiAge demonstrated remarkable sensitivity in 
detecting age acceleration among HIV-positive 
individuals, with a substantial average advancement of 
12.04 years compared to HIV-negative controls. This 
aligns with previous studies highlighting the accelerated 
aging phenomenon in HIV-infected populations and 
underscores the utility of EpiAge as a reliable marker 
for assessing epigenetic changes associated with HIV 
infection. 
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Furthermore, our comparative analysis across multiple 
epigenetic clocks revealed consistent evidence of aging 
acceleration in HIV-positive individuals, as indicated by 
DNAmAge, DNAmAgeHannum, DNAmPhenoAge, 
DNAmAgeSkinBloodClock, and DNAGrimAge v1. 
This acceleration is possibly due to inflammatory 
processes associated with HIV infection and, therefore, 
might be related to other inflammatory diseases as well. 
These findings underscore the robustness of epigenetic 
clocks in capturing the biological consequences of HIV 
infection on aging processes, thereby providing 
valuable insights into the pathophysiology of HIV-
related accelerated aging. 
 
In addition to identifying accelerated epigenetic aging 
patterns, our study evaluated the discriminatory power 
of epigenetic clocks in distinguishing between HIV-
negative and HIV-positive individuals. ROC analysis 
highlighted the superior performance of EpiAge in 
accurately classifying individuals based on their HIV 
status, further underscoring its potential as a sensitive 
biomarker for HIV-related accelerated aging. 
 
Moreover, our investigation into the influence of HIV 
treatment strategies on epigenetic aging dynamics 
yielded intriguing results. The observed deceleration in 
epigenetic aging following specific pharmacological 
treatment interventions underscores the potential 
reversibility of age-related epigenetic changes in  
HIV-positive individuals. Notably, EpiAge and 
DNAmAgeHannum exhibited significant responses to 
treatment, suggesting their utility as sensitive indicators 
of treatment-induced changes in biological aging. An 
open question remains in future studies to establish the 
specific effects of the different drug classes used in 
current antiretroviral therapy on epigenetic aging 
[33]and their correlation with changes in CD4+ cell 
counts and the CD4/CD8 ratio as well as with long-term 
clinical outcomes in individuals with HIV. 
 
Overall, our study provides comprehensive insights into 
the complex interplay between HIV infection, 
epigenetic aging, and treatment interventions. By 
elucidating the underlying mechanisms driving HIV-
related accelerated aging and evaluating the efficacy of 
epigenetic clocks in capturing these dynamics, our 
findings contribute to the growing body of knowledge 
aimed at improving clinical outcomes and therapeutic 
strategies for HIV-infected individuals. 
 
Impact of COVID-19 on biological aging as 
measured by the different epigenetic clocks 
 
The relationship between COVID-19 infection and 
epigenetic age acceleration (EAA) is complex and 
continues to be a subject of significant scientific debate. 

While some studies have found no notable epigenetic 
acceleration in COVID-19 patients [53], others have 
reported marked changes [36, 54]. Our study shows the 
effects of COVID-19 on biological aging, with 
variations in response depending on the severity of the 
disease and the specific epigenetic clock used. 
 
Different epigenetic clocks, including the EpiAge 
metric described here, show different sensitivity to 
changes induced by the virus. This variability can be 
attributed to the clocks’ distinct molecular foundations 
and their differential responsiveness to the biological 
pathways affected by COVID-19. 
 
For instance, the EpiAge metric, designed to capture 
age-related changes through specific CpG sites within 
the ELOVL2 gene, detects accelerated aging in less 
severe COVID-19 cases. This suggests that EpiAge may 
be particularly sensitive to early biological changes that 
other clocks might miss. Surprisingly, as COVID-19 
severity increased, the EAA did not show significant 
differences. This could be attributed to severe cases 
overwhelming the immune system, thereby masking 
such changes. 
 
Conversely, clocks like DNAmAgeSkinBloodClock and 
DNAGrimAge, which incorporate a broader array of 
CpG sites, showed significant changes primarily in 
cases with higher disease severity, reflecting their 
potential to capture larger biological disturbances. 
 
Our analysis using multiple epigenetic clocks 
underscores the complex landscape in which COVID-19 
infection and its severity levels affect biological aging. 
Notably, our findings are in line with other recent 
studies reporting accelerated epigenetic aging in 
COVID-19 patients [36], as further evidenced by our 
analysis of the GSE168739 dataset. These results 
support the utility of EpiAge and similar metrics in 
shedding light on the biological consequences of 
COVID-19, underscoring the importance of epigenetic 
clocks in understanding the broader implications of this 
and other infectious diseases on human health and 
aging. In future long-term observational studies, it 
would also be interesting to evaluate the potential 
relationship between Epigenetic Age Acceleration and 
cognitive dysfunction in individuals with post-COVID-
19 syndrome. 
 
Stress and epigenetic age acceleration 
 
Existing research on the association between stress and 
epigenetic age acceleration has shown conflicting or 
inconclusive results [55]. This inconsistency may stem 
from the selection of different genes in various 
epigenetic models, which might not be responsive to 
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stress factors. The EpiAge model, which incorporates 
the ELOVL2 gene, demonstrates, however, a clear 
association between current stress and epigenetic age 
acceleration. This suggests that the choice of stress-
responsive genes, like ELOVL2, is crucial for accurately 
assessing the impact of stress on biological aging. 
 
In our analysis of the EpiAge model, we’ve uncovered a 
noteworthy link between current stress and epigenetic 
age acceleration. Current stress, arising from immediate 
and ongoing challenges in an individual’s daily life and 
reflects the current state of an individual’s personal, 
professional, and social life, encompassing recent 
events or situations that are directly impacting their 
well-being now, shows a unique association with 
accelerated epigenetic aging. This contrasts with the 
lack of similar associations with other stress types, like 
cumulative life stress, which represents the lifelong 
accumulation of stressors [56], network life stress 
arising from social network events [57], and personal 
life stress, which focuses on individual-specific life 
circumstances [58]. These findings, although 
counterintuitive, highlight the distinct impact of current, 
day-to-day stressors on biological aging, as opposed to 
the more chronic or relational stresses captured by other 
categories. This indicates a unique impact of current 
stressors, possibly related to their immediate biological 
effects and to the possibility that the effect of stress on 
aging is potentially reversible once the burden of 
current stress is relieved.  
 
This distinct association between current stress and 
accelerated epigenetic aging opens new avenues for 
understanding the biological underpinnings of stress 
responses. It also raises questions about the reversibility 
of such epigenetic changes with stress management or 
resolution. Future research might explore the 
mechanisms behind this phenomenon and investigate 
whether interventions targeting current stress can 
effectively decelerate epigenetic aging. This could have 
profound implications for stress management strategies 
and their role in healthy aging and stress-related 
disorders. Zannas et al. have demonstrated that aging 
and stress can epigenetically synergize in stress-related 
disorders such as Major Depressive Disorder (MDD) 
[37]. However, it is currently unknown whether 
Epigenetic Age Acceleration occurs in severe 
depressive phenotypes. 
 
Interestingly, our observation that no significant 
correlation was found between epigenetic age 
acceleration and cumulative life stress after adjusting 
for blood cell-type composition and lifestyle 
parameters, as previously reported by Zannas et al., [39] 
is partially supported by the recent research conducted 
by Poganic et al. [59]. They suggest that the effects of 

acute stress are more pronounced and directly 
associated with measures of epigenetic age acceleration. 
This finding is in line with our results, highlighting the 
predominant influence of current stress over cumulative 
stress on epigenetic age acceleration, even after 
controlling blood cell-type composition and lifestyle 
parameters. 
 
Epigenetic age acceleration in Down syndrome: 
insights, implications, and clinical applications 
 
Epigenetic age acceleration in Down syndrome has 
been a subject of interest in various studies. Down 
syndrome, characterized by the presence of all or part of 
a third copy of chromosome 21, has been associated 
with accelerated epigenetic aging. Studies demonstrated 
that trisomy 21 significantly increased the biological 
age of blood and brain tissue by an average of 6.6 years 
[60]. Furthermore, it has been noted that age 
acceleration can be observed in both blood and brain 
tissue in Down syndrome (Milicic et al., 2022). These 
findings collectively suggest that Down syndrome is 
associated with accelerated epigenetic aging, as 
evidenced by various studies focusing on epigenetic age 
acceleration in individuals with this condition. 
Additionally, moderate acceleration of epigenetic aging 
has been described in Down syndrome in another study 
(Cypris et al., 2020). Other studies have also found 
evidence of epigenetic age acceleration in newborns 
with Down syndrome (Xu et al., 2022). The research 
highlights the importance of understanding the 
epigenetic mechanisms underlying aging in Down 
syndrome and its implications for health outcomes in 
affected individuals. Research has shown that the use of 
pan-tissue DNA methylation clocks revealed epigenetic 
age acceleration in segmental progeroid syndromes like 
Down syndrome (Ashapkin et al., 2019). Furthermore, 
recent studies have indicated that epigenetic age 
acceleration can occur in segmental progeria conditions 
such as Down syndrome (Lee, 2023). 
 
In our study, we further explored epigenetic age 
acceleration in individuals with Down syndrome using 
various epigenetic clocks, including the EpiAgePublic 
model. Our findings corroborate earlier research 
indicating that Down syndrome, characterized by an 
extra copy of chromosome 21, is associated with 
accelerated biological aging. This acceleration was 
consistently observed across multiple epigenetic clocks, 
affirming the robustness of these tools in capturing 
biological age differences. 
 
The comparable performance of the EpiAgePublic clock 
with other established models suggests its utility as a 
simpler, potentially more accessible tool for assessing 
biological aging in clinical settings. The significant 



www.aging-us.com 152 AGING 

differences in epigenetic age between the Down 
syndrome and healthy control groups highlight the 
profound impact of trisomy 21 on aging processes. 
These insights could inform better management 
strategies for age-related conditions in individuals with 
Down syndrome, such as cognitive deficits and the 
early onset of Alzheimer’s disease. 
 
Our results underscore the relevance of using epigenetic 
clocks to understand aging in Down syndrome. 
Continued research into the specific epigenetic changes 
associated with Down syndrome could lead to targeted 
interventions that might help mitigate the accelerated 
aging process, ultimately improving health outcomes. 
This study supports the growing recognition of 
epigenetic clocks as valuable tools in aging research and 
their potential application in improving clinical care for 
populations with unique aging trajectories like those 
seen in individuals with Down syndrome. 
 
Epigenetic age in Alzheimer’s disease: insights from 
EpiAgePublic and other epigenetic clocks 
 
Differences in DNA methylation have been reported both 
in blood and brain tissue [44, 45] of Alzheimer’s disease 
cases compared to healthy controls, especially in gene 
regions associated with AD pathology, including 
apolipoprotein E (ApoE) and the amyloid precursor 
protein (APP) but also in other genes [61–68]. However, 
the direction of the changes is not consistent across 
studies [44, 45, 69, 70]. Accordingly, the limited reports 
on epigenetic age in AD have also yielded inconsistent 
findings [69], and their utility in detecting AD pathology 
and cognitive status remains a matter of debate.  
 
In the present study, we calculated the epigenetic age 
using bisulfite-targeted next-generation sequencing data 
and the EpiAgePublic model (including 3 CpGs: 
cg16867657, cg21572722, and cg24724428), which was 
trained on GSE55763, GSE157131, GSE40279, and 
GSE30870 (Table 1). The Epigenetic Age Acceleration 
(EAA) was determined for 26 control participants and 
28 patients with AD. Our analysis revealed no 
significant difference between the two groups 
(parametric t-test, p = 0.9875) (Figure 6C). 
 
We further analyzed whether the Mini-Mental State 
Examination (MMSE) score is associated with EAA 
separately in females and males. Interestingly, a strong 
negative correlation between MMSE T0 and epigenetic 
age acceleration was observed in males (r = -0.8883, p = 
0.0075) (Figure 6D), while no significant correlation 
was observed in females (Figure 6D). 
 
To examine EAA in AD patients in other studies,  
we analyzed the Epic Array dataset GSE144858 

(Roubroeks et al., 2020), derived from the EU-funded 
AddNeuroMed Cohort, a large cross-European AD 
biomarker study using human blood DNA (Fransquet et 
al., 2021; Levine et al., 2015). This dataset included 96 
control individuals, 111 with mild cognitive impairment 
(MCI), and 93 with Alzheimer’s Disease (AD). 
 
We applied the EpiAgePublic model and other 
epigenetic clocks (Figure 6E). Consistent with the 
bisulfite next-generation sequencing EpiAge assay, we 
did not observe any significant EAA differences 
between AD and controls, based on the Kruskal-Wallis 
test, since the data did not pass the normality test. 
Notably, EpiAgePublic was the only model showing 
significant age deceleration in MCI compared to 
controls (adjusted p-value = 0.0339). 
 
These findings highlight the complexity of epigenetic 
changes in AD, as well as the need for further research 
to clarify the relationship between epigenetic age 
acceleration and cognitive dysfunction. The observed 
deceleration of epigenetic aging in AD patients may be 
explained in part by the older age of the cohort [71],  
but future research is necessary to support this 
hypothesis. 
 
Limitations of array-based clocks; batch effects 
 
The choice of analytical platform is critical for 
epigenetic studies, as highlighted by recent  
comparative analyses between the Illumina Infinium 
HumanMethylation450K and MethylationEPIC 
BeadChip arrays. These studies have shown substantial 
variability in methylation measurements, particularly at 
sites with low methylation variance, underscoring a 
fundamental limitation of array technologies that can be 
exacerbated by batch effects and dependency on pre-
designed probes (Cheung, Burgers, Young, Cockell, & 
Reynard, 2020). 
 
Batch effects are a significant concern in genomic 
technologies, especially in epigenome-wide association 
studies using Illumina Infinium Methylation BeadChips, 
where they can diminish experimental power and lead 
to false positives. Despite employing batch-effect 
removal tools like ComBat and Harman on various 
datasets, residual batch effects persist, particularly 
related to the processing day, glass slide, and array 
position, affecting thousands of probes and 
complicating the interpretation of epigenetic studies 
(Ross et al., 2022). Additionally, there is a growing 
recommendation in the field of epigenetic age 
calculation using array technologies that data should not 
be normalized nor corrected for batch effects. This 
advice stems from the need to preserve the integrity of 
longitudinal studies where epigenetic age is monitored 
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over time, a major application of this metric beyond 
single-timepoint clinical studies. The capability to 
consistently measure epigenetic age across multiple 
time points is crucial for assessing the effects of 
lifestyle changes and other interventions. However, the 
persistent batch effects and the necessity for 
normalization challenge the utility of array-based 
platforms for such longitudinal monitoring, under-
scoring the advantages of using targeted NGS for 
ongoing epigenetic age analysis. 
 
In contrast, targeted next-generation sequencing (NGS) 
provides a more robust alternative. It offers higher 
resolution by sequencing individual DNA molecules, 
which allows for the detection of methylation profiles of 
the DNA molecules rather than just averages. NGS 
platforms are typically less prone to batch effects due in 
part to the sequencing process itself, which does not 
rely on the hybridization conditions that can vary in 
array-based platforms.  
 
However, since next-generation sequencing captures 
profiles of each DNA molecule independently and takes 
into consideration the heterogeneity of DNA 
methylation profiles of single DNA molecules even in 
the same tissue, deep reads are required to have 
sufficient statistical power to accurately represent the 
diversity of DNA methylation profiles. Clinical tests 
need to be cost-effective and robust. Targeted 
amplification and Next-generation sequencing of 
thousands or even hundreds of regions with high depth 
and accuracy is highly technical, demanding and 
extremely costly and makes it unfeasible as a 
widespread robust clinical test. It is, therefore, 
imperative that a clinically widely used next-generation 
sequencing-based test be parsimonious and nimble and 
utilize the lowest number of regions amplified and 
sequenced. We, therefore, performed in this study a 
thorough analysis to determine whether it is possible to 
develop a clock that is based on the smallest number of 
DNA regions without compromising its correlation with 
age and its sensitivity to clinical states that affect aging. 
Our analysis revealed that the ELOVL2 region on its 
own performs as well or is even superior to other clocks 
that use hundreds or even thousands of sites. We then 
developed a robust next-generation sequencing assay of 
a region that contains the CpGs included in the 
EpiAgePublic model as well as the other 10 CpGs.  
 
We observed remarkably low coefficients of variation 
(CVs) across the first nine CpG sites, with CVs ranging 
from 0.28% to 6.7%, demonstrating NGS’s robustness 
in accurate methylation profiling. Even for CpG sites 
with higher CVs, which ranged from 1% to 25% at sites 
of lower methylation levels, NGS shows a more 
consistent performance compared to arrays. Illustrated 

in Figure 6A, these results highlight that NGS not only 
offers higher resolution and greater specificity but also 
exhibits reduced susceptibility to batch effects. This 
independence from hybridization conditions and pre-
designed probes allows for a more comprehensive and 
flexible analysis, making NGS particularly valuable for 
precise and reproducible methylation profiling across 
diverse biological samples and time points. This 
technological superiority enhances our ability to 
monitor epigenetic changes with greater accuracy and 
reliability, which is crucial for longitudinal studies and 
the assessment of lifestyle or other interventions over 
time. 
 
Advantages and limitations of simplifying epigenetic 
clocks with EpiAgePublic 
 
While traditional epigenetic clocks rely on analyzing 
hundreds to thousands of CpG sites, EpiAgePublic 
achieves comparable predictive accuracy with 
significantly fewer sites. This reduction in complexity 
could lead to fewer errors associated with probe 
variability and hybridization inefficiencies inherent in 
array platforms. However, it is essential to acknowledge 
that the broader genomic coverage of traditional clocks 
may capture a more comprehensive epigenetic signature 
of aging. Therefore, while EpiAgePublic offers an 
efficient alternative, it should be seen as complementary 
to existing methods rather than a replacement. 
 
The primary limitation of this study is the potential 
oversimplification of the aging process using only three 
CpG sites. Aging is a multifactorial process influenced 
by numerous genetic, environmental, and lifestyle 
factors. Therefore, further studies are needed to validate 
the effectiveness of EpiAgePublic across larger and 
more varied populations. Additionally, longitudinal 
studies would help in understanding how EpiAgePublic 
responds to changes over time and under different 
physiological or pathological conditions. 
 
Moreover, the integration of EpiAgePublic with other 
biological markers of aging, such as telomere length, 
oxidative stress markers, and inflammatory cytokines, 
could provide a more holistic view of the aging process. 
This integrative approach could lead to the development 
of a multi-dimensional aging model that combines 
genetic, epigenetic, and biochemical indicators of age. 
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SUPPLEMENTARY MATERIALS 
 

 
 

Supplementary Tables 
 
Supplementary Table 1. Regression analysis results for chronological age across various epigenetic clocks and 
CpG sites including confounder adjustments. 

Model description R² Adj. R² F-Stat p(F-stat) Age Coef Std Err t-Value p-Value 95% CI 
Lower 

95% CI 
Upper AIC BIC Observations 

cg16867657 
(ELOVL2 site) 0.757 0.757 1801 <0.0001 0.0047 4.50E-05 105.465 <0.0001 0.005 0.005 -17790 -17730 4625 
cg21572722 
(ELOVL2 site) 0.702 0.702 1362 <0.0001 0.0025 3.04E-05 82.951 <0.0001 0.002 0.003 -21430 -21370 4625 
cg24724428 
(ELOVL2 site) 0.626 0.625 965.1 <0.0001 0.0039 4.87E-05 79.2 <0.0001 0.004 0.004 -17060 -17010 4625 

EpiAgePublicBlood 0.779 0.778 2030 <0.0001 0.7612 0.007 111.887 <0.0001 0.748 0.775 28630 28690 4625 
DNAmAge 
(Horvath) 0.842 0.841 3067 <0.0001 0.78 0.005 145.819 <0.0001 0.77 0.791 26410 26470 4625 

DNAmAge Hannum 0.883 0.883 4357 <0.0001 0.8554 0.006 153.678 <0.0001 0.845 0.866 26780 26830 4625 

DNAmPhenoAge 0.787 0.786 2127 <0.0001 0.8966 0.008 116.929 <0.0001 0.882 0.912 29740 29800 4625 
DNAmAgeSkinBloo
dClock 0.898 0.898 5078 <0.0001 0.8855 0.005 184.542 <0.0001 0.876 0.895 25400 25460 4625 

DNA GrimAge v1 0.806 0.806 2395 <0.0001 0.689 0.006 121.39 <0.0001 0.678 0.7 26960 27010 4625 

DNA GrimAge v2 0.765 0.765 1882 <0.0001 0.6501 0.006 108.32 <0.0001 0.638 0.662 27470 27530 4625 
 

Supplementary Table 2. Summary table for replicates. 

ID Mean SD CV (%) 95% CI Minimum Maximum Median 25th Percentile 75th Percentile 
1 67.3 1.34 1.99% [65.17, 69.43] 66.09 68.72 67.2 66.13 68.58 
2 90.67 0.99 1.09% [89.10, 92.24] 89.38 91.77 90.77 89.7 91.55 
3 63.47 1.56 2.46% [60.99, 65.95] 61.65 65.33 63.44 61.97 64.99 
4 80.19 1.04 1.29% [78.54, 81.84] 79.51 81.72 79.76 79.54 81.26 
5 72.89 1.6 2.19% [70.35, 75.43] 71.5 74.44 72.8 71.5 74.35 
6 72.61 4.43 6.10% [65.56, 79.67] 66.57 76.47 73.71 67.96 76.18 
7 83.37 1.25 1.50% [81.38, 85.36] 82.04 84.84 83.3 82.2 84.61 
8 86.78 2.04 2.35% [83.54, 90.03] 84.93 89.21 86.49 85.02 88.83 
9 66.6 0.98 1.48% [65.03, 68.16] 65.58 67.73 66.54 65.68 67.57 
10 74.35 2.6 3.49% [70.22, 78.48] 71.28 77.41 74.36 71.84 76.85 
11 78 1.01 1.29% [76.40, 79.60] 76.91 79.11 78 77.04 78.97 
12 79.25 1.65 2.08% [76.62, 81.87] 77.56 81.29 79.07 77.75 80.92 
13 87.51 0.85 0.98% [86.15, 88.87] 86.59 88.64 87.41 86.76 88.37 
14 62.81 1.24 1.98% [60.83, 64.79] 61.1 63.94 63.1 61.51 63.82 
15 81.45 1.52 1.86% [79.03, 83.86] 79.65 83.28 81.43 80 82.91 
16 82.22 1.88 2.29% [79.23, 85.21] 79.59 84.02 82.62 80.29 83.74 
17 82.62 1.47 1.78% [80.28, 84.96] 81.62 84.81 82.03 81.72 84.11 
18 70.94 1.8 2.54% [68.07, 73.81] 69.39 73.07 70.64 69.42 72.75 
19 77.23 1.14 1.48% [75.41, 79.05] 75.67 78.25 77.5 76.03 78.16 
20 87.44 2.78 3.18% [83.02, 91.86] 84.12 90.63 87.5 84.72 90.09 
21 72.08 0.79 1.09% [70.83, 73.33] 71.4 73.21 71.85 71.51 72.87 
22 77.4 0.67 0.87% [76.33, 78.47] 76.86 78.35 77.19 76.9 78.11 
23 88.47 2.45 2.77% [84.57, 92.37] 86.01 91.31 88.28 86.23 90.9 
24 66.71 1.58 2.37% [64.19, 69.22] 65.26 68.7 66.44 65.36 68.34 
25 70.23 2.79 3.98% [65.78, 74.67] 67.92 73.78 69.61 67.96 73.12 
26 68.85 1.19 1.73% [66.95, 70.74] 67.78 70.23 68.69 67.82 70.03 
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27 78.66 2.4 3.05% [74.85, 82.48] 75.61 81.41 78.81 76.31 80.86 
28 80.28 0.76 0.94% [79.08, 81.49] 79.59 81.14 80.2 79.62 81.03 
29 64.02 1.97 3.08% [60.88, 67.15] 62.06 66.69 63.66 62.35 66.05 
30 76.23 1.19 1.56% [74.35, 78.12] 75.15 77.8 75.99 75.24 77.47 
31 65.66 1.76 2.68% [62.86, 68.46] 64.11 67.2 65.66 64.12 67.19 
32 70.15 1.95 2.78% [67.05, 73.25] 68.06 72.41 70.07 68.32 72.07 
33 69.16 0.82 1.19% [67.85, 70.47] 67.97 69.79 69.44 68.29 69.75 
34 66.46 2.03 3.05% [63.24, 69.69] 64.71 69.29 65.93 64.87 68.59 
35 68.06 0.72 1.06% [66.92, 69.20] 67.25 68.72 68.13 67.36 68.69 
36 81.62 1.52 1.86% [79.20, 84.03] 80.2 83.75 81.26 80.42 83.18 
37 74.34 1.66 2.24% [71.69, 76.98] 72.53 75.93 74.44 72.73 75.84 
38 66.67 1.71 2.57% [63.95, 69.39] 64.57 68.56 66.77 64.96 68.27 
39 72.9 0.42 0.57% [72.24, 73.56] 72.47 73.41 72.85 72.52 73.32 
40 68.86 2.32 3.37% [65.16, 72.55] 66.68 72.11 68.32 67 71.26 
41 67.18 1.25 1.86% [65.19, 69.17] 65.78 68.63 67.15 65.98 68.4 
 


