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INTRODUCTION 
 

The term “Artificial Intelligence” (AI) was coined at the 

seminal Dartmouth conference in 1956 [1]. While there 

are multiple definitions of AI, the United States 

National Artificial Intelligence Act of 2020 defines it  

as a machine-based system that can, for a given set  

of human-defined objectives, make predictions, re-

commendations or decisions influencing real or virtual 

environments [2]. 

 

AI encompasses various subfields, including Machine 

Learning (ML) and DL. Figure 1 illustrates the 

hierarchical relationship between the different types of 

AI and their functionality and capabilities. ML refers to 

algorithms and statistical models that enable computers 

to perform tasks without explicit instructions, relying on 

patterns and inference [3]. DL, a subset of ML, uses 

neural networks with many layers (hence “deep”) to 

analyze various types of data [4]. DL was first applied 

to aging research in 2015-2016 with the publication of 

deep aging clocks (DACs) by A. Zhavoronkov’s group 

[5]. Since then, many techniques in DL, such as 

Generative Adversarial Networks (GAN), Large 

Language Models (LLM), and Denoising Diffusion 

Probabilistic Models, have been applied to advance 

aging research, and for comprehensive health 

assessment in healthy longevity medicine (Figure 1). 

The results of these first applications were presented in 

workshops and conference presentations before they 

were published, such as using DL to automate 

multispecies phenotyping in aging research [6], DL for 

drug clustering and automatic cell staining as well as for 

generating synthetic data with age as generation 

condition [7] or screening the small molecule library for 

DNA-repairing compounds [8]. 

 

Several recent reviews have examined the impact of AI 

in aging research, but none have specifically focused on 

GenAI and DL. For instance, Marino et al. (2023) 

reviewed the application of AI to aging research within 

specific hallmarks of aging [9]. Czaja and Ceruso (2022) 

concentrated on how AI integration into daily activities, 

such as continuous health monitoring, can enhance the 

quality of life for older adults [10]. Similarly, Bernal et 

al. (2024) conducted a systematic literature review 

focusing on the application of AI to age-related 
sociodemographic, cognitive and physical changes, 

without extensive focus on research or clinical 

applications [11]. Meng et al. (2024) narrowed their 
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scope to biological age estimation [12], and Wang et al. 

(2023) discussed biomarkers and aging clocks [13]; 

however, neither provided a comprehensive analysis 

centered on GenAI and DL. Steurer et al. (2024) offered 

an overview of multimodal transformers—a type of 

GenAI—in aging research [14], while Lyu et al. (2024) 

extended the scope of their publication vastly beyond DL 

and GenAI [15]. Although Zhavoronkov et al. (2019) 

presented an in-depth analysis of DL in aging research 

[16], the rapid advancements in AI techniques since then 

necessitate an updated review. Addressing this gap, the 

present review encompasses 125 peer-reviewed studies 

on the application of DL and GenAI in aging research 

and healthy longevity medicine, covering works from 

2016 to 2024. 

 

Overview of deep learning methods used in 

aging research 
 

Deep learning 

 

DL significantly advanced AI by enabling computers to 

learn from vast, complex datasets [17]. Unlike many 

traditional ML approaches, which can include a variety 

of methods such as decision trees and support vector 

machines, DL distinguishes itself by using Deep Neural 

Networks (DNNs) with multiple layers, capable of 

automatically discerning and interpreting intricate 

patterns across diverse, previously disconnected data 

types [18]. In aging research, they were found to be 

particularly valuable due to their ability to analyze 

diverse longitudinal data types, such genomic 

sequencing, blood biomarker trends, and daily physical 

activity logs, allowing researchers to study and interpret 

patterns in the aging process [16, 19]. 

 

Within the broader category of DNNs, specific 

architectures have been developed to tackle different 

types of data and tasks. Among others, Convolutional 

Neural Networks (CNNs) identify patterns in grid-like 

data, such as images, by capturing spatial features 

across multiple layers [20]. They are optimized for 

processing visual information and streamline image 

analysis. In contrast, Recurrent Neural Networks 

(RNNs) capture patterns in sequential data such as 

genomic sequences, speech, and real-time sensor data 

by using feedback loops that allow information to be 

retained across steps in a sequence. They incorporate 

information from previous inputs to influence future 

outputs, using a primitive form of memory [21]. 

 

 
 

Figure 1. The layered structure of machine learning, deep learning, and generative artificial intelligence in the context of 
aging research. ML encompasses foundational methods, including linear regression and support vector machines, for biomarker 

identification and biological age prediction. DL builds on ML, employing architectures such as convolutional and recurrent neural networks to 
analyze complex, multimodal datasets. GenAI extends DL capabilities through generative models, including GANs and transformers, enabling 
synthetic data generation, multimodal biomarker creation, and advanced applications in drug discovery and aging-related interventions. 

252



www.aging-us.com 3 AGING 

DL is the foundation for the development of more 

advanced AI algorithms, particularly generative models. 

These models not only analyze existing data, but can 

create new, synthetic data, which has significant 

implications for fields requiring complex data 

generation or augmentation. 

 

Generative artificial intelligence 

 

GenAI algorithms significantly expand the capabilities 

of ML by producing diverse outputs, including text, 

images, and simulations. These algorithms leverage 

large-scale datasets to generate results tailored to 

specific parameters and requirements [22]. While many 

GenAI systems employ advanced neural network 

architectures, the field encompasses a variety of 

techniques for creating new data based on learned 

patterns and distributions. A prominent example of 

GenAI is the Generative Adversarial Networks (GANs), 

introduced by Goodfellow et al. in 2014 [23, 24]. GANs 

have demonstrated effectiveness in various medical 

applications, including medical image analysis [25–28] 

and disease progression modeling [29, 30]. In the 

context of aging research, GenAI techniques like GANs 

have shown promise in several areas. They  

have facilitated the development of biomarkers and  

early geroprotective interventions [31, 32], advanced 

understanding of age-related changes, and improved 

dataset balance for training more accurate predictive 

models. For instance, Campello et al. (2022) used GANs 

to synthesize aged and rejuvenated cardiac images from 

cross-sectional data, modeling realistic age-related 

changes in the heart [33]. Additionally, GenAI has been 

applied to protein function prediction [34] and the 

generation of synthetic biological data for hypothesis 

testing and model validation [35]. Figure 2 (adapted 

from Zhavoronkov et al., 2021, [36]), overviews the use 

of GenAI in various areas of aging research. 

 

While GANs have been instrumental in advancing 

GenAI, recent years have seen the emergence of new 

architectures offering increased stability and quality of 

generated samples. GENTRL (Generative Tensorial 

Reinforcement Learning) combines GANs, 

Reinforcement Learning, and Deep Tensor Neural 

Networks to design novel small molecules with 

specified properties [37]. It was applied to identify 

inhibitors targeting fibrosis, a common consequence of 

the interplay of multiple hallmarks of aging [38, 39], 

exemplifying how GenAI in drug discovery can 

contribute to developing dual-purpose therapeutics for 

aging and diseases. 

 

Transformers, popularized by Vaswani et al. (2017) 

[40], have revolutionized natural language processing 

through their self-attention mechanisms. These models 

 

 
 

Figure 2. A timeline of major milestones in AI applications for aging research from 2014 to 2024. 
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excel in processing sequential data by capturing long-

range dependencies, overcoming limitations of previous 

architectures [41]. While initially developed for 

language tasks, transformers’ versatility has led to their 

adaptation for various GenAI applications, including 

image generation and the creation of synthetic 

biological sequences [42]. 

 

Multimodal transformers, such as Google’s Gato [43] 

and Insilico Medicine’s PreciousGPT models [44, 45], 

allow for generalist multi-tasking. These models are 

trained on various data types to perform multiple tasks 

and go beyond traditional transformer-based synthetic 

data generation.  

 

Built using transformer architecture, LLMs have 

emerged as a significant part of natural language 

processing [46], LLMs use vast sets of textual data to 

learn linguistic patterns, syntax, and semantics enabling 

them to perform a wide range of language-based tasks. 

Retrieval Augmented Generation improves LLMs by 

combining traditional generative capabilities with a 

two-component retrieval mechanism system, fetching 

and integrating relevant documents [47]. It allows 

LLMs to access and incorporate external information in 

real-time, significantly improving response accuracy 

and contextual relevance, making natural language 

processing more reliable. In aging research, LLMs have 

shown potential for analyzing and summarizing vast 

amounts of scientific literature, potentially accelerating 

the discovery of aging-related insights and drug targets 

[48, 49]. Figure 3 demonstrates the timeline of DL and 

GenAI application to aging research. 

 

Recent advancements have integrated transformer-

inspired techniques across diverse domains, including 

protein structure prediction. DeepMind incorporated 

attention mechanisms into their AlphaFold models, 

significantly improving prediction accuracy. AlphaFold 

3 utilizes a diffusion-based architecture and a 

 

 
 

Figure 3. Diverse applications of GenAI across aging research. 
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“pairformer” module to focus on relevant parts of the 

input protein sequence [50]. This approach allows the 

model to capture complex dependencies and spatial 

relationships between distant amino acids, much like 

transformers managing word relationships in sentences, 

predicting the protein’s 3D structure with remarkable 

accuracy. It has significant implications for aging 

research, potentially accelerating the discovery of age-

related protein interactions and therapeutic targets [51]. 

 

Another significant advancement in GenAI is the 

development of Denoising Diffusion Probabilistic 

Models (DDPMs). Introduced by Ho et al. (2020) [52], 

DDPMs have rapidly gained popularity for their 

effectiveness in image generation. These models work 

by gradually denoising a random noise distribution to 

produce high-quality synthetic images, demonstrating a 

novel approach to handling the complexities of image 

synthesis. The integration of DDPMs with transformer-

based architectures enhances their performance, 

enabling more stable and robust generation of synthetic 

data across various domains, including text, images, and 

biological sequences [53].  

 

Diffusion-based regression neural networks are a new 

type of DNN designed to improve regression tasks by 

leveraging diffusion processes [54]. These models 

iteratively transform raw input features into more 

meaningful representations, enhancing predictive 

accuracy. 

 

Recent AI applications in aging biomarker 

studies 
 

DL in biomarker of aging development 

 

Biomarkers of aging are quantitative parameters 

measured in an organism to estimate biological age 

[55]. They may also reflect mortality risk, frailty, and 

other age-associated conditions. There are three 

fundamental categories of biomarkers of aging: 

molecular (multi-omics, or other laboratory parameters), 

physiological (measured by functional performance) and 

digital (obtained through digital devices) [55]. To support 

their development and validation, biomarker consortiums 

have been established in the United States [55] and China 

[56]. These consortiums focus on defining the critical 

attributes biomarkers must possess, such as 

responsiveness to interventions, while also providing 

comprehensive roadmaps to facilitate their translation 

and validation [57].  

 

In 2022, a group at the University of Copenhagen led by 
M. Scheibye-Knudsen published a DL approach to 

establishing a deep biomarker of cellular senescence [58]. 

Their CNN model trained on nuclear morphology high-

content microscopy images achieved up to 95% accuracy 

in detecting senescence. Training the custom CNN 

precursor of the model highlighted the importance of 

feature-neutral approach to enable the neural network to 

detect senescence from diverse image data. Moreover, it 

allowed the researchers to discover age-dependent and 

senescence-related alternations in nuclear morphology 

[58]. Another CNN-based model called Deep-SeSMo 

achieved 93% accuracy in quantitative assessment of 

cellular senescence from cellular morphology images 

[59]. This model was used to identify compounds with 

senolytic properties, yielding four substances with anti-

senescent and anti-inflammatory properties, one of 

which, terreic acid, was not previously documented to 

have senolytic properties. 

 

DL for biomarker of aging analysis: introduction to 

aging clocks 

 

Aging clocks are computational models that leverage 

biomarkers of aging to estimate biological age [60]. The 

development of clinically relevant aging clocks was 

initiated by S. Horvath and Hannum group in 2013 with 

the introduction of ML-based models, which have since 

profoundly advanced aging research [61, 62]. These 

models evolved in 2020ies to integrate multiple 

parameters such as multi-omics data [63], enabling the 

assessment of organ-specific aging [64], as well as the 

risk of age-related diseases [65]. While ML-based aging 

clocks have been instrumental in shaping modern aging 

research, this review will focus on DL-based aging 

clocks, due to their potential to enhance the precision of 

biological age estimation. 

 

Table 1 compiles the list of deep aging clocks (DACs), 

specifying their mean absolute error (MAE) in years and 

type of training data. Figure 4 represents a schematic 

overview of DACs identified in this review, categorized 

by the biological or anatomical regions they assess. 

 

DL in analysis of molecular and physiological 

biomarkers of aging 

 

The first DAC was constructed in 2016 by A. 

Zhavoronkov and colleagues. The model was trained on 

blood biochemistry data of reasonably healthy 

individuals. The clock had the MAE of 5.5 years when 

estimating chronological age over 10 years [66, 67] 

(Table 1). In 2018, Mamoshina et al. constructed a 

hematological DAC, trained on standard laboratory tests 

from 3 different populations, showing the difference 

between their aging rates [68]. Moreover, P. Mamoshina 

and colleagues developed the hematological aging clock 
showing that smokers have a more accelerated aging rate 

than non-smokers [69]. Using the biochemical blood data 

and cell count of non-smokers, the group trained the 
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Table 1. Deep aging clocks based on deep neural networks. 

Year Authors Clock name Accuracy Type of DL 

2016 Zhavoronkov et al. First Deep Aging 

Clock 

MAE = 5.5 based on blood biochemistry 

and sex 

Ensemble of 21 feed 

forward DNNs with 

varying architectures 

2018 Mamoshina et al. Hematological age MAE = 5.55 (entire ensemble) based on 20 

blood biochemistry markers, cell counts, 

and sex (3 studied populations had 

different MAE) 

Feed Forward DNN 

2018 Bobrov et al PhotoAge Clock MAE= 1.9 based on the entire face photos CNN 

2019 Karargyris et al. Chest age MAE unspecified R^2 =0.89 on 

posteroanterior and anteroposterior Xray 

chest images in best validation 

CNN 

2019 Mamoshina et al. Blood Biochemistry 

Clock 

MAE = 5.78 based on 24 features 

including blood biochemistry 

Feed Forward DNN 

2019 Zhavoronkov et al. (Granted 

patent: US2019027289 0) 

Deep Proteomic Age MAE= 6.696 years in whole blood 

samples and 11.46 years for the general 

DNN age predictor 

DNN 

2020 Zhavoronkov et al. (2022) PsychoAge MAE = 6.7 based on psychosocial features Feed forward DNN 

2020 Zhavoronkov et al. (2022) SubAge MAE = 7.3 based on psychosocial features Feed forward DNN 

2020  Galkin et al.  Microbiome Age MAE=5.9 based on microbiome taxonomic 

profiles (types of microbes) 

Feed forward DNN 

2021 Galkin et al. DeepMAge MAE = 3.21 in cross validation based on 

DNA methylation profiles 

Feed forward DNN 

2021 Sayed et al.  iAGE Average reconstruction error for 

chronological age = 15.2 years, trained on 

deep immunophenotyping  

Guided auto-encoder 

(type of DNN) 

2021 Lima et al.  Heart ECG based 

DAC 

MAE=8.38 years based on heart ECG data CNN 

2021 Raghu et al.  CRX-Age MAE undisclosed. C-statistic of 0.751 for all-

cause mortality in PLCO multivariable 

models. 

CNN 

2022 Lee et al. Brain Age clock MAE=3.43 based on PET and 4.20 for 

MRI 

Feed forward CNN 

2022 Nusinovici et al. (2022) RetiAge MAE undisclosed. Spearman’s rank 

correlation coefficient between 

chronological age and RetiAge = 0.62 

CNN (visual geometry 

group) 

2022 de Lima Camillo et al. 

(2022) 

AltumAge MAE= 3.563 based on CpG sites 

methylation from various human tissues 

Feed forward DNN 

2022 Le Goallec et al. (2022) AbdAge MAE =2.94 years trained on liver and 

pancreas MRI scans  

 CNN 

2022 Chang et al. (2022) ECGAge MAE= 6.89 years based on 

electrocardiogram measurements 

DNN 

2022 Libiseller-Egger et al. 

(2022) 

Heart ECG based 

DAC 

MAE =6.1 on 12 signal electrocardiogram 

measurements 

CNN 

2023 Li et al. (2023) LensAge MAE=4.88 Years in diffuse-light mode at 

the image level, trained with the images of 

human lenses  

CNN 

2023 Lahza et al. (2023) Iris color intensity-

based aging clock 

MAE=2.43 years based on eye images 

focused on iris color intensity 

CNN 

2024 Prosz et al. (2024) XaiAge MAE =2.83 years, trained on DNA 

methylation samples 

DNN 
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2024 Zapaishchykova et al., 

(2024) 

AgeDiffuse MAE=1.97 in external validation on five 

specific MRI slices of healthy children and 

adolescents 

Diffusion-based 

regression neural 

networks 

2024 Georgievskaya et al. Hand Age Clock MAE=4.7 years trained on dorsal hand 

images 

CNN 

2024 Siontis et al. Heart ECG and 

MRI based DAC 

MAE= 6.9 based on heart MRI and ECG 

data 

CNN 

 

DNN to establish the smoking status based on blood 

chemistry and biological sex, demonstrating the 

capabilities and interpretability of DNNs for advancing 

aging research. With the global population aging at an 

unprecedented rate, there is a need to extend healthy 

productive life span. This review examines how Deep 

Learning (DL) and Generative further test the 

efficiency, the researchers trained the DNN to establish 

the smoking status based on blood chemistry and 

biological sex, demonstrating the capabilities and 

interpretability of DNNs for advancing aging research. 

 

DNNs can be used to improve epigenetic aging clock 

accuracy. Galkin et al. (2021) published the first deep 

methylation clock [70]. The model performed with MAE 

of 3.21 years in cross-validation. de Lima Camillo et al. 

(2022) constructed a multi-tissue DAC “AltumAge” to 

analyze the non-linear interactions among the CpG sites 

for age prediction [71]. Moreover, this DAC out-

performed ML-based epigenetic aging clocks in terms of 

MAE (3.563 years), mean squared error and Pearson’s 

correlation coefficient. XAI-AGE, a deep epigenetic 

 

clock trained on DNA methylation data, had MAE of 

2.83 years [72]. Compared to ML-based epigenetic 

clocks, XAI-AGE utilizes DNNs along with the 

attribution technique DeepLIFT, which allows for 

comparing and contrasting the importance of CpG sites, 

genes, or biological pathways to biological age 

prediction. 

 

DL in analyzing digital biomarkers of aging: 

domain-specific deep aging clocks 

 

A domain-specific DAC is a predictive tool that focuses 

on estimating biological age based on data from a 

specific organ, system, or modality, rather than 

providing a comprehensive analysis of the entire body. 

The clock is often based on organ or body part-specific 

imaging, as visually represented in Figure 4. The 

performance and training details of these clocks, 

including MAE, are listed in Table 1. Numerous CNN- 

based aging clocks are trained on facial images, 

especially on different parts of the human eye. Lahza et 

al. (2023) trained CNN on eye images and videos, 

 

Figure 4. Anatomical and biological sites assessed by deep aging clocks (DACs) to estimate biological age. The brackets indicate 

the number of DACs reviewed for each category. 
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creating an aging clock based on iris color intensity with 

MAE of 2.43 years [73]. LensAge was developed by 

training CNNs on human eye lens pictures and achieved 

the MAE of 4.88 years at the image level [74]. RetiAge, 

another CNN-based DAC, was trained on retinal scans, 

and correlated well with all-cause, cardiovascular and 

various cancers mortality [75]; accuracy was high (Table 

1), however, MAE was unspecified. In 2018, Bobrov et 

al. used high-resolution pictures of eye corner wrinkles to 

train a DNN called PhotoAgeClock to best predict 

chronological age, with an MAE of 1.9 years, which 

performs better than the CNN-based clocks of the entire 

face [13, 32, 76]. Georgievskaya et al. (2024) also 

developed a full-face aging clock using CNNs, achieving 

a MAE of 4.1 years [77]. Their analysis identified the 

corners of the mouth and the corners of the eyes as the 

most predictive features of age, findings that align with 

the low MAE reported in Bobrov’s PhotoAge model. 

Moreover, Georgievskaya’s team pioneered the first 

hand-based aging clock, leveraging CNNs to analyze 

dorsal hand images, which predicted biological age with 

an MAE of 4.7 years. 

 

Lee et al. (2022) developed 3D-DenseNet models trained 

on feed-forward CNNs to predict brain age in healthy 

individuals [78]. The training dataset included Fluo-

rodeoxyglucose Positron Emission Tomography (FDG 

PET) and Magnetic Resonance Images (MRI) brain scans 

of dementia patients and cognitively unimpaired controls. 

The clock performed with MAE of 3.14 years in 

predicting brain age when trained on FDG PET scans and 

MAE of 3.51 years when trained on MRI scans. 

Moreover, specific DL techniques, such as occlusion, 

were used to assess the clock’s sensitivity to different 

input regions and revealed an age-dependent saliency 

pattern that varied across different types of brain scans. 

 

Cole et al. (2017) created Brain-Age DAC by training 

CNNs on raw gray matter MRI images of healthy 

individuals, achieving MAE of 4.65 years [79]. 

Moreover, the analysis of MRI scans of monozygotic 

and dizygotic twin pairs allowed for the heritability 

assessment of the brain’s chronological and biological 

age.  

 

Another exemplary use of DL to measure brain’s 

chronological is “AgeDiffuse”: a diffusion dual-guidance 

probabilistic regression model assessing the brain age 

from childhood through young adulthood, focused on 

age-related changes in brain volume and structure on 

MRI scans [54]. Although this model is not a DAC, as it 

does not measure biological age and is rather focused on 

development-related than aging-related changes, its 
remarkable performance of MAE of 1.97 years in 

external validation, makes it a promising strategy for 

future DAC construction. Notably, it is the first open-

source, implementable DL-based brain age prediction 

model released to the scientific community. 

 

Heart-based DACs have also been developed. Chang et al. 

(2022) constructed a DAC with attention mechanisms 

based on electrocardiogram (ECG) scans, having the 

MAE of 6.89 years [80]. Lima et al. (2021) also 

constructed a heart ECG clock using CNNs, and indicated 

the positive correlation between the biological age, 

determined by their clock, and mortality risk [81]. 

Libiseller-Egger et al.’s (2022) ECG-based clock showed 

positive correlations between heart age and BMI, smoking 

status and blood-pressure [82]. Moreover, the group 

correlated the difference between the participants 

chronological age and their ECG hear age with genome-

wide association study data finding 8 loci linked to the 

difference between chronological and heart age, 

suggesting that cardiovascular aging is primarily 

influenced by genes specific to the cardiovascular system 

rather than intrinsic aging mechanisms. Siontis et al. 

(2024) compared the heart age determined by CNN 

analysis of heart MRI scans and ECG data, favoring the 

accuracy of MRI-based heat age prediction [83]. Chest X-

ray DAC constructed by Kararygris et al. (2019) offers 

insights into thoracic aging with high accuracy indicated 

by the coefficient of determination (r^2) of 0.89 [84]. 

Raghu et al. ’s (2021) chest X-ray DAC, CRX-Age, 

demonstrated a strong positive correlation with both all-

cause and cardiovascular mortality [85]. An increase in 

CRX-Age was found to be a more robust predictor of 

these mortality risks compared to an equivalent increase 

in chronological age. 

 

Aging rate is different across various tissues in an 

organism [86]. Le Goallec et al., (2022) leveraged this 

information and trained a DAC on liver and pancreatic 

MRI scans developing the first clock for abdominal 

aging rate [87]. This DAC achieved the MEA of 2.94 

years (Table 1). 

 

Notably, aging clocks and DAC can yield more 

scientific data than just the rate of aging. Many of the 

clocks listed in Table 1 have contributed to advancing 

the level of knowledge of the subdomains of aging 

research. “iAGE” clock development contributed to 

establishing CXCL9 chemokine as a major contributor 

to age-related chronic inflammation [88]. Other clocks 

evidenced the relationship between smoking and aging 

rate [69], established the partial heritability of the way 

of abdominal aging [87], or identified dorsal hand areas 

where skin aging is the most pronounced [77]. 

 

DACs impact on aging clocks evolution 

 

DACs have accelerated the development of more 

accurate and versatile aging clocks addressing several 
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key challenges in the field. Firstly, DACs have 

improved the accuracy and reliability of age prediction 

models by leveraging large-scale datasets and complex 

patterns within the data that traditional models could not 

detect [66]. Traditional biomarker discovery methods 

often struggled with high-dimensional data and noise 

[89]; DACs have overcome these issues through 

advanced feature extraction and noise reduction 

techniques inherent in deep learning algorithms [66]. 

However, DACs are not entirely free from these issues, 

as discussed in the “limitations” section. 

 

Another significant advantage of DACs is their 

efficiency. Traditional methods often required labor-

intensive and time-consuming steps, such as manual 

feature selection and validation [90]. In contrast, DACs 

employ end-to-end learning, which automates the entire 

process from raw data input to final prediction, 

including feature selection and model training. This 

approach reduces the time required for biomarker 

discovery [19, 91].  

 

DACs have facilitated the integration of multi-omics 

data, including genomics, transcriptomics, proteomics, 

and metabolomics, providing a comprehensive view of 

the aging process that was previously unattainable [69, 

92]. This multi-omics approach has led to the 

identification of biomarkers that are robust and 

reflective of biological age across different biological 

systems. Moreover, DACs have enabled the discovery 

of biomarkers that are not only predictive of chrono-

logical age but also associated with age-related diseases 

and functional decline [19, 88, 93, 94]. This has opened 

new avenues for early diagnosis and personalized 

interventions in age-related conditions.  

 

Transformer models for aging research 

 

In aging research, transformer models serve as 

generalized computational frameworks that emulate the 

behavior of biological systems across multiple contexts. 

Prior to addressing the topic, it is essential to clarify that 

this field is still in its early stages of development. 

Notably, three of the four referenced transformer 

models are available as preprints and, as of November 

2024, have not been subjected to formal peer review.  

 

Transformers, unlike traditional aging clocks developed 

using specific biomarkers for measuring a focused 

parameter of aging, can synthesize information from 

diverse tissues, species, and experimental conditions, 

incorporating multiple omics layers to enable complex 

simulations of biological processes and predict potential 
aging interventions (preprint, [45]). Built upon 

transformer-based architectures, these models utilize DL 

techniques, such as LLMs and diffusion models [95].  

The first transformer model for drug and biomarker 

discovery and aging research, Precious3GPT (P3GPT), 

was developed by Galkin et al., (2024; preprint [45]). 

P3GPT is a multimodal, multi-omics, multi-species 

transformer leveraging Retrieval-Augmented Generation 

to maintain the most up-to-date integration of peer-

reviewed literature. The model is conversational, 

allowing users to customize queries based on 

parameters such as species, cell type, pathway, gene, 

tissue, or gender of interest. The prompted model 

generates outputs, including lists of compounds with 

desired properties, up- and down-regulated genes, and 

other relevant information tailored to the specific 

inquiry. It is also capable of generating novel 

hypotheses. Furthermore, P3GPT can produce 3D 

molecular maps of identified compounds—ranging 

from approved drugs and traditional medicine extracts 

to novel molecules—and refine searches to highlight 

structurally similar compounds, facilitating novel 

compound discovery. In a final in vitro validation, 

P3GPT proposed 22 compounds for evaluation in a 

cellular senescence model, eight of which—including 

maslinic acid, estradiol cypionate, and dapsone—

exhibited senomorphic effects without cytotoxicity. 

 

In 2024, two foundational transformer models 

constructed to analyze complex DNA methylation 

patterns were published within 6 days from each other: 

MethylGPT by Ying et al. (2024, [96]; preprint) and 

CpGPT by de Lima Camillo et al., (2024, [97]; 

preprint). The key difference between MethylGPT and 

CpGPT lies in their focus and versatility. MethylGPT 

is tailored toward achieving high accuracy in specific 

tasks like age prediction and disease risk assessment, 

excelling in tissue-specific methylation analysis and 

resilience to missing data ([96]; preprint). Its strength 

lies in contextual CpG embeddings, and a robust 

transformer-based framework designed for aging-

related research. Conversely, CpGPT is designed as a 

more versatile tool for multi-purpose epigenetic tasks, 

including zero-shot imputation, array conversion, and 

multi-species analysis (2024; [97] preprint). CpGPT 

integrates sequence, positional, and epigenetic 

contexts through a more adaptable transformer++ 

architecture, making it highly generalizable across 

different platforms and biological conditions. This 

versatility allows CpGPT to address a broader range of 

applications compared to MethylGPT’s task-specific 

focus. 

 

Application of transformer models could lead to more 

efficient aging therapeutic development processes, 

potentially reducing the time and cost associated with 
bringing new treatments to market. For example, they 

can be used to identify new clusters of senolytics, 

repurpose existing drugs for aging-related conditions or 
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identify dual-purpose targets. A transformer called 

BioGPT, trained on aging-related data, including genes 

co-mentioned with “aging” in PubMed (normalized for 

prevalence), targets of drugs and compounds with anti-

aging properties from various databases, and PubMed 

abstracts focused on age-associated diseases and risk 

factors, was used to identify two novel dual-purpose 

targets: CCR5 (linked to inflammation and AD) and 

PTH (PTH hormone serum levels elevate with age) 

([48, 98, 99]. 

 

AI-driven dual-purpose drug discovery and 

aging-oriented drug repurposing  
 

Several notable companies utilize DL, GenAI, and 

aging research as a platform for drug discovery to target 

age-related diseases and the underlying biological 

mechanisms of aging. Calico, founded in 2012, Insilico 

Medicine, founded in 2014, BioAge Labs, founded in 

2015, all have drugs in human clinical trials [100–102]. 

However, a few biotechnology companies, which are 

focused on aging, developed software accessible to 

others. For example, Insilico Medicine stands out for its 

development of AI-driven platforms, which can be 

licensed to researchers and companies for target 

discovery and molecule design. Academic groups such 

as Huang et al. (2021) [103], academic-enterprise 

partnerships such as Polykovskiy et al. (2020) [104] or 

Rozemberczki et al. (2022) [105] publish their DL 

libraries and benchmarking platforms in the open-

source models. Nevertheless, most for-profit companies 

in this sector focus primarily on developing proprietary 

therapeutics and technologies for their own use. Insilico 

Medicine developed Pharma.AI, a comprehensive tool 

for AI drug discovery, allowing for novel target 

discovery (PandaOmics), target-specific small molecule 

generation (Chemistry42), as well as designing clinical 

trials (inClinico) [106].  

 

AI in drug repurposing for age-related diseases and 

the underlying aging process 

 

The biochemical bases of aging and many diseases are 

highly interconnected; addressing them together could be 

more effective than treating them separately [107]. AI 

has allowed great acceleration in finding dual-purpose 

targets for aging and diseases and generating target-

specific small molecules. Aging, while a natural 

physiological process mediated by numerous biological 

and genetic pathways, has not been formally recognized 

as a disease, so it cannot be treated as such under current 

medical standards. However, drugs like Metformin and 

Rapamycin, initially developed for other medical 
conditions, extend lifespan in animal models, positioning 

them as potential dual-purpose drugs targeting both aging 

and disease [108]. DL is heavily used to search for drugs 

to be repurposed for aging research [109]. Liu et al. 

(2021) created a DL-based drug repurposing framework, 

following randomized controlled trial design [110]. To 

investigate whether a drug influences a disease, 

researchers use real-world data, analyzing treatment 

timelines and patient outcomes. Temporal patterns, such 

as the duration of the drug use and the timing of 

diagnosis, are modeled using Long Short Term Memory 

(LSTM) networks, which excel at handling temporal 

dependencies and improve network’s learning 

capabilities by selectively remembering or forgetting 

information [111]. Confounding factors like age and 

comorbidities are adjusted with inverse probability of 

treatment weighting, leading to the estimation of 

potential efficiency, including only statistically 

significant results. This framework was applied in a study 

aiming to repurpose drugs for Alzheimer’s disease (AD) 

[112], however, it did not perform significantly better 

than the ML repurposing model, on ensuring that 

baseline factors are similar between groups in the 

simulated trials. Muniyappan et al. (2024) developed a 

DL framework called “DRADTiP” (Drug Repurposing 

for Aging through a Drug-Target Interaction Prediction) 

with an objective to finding human lifespan-prolonging 

compounds based on genetic and pathway data [113]. 

Their model achieved higher precision scores than Liu et 

al.’s (2021) framework. Huang et al. (2024) constructed a 

zero-shot drug repurposing foundation model called 

“TxGNN” based on graph neural networks [114]. This 

model can predict potential drug repurposing candidates 

without requiring prior specific training data on the exact 

disease-drug combination being evaluated, by identifying 

biochemical pathways, phenotypes and pathologies 

related to the disease in the prompt. In the context of 

aging research, Progeria syndrome, a rare genetic 

disorder characterized by accelerated aging and caused 

by mutations in the LMNA gene, could serve as a prompt 

for the model to identify drugs targeting pathways 

associated with the disease. These pathways may also 

provide insights into the fundamental mechanisms of 

aging, as Progeria shares key biological features with 

normal aging processes, such as nuclear instability, 

cellular senescence, and DNA damage [115]. 

 

AI for discovering aging-related targets 

 

AI application led to the discovery of multiple dual-

purpose targets for aging and disease. Pun et al. (2023) 

screened 16 740 healthy samples and 19 334 protein-

encoding genes yielding 51 known and 23 novel dual-

purpose targets for aging and various types of cancer 

[116]. Among them, the researchers emphasized the 

therapeutic potential of targeting KDM1A gene, an 
essential regulator of autophagy in humans and life 

extension in C. elegans after knockdown.  Other 

AI-discovered dual-purpose targets include CNGA3, 
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GLUD1, and SIRT1 for aging and glioblastoma 

multiforme, and APLNR and IL23R for aging and 

multiple age-related diseases [44, 117]. Moreover, Pun 

et al. (2022) discovered 28 targets for Amyotrophic 

lateral sclerosis, which is an age-related disease [118]. 

Novel targets for AD were found using DL and a 

computational tool that predicts the propensity of 

protein regions to undergo liquid-liquid phase 

separation [119]. 

 

AI for small molecule generation for aging-related 

targets 

 

GenAI techniques such as autoencoders, GANs, flow-

based approaches, evolutionary algorithms, or LLMs 

are used to generate novel small molecules with target-

specific properties [106]. The main molecular 

representations are string-based, graph-based, and 3D-

based. By the very nature of generative models, the 

algorithm learns and improves the molecule design until 

it reaches the most desirable form [120]. An AI 

generated small molecule against an AI-discovered 

target for idiopathic pulmonary fibrosis, an age-related 

lung disease, recently completed the phase 2a clinical 

trial [121]. The drug (INS018_055) showed anti-

inflammatory and anti-fibrotic effects in multiple in 

vivo and in vitro experiments, as well as almost 100 ml 

improvement in forced vital capacity compared to 

placebo [102, 122]. Moreover, in the hallmarks of aging 

assessment, INS018_055 scored highly against six 

hallmarks of aging, including stem cell exhaustion, 

altered intracellular communication, and extracellular 

matrix stiffness making it a potential dual-purpose drug 

candidate [122]. 

 

AI in clinical trial improvement: accelerating 

bringing the longevity therapeutics to the market 

 

All the AI-generated therapeutics must undergo the 

same clinical validation as conventionally developed 

ones. Regardless of the development method, getting a 

drug to clinical trials is expensive, and is a significant 

backlash to longevity biotechnology companies, if the 

program fails. AI can help design, fine-tune, and assess 

the probability of success in clinical trials by e.g. 

identifying eligible participants through electronic 

health records or using GenAI to convert protocols into 

detailed procedures [123, 124]. One of the models uses 

a multimodal approach in ML to integrate a variety of 

data, including multi-omics data, drug structure, 

preclinical data, as well as related publications, grants, 

patents, and trial protocols, reaching 79% accuracy in 

the trial outcome prediction [125]. If a company 
strategically limits investment in potentially ineffective 

clinical trials by prioritizing compounds with a 

relatively high probability of success based on model 

predictions, it can reallocate resources to optimize these 

compounds or develop new ones, thereby potentially 

accelerating the timeline for delivering effective 

treatments to market. Since multiple gerotherapeutics 

are in clinical trials as of 2024 [126], there is an 

opportunity for applying AI to increase efficiency of 

clinical data analysis and preparation of future trails, 

potentially indicating faster approvals, if the compounds 

prove effective.  

 

AI in geroprotector discovery 

 

Geroprotectors are compounds that aim to slow down 

the aging process or protect against age-related decline 

[127]. Using computational analysis of gene expression 

data can significantly accelerate their development 

compared to direct biochemical or physiological 

experiments [128]. In 2016, Aliper et al. developed 

GeroScope, a method utilizing DNNs and signaling 

pathway scores, to identify potential geroprotectors 

[129]. The system identified compounds that mimic 

youthful expression patterns within aging-related 

pathways by analyzing gene expression profiles from 

young and old subjects. The compounds shortlisted by 

the algorithm were validated in vitro using senescent 

human fibroblast cultures. Compounds such as PD-

98059, a MEK1 inhibitor, were shown to act as 

geroprotectors and rejuvenating agents [129]. In 2017, 

Aliper et al. trained a DNN with transcriptome response 

data using gene expression profiles and signaling 

pathway scores to efficiently screen a vast number of 

natural compounds for natural alternatives to Metformin 

and Rapamycin [128]. The algorithm yielded 871 

natural compounds, 2 of which, geldanamycin and 

withaferin A, were proposed to best mimic Metformin 

and Rapamycin's anti-aging and anti-cancer effects 

without their adverse effects.  

 

Wong et al. (2023) constructed a graph neural network to 

discover small molecule senolytics [130]. The group 

screened drugs approved by US Food and Drug 

Administration, as well as senolytic drugs in clinical trials, 

and experimentally validated the drugs that the network 

output as having senolytic properties. They later 

constructed another DNN predicting senolytic activity 

from a compound’s chemical structure and validated it on 

the Broad Institute Library of compounds, eventually 

yielding 3 compounds with senolytic properties. The 

authors tested one of the compounds in mice, revealing 

that it decreased senescent cell burden and senescence-

associated mi-RNA expression. 

 

While AI has shown promise in identifying potential 
geroprotectors, it also plays a crucial role in addressing 

challenges associated with drug interactions. 
Community-dwelling adults are increasingly exposed to 
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polypharmacy, defined as the regular intake of five or 

more medications, which often leads to cross-reactions 

that can reduce drug effectiveness or amplify adverse 

effects [131]. In the longevity community, the 

widespread popularity of supplements raises similar 

concerns, as their excessive or unregulated use can lead 

to cross-reactions and cumulative toxicities. Decagon is 

a tool that uses graph convolutional neural networks to 

analyze multimodal graphs, integrating protein-protein 

and drug-protein interactions [132]. It predicts the 

occurrence of a side effect from a drug combination and 

identifies the specific type of side effect. 

 

As the number of identified geroprotectors continued to 

grow, the need for a comprehensive database became 

increasingly evident. In 2015, the first geroprotector 

database “geroprotectors.org” was established, featuring 

250 experiments covering over 200 known or candidate 

geroprotectors [133]. In March 2024, this database 

contained 2408 references for geroprotective compounds. 

DrugAge is a manually curated database of gero-

protectors that as of March 2024, contained 2296 

lifespan-elongating assays in 1097 distinct drugs in 37 

distinct species [134].  

 

AI-enabled healthy longevity medicine 
 

Healthy longevity medicine is a multidisciplinary 

discipline that aims to optimize health and extend 

healthspan through targeting the underlying causes as 

well as early sign of aging process [135]. The field is 

extensively health data-driven, creating an opportunity 

for applying AI to improve measurement accuracy, as 

well as facilitate the interpretation of results [36]. 

Moreover, such data gathering will further facilitate AI-

based aging research, which heavily relies on 

longitudinal biochemical data availability [107, 136]. 

 

AI in disease diagnosis 

 

Along with prevention, early diagnosis of age-related 

diseases such as cardiovascular disease, type 2 diabetes 

mellitus and age-related functional decline is central to 

healthy longevity medicine. AI has enabled 

unprecedented precision in analyzing clinical data related 

to these conditions, increasing the diagnostic accuracy, 

defined as the correctness of diagnosis [137, 138]. 

 

By the time of writing this review, there are no drugs 

that cure AD, but there are some that delay the 

symptoms and improve patients’ life quality [139]. 

However, early diagnosis is necessary for these drugs to 

be effective. A systematic review by Arya et al. (2023) 

demonstrated that diagnostic methods for AD based on 

CNNs can achieve a diagnostic accuracy of 98.6% 

[138]. In comparison, RNN allows for 91.2% accuracy, 

marking a significant improvement from 85.71% 

achieved with ML standard vector machine classifiers. 

An algorithm combining CNN and RNN for 

longitudinal and spatial data analysis from MRI scans in 

DL-based AD diagnosis achieved 91.3% diagnostic 

accuracy [140]. Qiao et al. (2018) created an automatic 

AD diagnostic tool by utilizing Directed Acyclic Graph 

neural network [141]. The group trained the tool on 

fMRI images via multivariate data-driven feature 

extraction and achieved 95.59% accuracy. These 

examples show that DL allows for accurate and early 

diagnosis of AD, facilitating timely interventions. 

However, disease severity assessment is also important 

in designing the best action plan for the patient. 

A DL tool based on resting-state fMRI data and a 

Three-Dimensional CNN achieved an accuracy of 

92.3% in assessing AD’s severity [142]. 

 

Beyond AD, AI has shown promise in diagnosing and 

assessing various other age-related conditions. Changes 

in the gut microbiome are a proposed biomarker of 

aging serving as a base for building aging clocks and 

diagnostic tools for risk factors such as obesity or 

cardiovascular diseases [143–145].  

 

In the field of cardiology, Hannun et al. (2019) trained 

CNNs to process raw, single-lead electrocardiogram 

signals to extract meaningful features, enabling the 

model to learn and recognize complex patterns 

associated with different cardiac conditions, yielding 12 

distinct cardiac arrhythmias [146]. This DL model was 

evaluated against the consensus of expert cardiologist 

diagnoses. It achieved high Area Under the Curve 

scores for all rhythm classes, showcasing its ability to 

accurately distinguish between various cardiac 

abnormalities. 

 

AI in genetic risk prediction for healthy longevity 

medicine interventions 

 

Healthy longevity medicine emphasizes not only the 

early diagnosis of diseases but also the comprehensive 

assessment and proactive mitigation of associated risks. 
DeepPRS is a DL tool used to assess individuals’ 

polygenic risk scores of AD, inflammatory bowel 

disease, type 2 diabetes mellitus, and breast cancer with 

genome-wide genotype data [147]. The study 

demonstrates the effectiveness of AI in enhancing 

genetic risk prediction models, showing that DeepPRS 

can identify individuals at higher risk for these diseases 

based on genotype information available at birth. Such 

tools aid longevity physicians in making informed 

clinical decisions.  
 

Beyond analyzing existing genetic data, researchers are 

developing novel methods to represent genetic 

262



www.aging-us.com 13 AGING 

information in ways that are more amenable to AI 

analysis. In 2024, gene vectorization, inspired by the 

word2vec model from natural language processing was 

applied to transform genes into numerical vectors [148]. 

By embedding genes within a high-dimensional space, 

where the position of each gene vector represents its 

biological functions, as identified in databases like Gene 

Ontology and ARCHS4, these gene vectors, known as 

FRoGS (Functional Representation of Genes in Space), 

incorporate both known and empirical gene functions, 

enabling a comprehensive representation of each gene’s 

role in various biological processes. By starting with 

pre-trained gene functional embeddings, the researchers 

can fine-tune their models on smaller datasets specific 

to aging, enhancing model performance and reducing 

the need for extensive new data. 

 

AI in continuous health monitoring: application to 

healthy longevity medicine 

 

Healthy longevity medicine is heavily dependent on 

monitoring data about a patient’s health. The 

comprehensive set of data gathered from all diagnostic 

tests is the base for longevity physicians to prescribe 

longevity interventions, informs them about the success 

of interventions, and can be used to train AI models, 

which can be further used to advance aging research 

[136]. Continuous health data monitoring often involves 

sequential data that benefits from both spatial and 

temporal analysis. The hybrid approach combining 

CNN and LSTM allows the models to achieve high 

accuracy of 94.71% in blood glucose monitoring [149] 

and the sleep-wake detection superior performance to 

traditional models [150].  

 

While continuous monitoring provides real-time data on 

an individual’s health, researchers are also exploring 

ways to simulate and predict health outcomes using 

advanced AI models. This has led to the development of 

digital twins in healthcare: virtual models that replicate 

the physical and biological processes of the human 

body developed using ML [151]. These models allow 

researchers and clinicians to simulate and analyze the 

effects of interventions, lifestyle changes, or drug 

treatments on an individual’s aging process without 

direct experimentation. Unlearn.AI is developing digital 

twin models for AD [152]. PreComb developed a 

3DTwin® Digital platform: an ML-based data analysis 

tool that uses data mining techniques for testing the 

patient-specific effectiveness of targeted cancer 

therapies, even without target identification [153].  

 

AI for lifespan psychology research 
 

Generative and predictive AI systems can be trained on 

behavioral data to assist with psychological aging 

research. Socioemotional selectivity theory states that 

the longer people estimate to be alive, the more they 

prioritize activities with long-term benefits, such as 

gaining knowledge or expanding their social network 

[154]. Consequently, when they feel that they will die 

relatively soon, they choose immediately emotionally 

gratifying activities. This follows long-term oriented 

lifestyle choices, which in turn improve healthspan 

expectations [155]. Mental and physical health are 

highly interdependent, which suggests the same for 

biological and psychological age. 

 

Recent studies have begun to explore these connections 

between psychological factors and biological aging using 

AI-driven approaches. In 2022, a study published by A. 

Zhavoronkov’s group showed the correlation between 

subjective well-being and biological age as estimated by 

a feed-forward DNN predictor [156]. Psychological 

factors commonly seen as “negative,” such as loneliness, 

anxiety, or lack of focus, cumulatively increased the 

biological age (calculated by blood biomarker analysis) 

by 1.65 years. Further analysis demonstrated the most 

important features implicated in both biological and 

psychological age; “being married” seems to be 

associated with a slower pace of aging compared to non-

married individuals. In this study, “living in rural areas” 

and “rarely feeling happy” seem to accelerate the 

biological age the most [156]. 

 

Limitations and challenges of using AI in aging 

research 
 

Although AI has shown great potential in advancing 

aging research and healthy longevity medicine, 

addressing several key limitations is essential for its 

ethical and effective application. Aging clocks often 

exhibit inherent error rates and biases. For example, 

older individuals may be predicted as younger or vice 

versa, depending on cohort characteristics, as some 

predictions are statistically driven rather than purely 

biologically informed [75].  

 

Othmani et al. (2020) highlighted limitations in CNN-

based frameworks for automatic age estimation from 

facial images, showing that variations in facial 

expressions, lighting, and occlusions can adversely affect 

accuracy [157]. Additionally, underrepresented ethnic 

groups, particularly Black individuals, experience 

reduced performance due to a lack of generalization; 

increasing training dataset diversity could mitigate this 

issue. These biases highlight the importance of ensuring 

diverse and representative datasets for robust AI models. 

Several studies found that ML algorithms estimated the 
chronological age of full-face photos of older adults and 

females less accurately than the photos of younger and 

male faces respectively [158, 159]. Ganel et al. (2023) 
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argue that such age misestimation may result from a 

stronger regression to the mean effect, where estimates 

tend to shift toward the average age of the training data 

[158]. Moreover, they partially attribute the age 

misestimation to the lack of photos of individuals over 70 

in the sample, which points at the importance of diverse 

training data while constructing CNN based aging clocks. 

Georgievskaya et al. (2023) analyzed the sources of AI 

bias and categorized such underrepresentation of a 

specific parameter in the data as negative set bias [160]. 

The lack of variety in data can be addressed via GANs or 

other GenAI techniques able to create synthetic data. 

Confounding bias is equally important to consider while 

constructing aging clocks. It occurs when additional 

factors distort the relationship between the primary 

variable and the outcome, leading to inaccurate results 

[160]. In AI models applied to aging, this might happen 

when using skin elasticity to estimate biological age but 

failing to account for lifestyle factors like smoking, 

which also affect skin elasticity. Without including 

smoking data, the model may incorrectly attribute 

changes in skin elasticity solely to aging, resulting in 

biased and misleading predictions. Regarding the CNN 

clocks using full face images, the quality of the photo and 

its attributes such as brightness or occlusion is especially 

important to the accuracy of age prediction [160]. 

 

AI applications in biomedicine, face challenges related to 

the interpretability and transparency of predictions [161, 

162]. The “lethal prejudice” occurs in situations where 

biases embedded in AI systems lead to life-threatening 

consequences or disproportionately harm certain groups 

[163], such as mentioned before inaccurate prediction of 

biological age for older adults in certain ethnic groups 

due to underrepresentation in training datasets. Haibe-

Kains et al. (2020) caution against prioritizing accuracy 

of the models over their interpretability in medical 

applications, arguing that in the current medical system, 

human physicians have the final saying in decision 

making; over-reliance on “blackbox”, unexplainable AI 

may lead to doctors not analyzing the patient’s situation 

carefully enough, potentially leading to harm [161]. 

Moreover, such cases introduce the challenge of 

distribution moral and legal responsibility for the harm. 

 

Explainability can be mitigated by employing a second 

AI model, which would explain the actions of the first 

[14]. However, Haibe-Kains et al. (2020) argument that 

this introduces another level of complexity and relies on 

incomplete information extraction [161].  

 

The creation of digital twins, which require extensive, 

high-quality datasets, is similarly hampered by 
disparities in data availability across populations. 

Ethical issues related to digital twins in medicine are 

centered on the control of data. Although digital twins 

still remain at the organ level, the debate arises whether 

the company creating the twin should have rights to 

manipulate it without the knowledge of the “template” 

human [164, 165]. 

 

While AI can accelerate the discovery of therapeutic 

targets and compounds, the generated compounds, just 

like conventionally developed therapeutics, must be 

validated through experimental methods and clinical 

trials to ensure safety and efficacy. 

 

Creating advanced DL and GenAI architectures is an 

expensive endeavor due to their high computational 

demands. Training these models often requires significant 

investments in infrastructure, power, and computational 

resources. Although the cost of graphic processing units 

(often used for DNN training on massive data sets, such 

as multi-omic DACs), has declined substantially in recent 

years [166], the overall expenses in creating robust AI 

models may remain prohibitive in resource-constrained 

environment, necessitating the researchers to trade cost 

for time-efficiency (preprint, [167].  

 

Future considerations 
 

Recent attention in biopharma and aging research has 

increasingly focused on the potential future applications 

of Quantum Computing (QC). While practical 

implementation remains many years away [168], the 

eventual arrival of QC could significantly enhance AI 

capabilities by expediting the training process and 

enabling algorithms to predict more complex functions 

due to increased expressiveness [169]. QC is based on 

quantum bits (qubits) that exist in many states 

simultaneously (superposition), possibly allowing 

multiple computational paths to run simultaneously. For 

aging research, this could mean faster analysis of 

biological data, quicker identification of aging 

biomarkers, and accelerated drug discovery processes. 

This could be particularly valuable in personalized 

medicine and understanding individual aging processes.  

 

In February 2024, the first quantum-classical algorithm 

developed experimental hit for a small molecule drug 

targeting KRAS was developed [170]. Three million 

samples (one for classical samples via LSTM, one for 

16 qubit quantum samples, and one for simulated 

samples) were analyzed, yielding 15 novel compounds. 

Two of the compounds were validated as viable 

complex drug targets. 

 

Aging research involves numerous optimization 

problems, such as molecular structure prediction, 

identification of optimal therapeutic targets, and 

optimization of intervention strategies. Quantum 

algorithms, like the Quantum Approximate Optimization 
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Algorithm, can navigate these complex optimization 

landscapes more effectively, potentially identifying 

solutions that classical algorithms might miss or take 

significantly longer to discover [171]. 

 

Another promising future direction, already beginning 

to see application, is the development of autonomous AI 

agents. These systems combine chat-optimized LLM 

and ML algorithms to autonomously generate 

biomedical discoveries [172]. A group at Harvard 

University, led by M. Zitnik, has described “level 3 

autonomous agents” capable of contextualizing, rather 

than merely identifying, biomedical discoveries. At this 

level, human scientists’ role is primarily to set the initial 

hypothesis, which the agent then verifies by proposing 

and executing appropriate experiments. Recent studies 

exemplify progress towards this level of automation. 

For instance, researchers at Massachusetts Institute of 

Technology have developed a conversational, multi-

agent system for autonomous protein design, which 

demonstrates the ability to comprehend complex tasks, 

identify potential weaknesses, and develop strategies to 

address these issues, ultimately improving the generated 

outcomes [173]. 

 

Two companies, Insilico Medicine and Sakana AI, 

announced that they managed to genuinely invent in the 

automated way using multi-agent systems. Sakana AI’s 

“AI Scientist” and Insilico’s P3GPT, described in the 

“Transformers for Aging Research” section both aim to 

automate aspects of scientific research, but they differ 

significantly in their design and application scope. 

Sakana’s AI Scientist is built for end-to-end automation 

of the research process, covering idea generation, 

experiment planning, execution, result analysis, and 

even manuscript writing and peer review [174]. It is 

designed to autonomously run multiple iterations of 

research, using previous outputs to improve future 

experiments, enabling a continuous cycle of scientific 

discovery. However, its current application is primarily 

in AI-related fields and has limitations in handling 

multimodal data and visual processing, making it prone 

to logical and numerical errors.  

 

In contrast P3GPT, while also leveraging AI for 

automation, is more specialized for biomedical research. 

The core of the approach involved integrating P3GPT 

into an autonomous system of specialized agents, each 

dedicated to specific components of the research 

workflow, such as hypothesis generation, multi-omics 

data integration, and compound screening (preprint, [45]).  
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