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INTRODUCTION 
 

Poor ovarian response (POR), also termed as 

diminished ovarian reserve (DOR), delineates a clinical 

scenario where decreased quantity of oocytes that 

remain in the ovary result in suboptimal response to 

ovarian stimulation in women undergoing infertility 

treatment with in vitro fertilization (IVF) [1]. While the 

perfect definition of POR/DOR remains to be agreed 

upon, these patients account for an increasingly large 

portion of IVF cycles and suffer from significantly 

worse outcomes [2]. Indeed, patients diagnosed with 

DOR account for approximately 1/4 of cycles in women 

undergoing IVF in the United States, and experience a 

lower (21% vs. 36%) cumulative live birth rate per 

retrieval cycle initiated compared to all other patients 

[3, 4]. A more restrictive approach to diagnose POR has 

been proposed as the ESHRE Bologna Criteria, which 
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ABSTRACT 
 

Intraovarian injection of autologous platelet-rich plasma (PRP) has recently been investigated as a potential 
treatment for patients with diminished ovarian reserve. In the current study, differential gene expression in 
cumulus cells obtained from patients treated with PRP was compared to controls. RNA sequencing libraries 
were constructed from the cumulus cells, and differential expression analysis was performed with a false 
discovery rate threshold of p-value ≤0.05 and Log2 fold change ≥0.584. RNA sequencing of cumulus cells 
revealed significant differences in gene expression when comparing those treated with PRP and resulted in a 
live birth (n = 5) to controls with live birth (n = 5), or to controls with failed implantation (n = 5). Similarly, when 
all samples treated with PRP (those that resulted in live birth or arrested embryos (n = 10)) were compared to 
all samples from controls (those that resulted in live birth, no pregnancy, or arrested embryos (n = 13)), gene 
expression was significantly different. Several pathways were consistently affected by PRP treatment through 
multiple comparisons, including carbohydrate metabolism, cell death and survival, cell growth and 
proliferation, and cell-to-cell signaling, all of which have been implicated in human causes of infertility. 

www.aging-us.com AGING 2025, Vol. 17, No. 2

431

https://www.aging-us.com


www.aging-us.com 2 AGING 

requires a patient to meet two out of three of the 

following conditions: age ≥40 years or any other risk 

factor for POR; an abnormal ovarian reserve test (AMH 

<0.5–1.1 ng/mL or AFC of 5–7); and a prior cycle with 

≤3 oocytes retrieved [5]. Another commonly used 

definition for POR is based on POSEIDON criteria, 

which includes patient age, ovarian reserve parameters 

and prior response to stimulation [6]. In 2011, 15% of 

IVF cycles performed in the United States met Bologna 

Criteria for POR, and these cycles achieved a live birth 

rate per cycle start of 4% and a cumulative live birth 

rate of only 17% [3]. As there is a proven association 

between the number of oocytes retrieved and 

cumulative live birth rate, a number of experimental 

treatment strategies have been used to try to increase the 

oocyte yield in these patients to maximize their chances 

of success [7]. 

 

Platelet-rich plasma (PRP) is a concentrated form of 

plasma obtained by the centrifugation of whole blood to 

remove red blood cells, creating a concentrated sample 

of platelets [8, 9]. PRP is thought to enhance healing 

due to its increased concentration of growth factors, 

chemokines, and cytokines. The mechanisms by which 

these factors influence cellular behavior have not  

yet been fully characterized; however, proposed 

mechanisms include induction of neoangiogenesis, 

promotion of cellular migration, cell proliferation and 

tissue remodeling, and reduction of apoptosis [9, 10]. 

 

Injection of autologous PRP as a therapeutic 

intervention has been used in diverse fields including 

plastic surgery, dermatology, dentistry, wound healing, 

orthopedic surgery, and cardiothoracic surgery [8]. 

Cohort studies have also been performed within the 

reproductive medicine space using PRP for endometrial 

hypoproliferation [11, 12], recurrent implantation 

failure [11, 13], as well as poor ovarian response (POR) 

and primary ovarian insufficiency (POI) [9, 10, 14–19]. 

 

In most studies evaluating the impact of PRP on POR 

and POI, ovarian reserve parameters, serum follicle 

stimulating hormone (FSH), anti-mullerian hormone 

(AMH), and antral follicle count (AFC) were evaluated 

in the pre- and post-treatment cycles to determine the 

effects of PRP [8, 9, 14, 15, 18, 19]. These series have 

shown a variable decrease in FSH and an increase in 

AMH and AFC, some of which were statistically 

significant [10, 18, 19]. Similarly, ovarian injection of 

PRP in women with POR and POI was associated with 

an increased number of oocytes and embryos [10, 18, 

19], and improved embryo euploidy rates were observed 

in a pilot study [20]. Most recently, two recent 
randomized clinical trials (RCTs) investigating the 

efficacy of autologous intraovarian PRP injection in 

patients with POR failed to demonstrate an increase in 

pregnancy or live birth rates, while they reported an 

improvement in ovarian reserve parameters [21], or the 

number of oocytes retrieved [22]. The latter trial was 

criticized in regards to storage of PRP prior to use, and 

intramedullary instead of (sub) cortical injection, as 

well as for being underpowered [23]. Besides, none of 

these studies investigated the ovarian molecular 

pathways that may be affected by PRP treatment.  

 

This study aimed to determine how PRP affects 

follicular environment by identifying genes that are 

differentially expressed in cumulus cells of POR 

patients treated with PRP. Our findings indicate that 

PRP treatment regulates certain pathways that could 

contribute to follicular activation and oocyte 

maturation. Our ultimate aim is to identify specific 

factors that can be selectively used for follicular 

activation in vivo or in vitro. 

 

RESULTS 
 

Study population 

 

Cumulus cell samples were classified based on the 

treatment received by the patient (PRP vs. no PRP) and 

the outcome of the embryo (live birth after single 

euploid embryo transfer, no pregnancy after single 

euploid embryo transfer, or embryonic arrest in culture 

at blastocyst stage). 

 

Group one consisted of cumulus cell samples from 

oocytes that resulted in a euploid embryo and live birth 

upon transfer in patients who were in the control group, 

and therefore did not receive PRP treatment (C-LB; n = 

5). Group two consisted of cumulus cell samples from 

oocytes that resulted in a euploid embryo and livebirth 

upon transfer in patients who received PRP treatment 

(PRP-LB, n = 5). Group three consisted of cumulus cell 

samples from oocytes that resulted in a euploid embryo, 

which failed implantation upon transfer in patients who 

did not receive PRP treatment (C-NP, n = 3). Group 

four consisted of cumulus cell samples from oocytes 

that resulted in embryos arrested after reaching the 

blastocyst stage in control patients who did not receive 

PRP (C-ARR, n = 5). Group five consisted of cumulus 

cell samples from oocytes that resulted in embryos 

arrested after reaching the blastocyst stage in patients 

treated with PRP (PRP-ARR, n-5). Embryos in group 

four and five were not suitable for trophoectoderm 

biopsy/PGT-A and cryopreservation for future use. 

There were 23 cumulus cell samples analyzed by RNA 

sequencing from 18 different patients. 

 

The baseline at the time of randomization and IVF cycle 

characteristics of the patients associated with the 

evaluated cumulus cells are presented in Table 1. 
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Table 1. Patient characteristics. 

 PRP (7) No PRP (12) P-value 

Age (y) mean Std dev (95% CI) 32.2 4.5 (28.0–36.3) 34.3 1.9 (33.1–35.5) 0.27 

BMI (kg/m2) 22.7 3.4 (19.6–25.8) 23.9 3.4 (20.9–27.0) 0.51 

TMC (in Millions) 123.6 162 (0–273) 89.3 62.6 (49.5–129) 0.61 

AMH (ng/mL) 1.327 0.5 (0.8–1.8) 0.9 0.6 (0.6–1.3) 0.13 

FSH (mIU/mL) 8.5 2.3 (6.4–10.7) 8.5 2.7 (6.7–10.2) 0.96 

AFC 9.1 4.3 (5.2–13.1) 7.5 3.0 (5.6–9.4) 0.40 

Total FSH medication used 2458 908 (1505–3411) 3458 1175 (2617–4298) 0.08 

Max E2 (pg/mL) 2973 2620 (550–5396) 1832 740 (1362–2302) 0.30 

MII 5.7 3.7 (2.3–9.2) 4.8 2.3 (3.4–6.3) 0.58 

2PN 4.6 3.3 (1.6–7.6) 3.8 2.0 (2.5–5.1) 0.60 

Embryos 3 2.8 (0.4–5.6) 1.8 1.2 (1.0–2.5) 0.30 

Euploid embryos created 2.6 2.8 (0–5.2) 1.6 1.1 (0.9–2.3) 0.40 

There were no P < 0.05. Abbreviations: BMI: body mass index; TMC: total motile count; AMH: anti-mullerian hormone; FSH: 
follicle-stimulating hormone; AFC: antral follicle count; Max E2: maximum estrogen; MII: metaphase two/mature oocyte; 
2PN: two pronuclei/normally fertilized oocyte. 
 

No statistically significant difference, using an unpaired 

parametric t-test with welch correction, was found in 

the mean age, AMH, FSH, AFC, BMI, total motile 

sperm count (TMSC) of partner, or euploid embryos 

created within the patients of the samples used for this 

analysis. 

 

Comparison of PRP-treated cumulus cells that 

resulted in live birth to untreated controls that 

resulted in livebirth 

 

We first compared cumulus cell samples from patients 

treated with PRP, which led to a euploid embryo 

transfer and live birth (Group 2), to those who achieved 

the same outcome without PRP treatment (Group 1). 

This comparison allowed us to study the molecular 

impact of PRP treatment independent of other factors 

associated with viability. 

 

Hierarchical clustering of the DEGs partitioned into two 

distinct clusters showed differential gene expression 

between the two groups suggesting high reproducibility 

of the sequencing data. The comparison of Group 2 vs. 

Group 1 revealed a total of 24 significantly DEGs (FDR 

0.05); 13 were upregulated, and 11 were downregulated. 

For genes that were over-expressed, the FC ranged from 

1.6 to 24. For under-expressed genes, the FC ranged 

from −3.6 to −24.2. Genes affected included those 

involved in carbohydrate metabolism, amino acid 

metabolism, energy production, post-translational 

modification, cell death and survival, cell-to-cell 

signaling and interaction, and cellular growth and 

proliferation (Figures 1, 2). 

Comparison of all cumulus cells samples from 

patients treated with PRP to those that were not 

treated with PRP 

 

To further assess the impact of PRP on follicular 

somatic cell gene expression, and to test whether similar 

gene pathways would be affected in this expanded 

analysis, we compared all samples from patients treated 

with PRP (Groups 2 (PRP-LB) and 5 (PRP-ARR)) to all 

samples from the patients in the control group that did 

not receive PRP injection (Groups 1 (C-LB), 3 (C-NP), 

and 4 (C-ARR)). The comparison revealed a total of 98 

significant DEGs; 12 were upregulated, and 86 were 

downregulated. For genes that were over-expressed, the 

FC ranged from 1.1 to 3.2. For under-expressed genes, 

the FC ranged from −0.6 to −8.4. Genes affected 

include those involved in cell death and survival, 

protein synthesis, gene expression, pre-and post-

transcriptional modification, organismal survival, cell 

morphology, cellular function and maintenance, cellular 

development, cellular growth and proliferation, and 

embryonic development (Figures 3, 4). 

 

Comparison of PRP treated cumulus cells that 

resulted in live birth to untreated controls that did 

not result in a pregnancy 

 

Finally, a comparison was made between the extremes 

of PRP treatment followed by livebirth (Group 2 (PRP-

LB)) vs. no PRP and failed implantation (Group 3 (C-

NP)) revealing a total of 26 significant DEGs. 18 were 

upregulated, and 8 were downregulated. For genes that 

were over-expressed, the FC ranged from 7.6 to 23.1. 
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For under-expressed genes, the FC ranged from −5.3  

to −7.3. Genes affected included those involved in  

cell death and survival, protein synthesis, 

cellular development, cellular growth and proliferation, 

cell-to-cell signaling, and embryonic development 

(Figures 5, 6). 

 

RNA sequencing defined repertoire of differentially 

expressed genes 

 

Quantitative RT-PCR demonstrated agreement with 

the RNA-seq relative expression data (Supplementary 

Figure 1). Reference gene GAPDH was used as the 

internal control. Of the genes shown to be 

differentially expressed in the RNASeq analysis, the 

genes MMACHC and ANGPTL4 were chosen for 

validation with RT-PCR. These both showed 

appropriate changes with MMACHC showing 

upregulation (increase) in Group 2 samples (p-value 

0.0286) and ANGPLT4 showing downregulation 

(decrease) in the Group 2 samples (p-value 0.0317) 

which was consistent with what was seen in the 

RNASeq analysis and successfully validated our 

results (see Supplementary Figure 1). 

 

 
 

Figure 1. Gene expression is altered in PRP-treated patients with sustained implantation (Group 2) compared to control 
patients with sustained implantation (Group 1). (A) The heat map illustration shows differentially expressed genes. The color spectrum 
ranging from red to blue indicates normalized levels of gene expression from high to low. (B) Volcano plot for RNA-seq comparing Group 2 to 
Group 1. (C) Differentially expressed genes in Group 2 compared to Group 1, P < 0.05 for each. For the box plots, the bottom and top 
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whiskers denote 5 and 95 percentile values, the bottom and top bounds of the rectangle denote the 25 and 75 percentile values, and the line 
in between denotes the median (50 percentile) value of the distribution. (D) PCA plot for RNA-seq for significant genes comparing Group 2 to 
Group 1. The transcripts per million (TPM) value represents the relative expression level comparable between samples. 

 

DISCUSSION 
 

In comparing patients treated with PRP to control 

patients, altered expression of several genes was 

detected and several pathways associated with embryo 

development emerged as potential targets of PRP 

treatment. In our three comparisons, there was 

significant consistency in the pathways identified as 

being affected by the PRP treatment. These include 

pathways involved in carbohydrate metabolism, cell 

death and survival, cell growth and proliferation, and 

cell-to-cell signaling. Comparison of Group 2 to Group 

1 was especially important, as it allowed us to identify 

the genes that are affected by this treatment, and not 

those differentially regulated as a factor of viability. 

The comparison of all PRP patients to all control 

patients was important to confirm that these same 

pathways were conserved in being affected by the 

treatment. The comparison of Group 2 to Group 3 

provided mechanistic insight into how this treatment 

can affect embryo development. Together, these three 

comparisons provide a more complete picture of how 

PRP’s effects on ovarian biology are mediated. 

 

This study identified carbohydrate metabolism as the 

most affected pathway when comparing Group 2 to 

Group 1. In addition, the other two comparisons also 

detected this pathway as being differentially regulated 

after PRP treatment. These findings could have two 

important implications. First, our findings support 

PRP’s effect on carbohydrate metabolism across three 

experimental designs involving different sample 

sources. Second, they provide a possible mechanistic 

insight into how PRP may help regulate follicle 

development and oocyte maturation. Cumulus cells 

support the oocyte in a variety of ways and are vital in 

regulating substrate utilization and transport [24, 25]. In 

terms of carbohydrate metabolism within the cumulus 

oophorus complex (COC), the oocyte relies on pyruvate 

as it cannot metabolize glucose. Glycolysis occurs after 

circulating glucose enters the cumulus cells and the 

pyruvate generated in cumulus cells is then passed on to

 

 

 
Figure 2. Pathway analysis comparing patients with sustained implantation (Group 2) to control patients with sustained 
implantation (Group 1). Pathway analysis was performed using the Gene Ontology bioinformatics tool. Log2 fold change (FC) ≥0.584 

false discovery rate (FDR). 
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the oocyte through gap junctions or active transport 

(reviewed in [25]). Pyruvate is used as a primary energy 

source for the oocyte and the early preimplantation 

embryo (cleavage stage), and the extent of pyruvate 

uptake has been proposed as a biomarker predictive of 

embryo viability [25–28]. A study by Xie showed that 

when genes involved in glucose metabolism like 

Glucose-6-phosphate dehydrogenase (G6pd) and mito-

chondrial pyruvate carrier 1 (Mpc1) are silenced in 

mouse cumulus cells using RNAi, the maturation ability 

of their co-cultured oocyte is significantly impaired 

[29]. It is also known that patients with pathogenic 

variants in PMM2 genes or genes affecting the Leloir 

pathway (such as in GALT, GALM, or GALE), often 

have POI [30–32]. In showing that carbohydrate 

metabolism pathways are significantly changed by PRP 

treatment, we have insight into a potential mechanism 

for how PRP could be supporting follicular 

 

 

 
Figure 3. Gene expression is altered in cumulus cells of PRP-treated patients (Groups 2 and 5 combined) compared to 
controls (Groups 1, 3, and 4 combined). (A) The heat map illustration shows differentially expressed genes. The color spectrum 

ranging from red to blue indicates normalized levels of gene expression from high to low. (B) Volcano plots for RNA-seq comparing PRP to 
control. (C) Differentially expressed genes in CONT and PRP, P < 0.05 for each. For the box plots, the bottom and top whiskers denote 5 and 
95 percentile values, the bottom and top bounds of the rectangle denote the 25 and 75 percentile values, and the line in between denotes 
the median (50 percentile) value of the distribution. (D) PCA plots for RNA-seq for significant genes comparing PRP to control. The 
transcripts per million (TPM) value represents the relative expression level comparable between samples. 
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development and for other PRP treatments in general 

that can be further explored and targeted to develop 

more specific treatment modalities. 

 

Also affected were pathways in cell death and survival 

and cell growth and proliferation. Cell death and 

survival was the most affected pathway when 

comparing all PRP to control as well as Group 2 

compared to Group 3 and was also identified as highly 

affected in Group 2 compared to Group 1. Cellular 

growth and proliferation were also highly affected in all 

three comparisons. These pathways have been 

implicated in infertility and are affected in multiple 

knockout animal models of infertility and subfertility 

[33–36]. For instance, Clpp mutations have been seen in 

Perrault syndrome which causes sensorineural hearing 

loss and early ovarian failure in humans [30–37]. 

Analysis of gene pathways affected in the absence of 

Clpp shows a significant over-representation of path-

ways involved in the regulation of cell death and growth 

[33]. Clpp knockout mice create lower numbers of 

mature oocytes, fail to generate blastocysts, and have 

accelerated depletion of follicular reserve [33]. PRP’s 

influence on these pathways could conceivably be the 

cause of its effects on the ovaries. 

 

Also widely affected in all three comparisons were 

pathways in cell-to-cell signaling. One important 

signaling molecule between oocytes and their 

surrounding supportive cells is BMP15 [38]. BMP15 

genetic alterations have been noted in cases of POI and 

infertility in humans [39]. It is a cause of infertility in a 

variety of different species from natural sheep to 

knockout porcine models, with drastically decreased 

volume and degradation of follicles noted [40]. Analysis 

of genes and pathways affected by the absence of 

mitochondrial fusion 1 (MFN1) has shown significant 

over representation in the regulation of adherence 

junction signaling and death receptor signaling [35]. 

Mfn1 knockout mice have significantly smaller ovaries

 

 

 
Figure 4. Pathway analysis comparing patients treated with PRP (Groups 2 and 5 combined) to controls (Groups 1, 3, and 4 
combined). Pathway analysis was performed using the Gene Ontology bioinformatics tool. Log2 fold change (FC) ≥0.584 false discovery 

rate (FDR). 
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 (1.65 um2 versus 4.8 um2 p < 0.05), and fail to produce 

mature oocytes or have any pregnancies or deliveries 

[35]. Embryonic Poly(A)-Binding Protein (EPAB) is 

another protein that has been established with knockout 

models to have both effects on cell signaling and 

folliculogenesis [36, 41, 42]. It is logical to infer that 

PRP may affect ovarian reserve by causing changes in 

the cell-to-cell signaling pathway within the follicle. 

The variety and consistency of the pathways affected in 

this analysis are particularly intriguing in the context of 

treatment for POR. These pathways have been 

associated with folliculogenesis, ovarian reserve, ovarian 

volume, and infertility in both knockout mice and human 

populations [30, 37–39]. POR and POI are caused by the 

delicate interplay between the number of primordial 

follicles created in the developing embryo, the quality of

 

 
 

Figure 5. Gene expression is altered in PRP-treated patients with sustained implantation (Group 2) compared to control 
patients without sustained implantation (Group 3). (A) The heat map illustration shows differentially expressed genes. The color 
spectrum ranging from red to blue indicates normalized levels of gene expression from high to low. (B) Volcano plots for RNA-seq 
comparing PRP-LB with C-NP. (C) Differentially expressed genes in Group 2 versus Group 3, P < 0.05 for each. For the box plots, the bottom 
and top whiskers denote 5 and 95 percentile values, the bottom and top bounds of the rectangle denote the 25 and 75 percentile values, 
and the line in between denotes the median (50 percentile) value of the distribution. (D) PCA plots for RNA-seq for significant genes 
comparing Group 2 with Group 3. The transcripts per million (TPM) value represents the relative expression level comparable between 
samples. 
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these oocytes, and the rate of their depletion. While we 

cannot increase the ovarian reserve in a patient already 

diagnosed with POI or POR, we can potentially help 

these patients make the most of their remaining reserve 

and enhance oocyte yield during treatment by using 

therapies that target infertility-related pathways. 

 

In patients who underwent single euploid embryo 

transfer with or without prior PRP treatment, and failed 

to achieve a pregnancy, the reason for implantation 

failure remains to be determined. The role of uterine 

factors in this process is highly debated as suggested in 

a number of recent publications [43, 44]. 

 

There are some strengths and limitations of the present 

study. Firstly, cumulus cells from each oocyte were 

individually collected- not pooled- and cryopreserved 

until analysis and they were independently sent for 

RNAseq. We believe this constitutes a significant 

strength of our manuscript. Secondly, our study focused 

on cumulus cells (not mural cells or both) because 

homogeneity of cumulus cells can more reliably be 

achieved, whereas collection of mural granulosa cells is 

often complicated with contamination with white blood 

cells that may have a completely different gene 

expression profile. As a limitation, in the RCT that the 

samples were derived from, patients with 3 or less 

oocytes retrieved (or had cycle cancelled due to poor 

response) in at least two prior IVF cycles were included 

as having POR. These individuals would be classified 

as POR based on POSEIDON sub-classifications. 

Subsequently, some of these patients had more than 3 

oocytes retrieved in the cycle that they underwent as 

part of the study. This variation is a common occurrence 

in patients diagnosed with POR using POSEIDON or 

Bologna criteria, as shown in a recent large 

retrospective study and for this reason can be accounted 

as a limitation of the diagnosis of POR in our study 

[45]. Type of trigger (GnRH, hCG, or dual trigger) 

might also be another limitation of the study. 

 

 

 
Figure 6. Pathway analysis comparing patients with sustained implantation (Group 2) to control patients without sustained 
implantation (Group 3). Pathway analysis was performed using the Gene Ontology bioinformatics tool. Log2 fold change (FC) ≥0.584 

false discovery rate (FDR). 
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In the RCT that the samples were derived from [21], 

GnRH, hCG, or dual trigger was administered in order 

to trigger follicle maturation. Although all trigger 

strategies work though upregulation of Epidermal 

growth factor (EGF)-like growth factors to promote the 

release of the cumulus oophorus complex, they could 

differentially affect gene expression in cumulus cells 

[46, 47]. However, even if cumulus cell gene expression 

is differentially affected by the type of trigger, it would 

increase variability and decrease the number of genes 

and pathways identified. Therefore, the pathways in the 

current study are likely to be independent of the type  

of trigger, and arguably more relevant. In summary,  

the injection of PRP into the ovarian cortex of patients 

with POI caused changes in several gene expression 

pathways in the cumulus cells. Future directions for 

research include evaluating and further exploring each 

of these pathways to delineate how PRP is affecting the 

cumulus cells. The ultimate aim would be to target 

specific components to create more precise treatments 

that can help improve fertility outcomes. 

 

MATERIALS AND METHODS 
 

Sample collection 

 

Cumulus cell samples from PRP-treated and non-PRP-

treated patients were obtained from the RMANJ 

(Reproductive Medicine Associates of New Jersey 

Basking Ridge, NJ, USA) biobank. These samples had 

been collected as part of a prior randomized controlled 

study investigating the impact of intraovarian auto-

logous PRP injection on patients with POR undergoing 

IVF. All study procedures were approved by and 

conducted according to the Institutional Review Board 

(Advarra 2019). Before collecting samples for the initial 

study, all patients were informed, and written consent 

was obtained, which included sample preservation and 

usage in future research. 

 

Adult patients between ages 18 and 37 who were 

diagnosed as POR were included in this study. POR 

was defined as having at least two IVF cycles that were 

either cancelled due to poor follicle development (<3) 

or resulted in the retrieval of three or fewer mature 

oocytes at maximum gonadotropin doses (450 FSH 

daily). Exclusion criteria included those who had a 

known genetic cause for POR, were planning to do 

preimplantation genetic testing for monogenic 

disorders (PGT-M) or structural rearrangements (PGT-

SR), had increased risk of thrombosis, had ongoing 

malignancy, ongoing ovarian pathology (such as a 

dermoid cyst or endometrioma), had a history of 

gonadotoxic treatment or ovarian surgery, had a BMI 

>35, or had a diagnosis of endometrial insufficiency 

(<6 mm). Sperm sources (male partner or donor sperm) 

had to have at least 100,000 total motile sperm from an 

ejaculated sample. 

 

Patients were randomized to either undergo an injection 

of 8 cc autologous PRP (4 cc per ovary) into their 

subcortical region in the cycle before their retrieval 

cycle or have no procedure (as a sham procedure was 

considered unnecessary risk). The technique was 

developed, optimized and described in prior cohort 

studies [18, 19], Briefly, patients who underwent the 

ovarian PRP procedure were placed under deep 

sedation, and then under transvaginal ultrasound 

guidance using a 35 cm 17G single lumen needle, 1 ml 

of PRP was injected into at least four different locations 

depending on the size of the ovaries underneath the 

ovarian cortex into each ovary. Injection was into the 

subcortical area where the most dormant follicles would 

exist. A 17 G needle was used in order to stabilize the 

ovaries and create a large enough space in the ovary 

with each puncture to allow delivery of PRP. 

 

The cycle after randomization and either PRP procedure 

or no procedure, routine ovarian stimulation protocols 

with either microdose leuprolide flare cycle or 

gonadotropin-releasing hormone antagonist (ganirelix 

acetate 250 µg or cetrorelix acetate 0.25 mg) were used 

as determined by the participant’s primary physician. 

Transvaginal ultrasound and hormone monitoring were 

performed every few days until at least two follicles 

measuring 17 mm or wider were noted, at which point 

either a GnRH, hCG, or dual trigger was administered. 

Patients then proceeded to egg retrieval 36 hours later. 

Cycles were cancelled if there was no follicular 

development after twelve nights of gonadotropin 

administration at maximum dosage. Collection of 

otherwise previously discarded specimens was 

performed to allow for further analysis, as was done in 

this study. 

 

Cumulus cells were isolated from each individual 

oocyte retrieved, after which the oocytes and embryos 

were individually cultured, to ensure an accurate 

correlation with embryo development and associated 

outcomes. Cumulus cells were aspirated from each well, 

washed in phosphate-buffered saline, centrifuged at 90s 

for 15,000 g, and then stored as a pellet at –80°C. 

 

Cumulus cells were analyzed in 5 groups to delineate 

changes in mRNA expression in response to PRP 

treatment and subsequent embryo and pregnancy 

outcome: 

 

Group 1: IVF without PRP treatment (control), 
euploid embryo transfer and livebirth (C-LB). 

Group 2: IVF following PRP treatment, euploid 

embryo transfer and livebirth (PRP-LB). 
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Group 3: IVF without PRP treatment (control), 

euploid embryo transfer, no pregnancy (C-NP). 

Group 4: IVF without PRP treatment (control), 

embryo arrested at the blastocyst stage (C-ARR). 

Group 5: IVF following PRP treatment, embryo 

arrested at the blastocyst stage (PRP-ARR). 

 

Cumulus cell RNA extraction and library construction 

 

The cumulus cells corresponding to each oocyte/embryo 

were thawed and assessed individually, with 

approximately 100–200 cells per sample in initial 

analyses. SMART-Seq v4 Ultra Low Input RNA Kit for 

Sequencing (Takara Bio, San Jose, CA, USA) was used 

to prepare RNA according to the user manual. RNA 

integrity of samples was tested on Agilent Bioanalyzer 

(Agilent Technologies, Santa Clara, CA, USA) before 

sequencing. Samples meeting the stringent criteria for 

RNA quality, with the RIN number (8 and above), and 

concentration, were processed for sequencing. mRNA 

was converted into cDNA using long-distance PCR  

for amplification (17 cycles for 100 cells). cDNA  

was purified using the Agencourt AMPure XP Kit 

(Beckman Coulter, Brea, CA, USA) Agilent High 

Sensitivity DNA Kit was used for quantification on an 

Agilent 2100 Bioanalyzer (Agilent Technologies, Santa 

Clara, CA, USA). Nextera XT DNA Library 

Preparation Kit (Illumina Inc., San Diego, CA, USA) 

was used for library preparation. RNA concentrations  

of samples derived from individual oocytes’ cumulus 

cells ranged from 6.94–85.6 ng/ul after library 

preparation and prior to indexing by qubit. This 

information has been added to the revised version of the 

manuscript. 

 

Sequencing 

 

Samples were sequenced to a depth of 44 million read 

pairs, 100 nucleotide length reads per sample using an 

Illumina Rapid v2kit (75 cycles) on a NovaSeq 6000 

Sequencing System (Illumina Inc., San Diego, CA, 

USA). Data was converted to FASTQ files using the 

bcl2fastq2 v1.8.4 software (Illumina Inc, San Diego, 

CA, USA). The number of raw reads ranged from 22 M 

to 214 M reads per sample, with an average of 160 M 

reads per sample. One sample had 22 M reads, and one 

had 79 M reads, with the rest having >110 M reads per 

sample. 

 

Data analysis 

 

The reads were trimmed for quality and aligned with the 

reference human genome hg19 with GENCODE 
annotation (GENCODE reference annotation for the 

human and mouse genomes; Nucleic Acid Research, 

October 24, 2018). STAR –2.7.8a was used for 

alignment, annotated with Ensembl Transcripts release 

100 and StringTie and BallGown for transcript 

abundance estimation (transcript level expression 

analysis of RNA-sequencing experiments with HISAT, 

String Tie, and Ball gown [48]. DESEq2 was used for 

differential analysis, which, for most data sets, gives the 

highest estimate of power [49]. The genes were 

identified as differentially expressed if Log2 fold 

change (FC) ≥0.584 and adjusted Benjamini–Hochberg 

(B–H) false discovery rate (FDR) P ≤ 0.05 [50]. The 

statistical program R was used for downstream 

processing and visualization of data. 

 

Ingenuity pathway analysis 

 

Ingenuity Pathway Analysis (IPA) Ingenuity Systems 

(QIAGEN, content version: 51963813, 2020, Redwood 

City, CA, USA) was used to carry out pathway analysis 

for differentially expressed genes (DEG) across samples. 

Each gene was mapped to its corresponding gene object 

in the Ingenuity Pathways Knowledge Base. The DEGs 

used in pathway analysis were determined between 

experimental and control groups by using a filtering 

criterion of Log2FC 0.584 or above and FDR P 0.05 or 

lower. IPA Core Analysis was used to generate a network 

showing the overlap between functions and differentially 

expressed genes (Log2Fc ≥0.584 FDR P ≤ 0.05) 

resulting from the comparison between the different 

groups, in which FDR (or adjusted P-value) refers to the 

P-value (calculated using the right-tailed Fisher’s Exact 

Test) that is used in the overrepresentation analysis. This 

analysis calculates the overlap (P ≤ 0.05) between the list 

of DEG and pathways to determine if subsets of genes 

associated with specific pathways are over-represented 

(or enriched) among DEG. The fold change refers to the 

cut-off used to identify a gene as differentially expressed, 

e.g. fold change modular value of 2 or above, and to be 

included in the pathway analysis. In addition, IPA 

calculates the z-score to infer the activation states 

(increased or decreased) of implicated pathways and 

biological functions. This inference is based on 

the experimentally observed causal relationships found in 

the biomedical literature between genes and those 

functions [51]. 

 

Validation of RNAseq results by quantitative RT-

PCR 

 

A quantitative reverse transcription-polymerase chain 

reaction (qRT-PCR) was carried out to confirm the 

differential gene expression of genes identified as 

differentially expressed in the RNA sequencing 

analysis. cDNA was prepared using the established 
protocol of SMART-Seq v4 Ultra Low Input RNA Kit 

for Sequencing (Takara Bio, San Jose, CA, USA). Qubit 

(Invitrogen, Carlsbad, CA, USA), was used to measure 
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cDNA concentration. A total of 5 ng of cDNA and 1 ng 

forward and reverse primers (see Supplementary Table 

1 for primer sequences) was used per reaction with RT-

PCR using PowerUp SYBR Green Master Mix on the 

ViiA7 real-time PCR machine (Applied Biosystems, 

Waltham, MA, USA) for gene expression analysis. The 

components were mixed thoroughly and briefly 

centrifuged. Then PCR cycling conditions were 95C 

for 5 minutes followed by a 45-cycle run with an 

annealing temperature of 60°C. The reference gene 

GAPDH was used for normalization. At least two 

replicates were done of each reaction. ΔΔCt method 

was used for the calculation of the difference in the 

expression of genes. 

 

Statistical analysis 

 

Study population demographics of the samples utilized 

in this analysis were analyzed using an unpaired 

parametric t-test with welch correction using the 

GraphPad Prism version 10 (GraphPad, San Diego, CA, 

USA). Normality of distribution was assessed using 

Kolmogorov-Smirnoff test. Assessed parameters were 

normally distributed. Differences between groups were 

considered significant when the P-value was < 0.05. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. RT-PCR results of the two confirmatory genes (MMACHC and ANGPTL4) for validation of RNA-Seq 
results. MMACHC Mann-Whitney test p-value 0.0286, ANGPTL4 p-value 0.0317. 
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Supplementary Table 
 

Supplementary Table 1. The primers used for RT-PCR analysis for confirmation of validity of RNA-Seq results. 

ANGPTL4 

Forward primer GTCCACCGACCTCCCGTTA 

Reverse primer CCTCATGGTCTAGGTGCTTGT 

MMACHC 

Forward primer ATGGAGCCGAAAGTCGCAG 

Reverse primer CTGGAAGGGGTAAACCTCGAA 
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