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ABSTRACT 
 
We evaluated the impact of sex and mitochondrial-haplotype on the age-related changes in the fecal gut 
microbiome of the genetically heterogeneous rodent model, the OKC-HETB/W rat. The age-related changes in 
the microbiome differed markedly between male and female rats. Five microbial species changed significantly 
with age in male rats compared to nine microbial species in female rats. Only three of these microbes changed 
with age in both male and female rats. The mitochondrial-haplotype of the rats also affected how aging 
altered the microbiome. Interestingly, most of the microbial species that changed significantly with age were 
mitochondrial-haplotype and sex specific, i.e., changing in one sex and not the other. We also discovered that 
sex and mitochondrial-haplotype significantly affected the age-related variations in content of fecal short-
chain fatty acids and plasma metabolites that influence or are regulated by the microbiome, e.g., tryptophan 
derived metabolites and bile acids. This study demonstrates that the host’s sex plays a significant role in how 
the gut microbiome evolves with age, even within a genetically diverse background. Importantly, this is the 
first study to show that the mitochondrial-haplotype of a host impacts the age-related changes in the 
microbiome. 
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INTRODUCTION 
 
Since Lane et al. developed an efficient technique to 
sequence the 16S rRNA gene [1, 2], characterization of 
commensal microbes has illuminated the pleiotropic 
effects of the microbiome on health and disease. For 
example, studies have shown that the fecal gut 
microbiome (herein described as microbiome) influences 
the host’s metabolic health [3], immunity [4], 
cardiovascular health [5], and cognitive function [6, 7]. 
These effects in the host have drawn the attention of the 
aging community because dysbiosis, or perturbations in 
microbiome composition has been shown to increase 
with age and is believed to play a role in aging [8].  
For example, age-related cognitive impairments such  
as Alzeimer’s [9, 10] and Parkinson’s diseases [11] have 
been associated with increases in the genera 
Bifidobacterium and Akkermansia respectively. A 
review by Badal et al. [12] shows that the human 
microbiome changes with age. However, there is little 
consensus on how age and the microbiome interact in 
humans because age-related changes in the host’s diet 
[13] and environment [14] can have a major impact on 
microbe abundance. These confounding variables make 
it difficult to draw conclusions on how aging specifically 
affects the microbiome in human studies. Use of 
laboratory rodents, where the diet and environment can 
be controlled throughout the life of an animal, allow 
investigators to directly test the impact of the aging host 
on its microbiome. 
 
Studies in rodents support data in humans, which show 
that the microbiome changes with age in mice [15–18] 
and rats [19–21]. In addition, studies with mice have 
shown that aging interventions that increase lifespan 
and healthspan, such as caloric restriction or rapamycin, 
affect the age-related changes in the microbiome [22, 
23]. However, several gaps in our knowledge must still 
be addressed to gain a better understanding of how the 
microbiome changes as the host ages. One problem is 
that many of the past studies in rodents only assess age-
related changes of the microbiome in one sex in mice 
[15–18, 24] or rats [19–21]. Sex differences with age 
have also been largely ignored in human studies, with 
Badal et al. [12] reporting that 8 out of 27 papers did 
not disclose sex of their participants and 15 out of 27 
studies combined male and female participants for 
statistical analysis. Data in humans and mice show that 
serum sex hormone levels can alter microbiome 
composition [25–27]. In addition, sex hormone levels 
decrease with age with the changes occurring 
differently in male and female humans and rodents [28–
32]. Another limitation in the current studies with mice 
is that all have used inbred animals, which have 
negligible genetic variation. Because the genotype of 
the host can impact the microbiome [33–36], the lack of 

genetic variation in most rodent studies not only limits 
our knowledge of how aging affects the microbiome in 
other rodent genotypes but also limits the translation of 
the data from rodents to humans. In addition, previous 
studies in rodents have shown that the mitochondrial 
genome of the host affects the microbiome of young, 
inbred mice [37–39]. However, it is unknown if the 
mitochondrial genome can affect the gut microbiome in 
a model with nuclear heterogeneity, leaving a gap in 
knowledge which limits the translatability of these 
results to humans. 
 
It is difficult to study the role of the mitochondrial 
genome in humans. Several factors contribute to this 
difficulty including recruiting humans with the exact 
same mitochondrial genome, herin termed mitochondrial-
haplotype (mt-haplotype). A mother and her children and 
her sister and her children would have the same 
mitochondrial DNA sequence due to maternal inheritance 
of mitochondria, which limits the number of individuals 
who can be studied with identical mitochondrial 
genomes. Even then, these participants would be 
confounded by age and sex. Thus, most research studying 
the mitochondrial genome has relied on grouping people 
by mitochondrial-haplogroup (those with similar 
mitochondrial genome differences) or focusing on single 
nucleotide polymorphisms regardless of other differences 
in their mitochondrial genome. Thus, utilizing rodents 
allow researchers to study mt-haplotype of offspring 
from dams with the same mt-haplotype. 
 
In this study, we have used a novel OKC-HETB/W rat 
model to study the impact of age, sex, and mt-haplotype 
on the microbiome in a genetically heterogenous animal 
model. This rat model allows us to determine for the 
first time if mt-haplotypes, which have been shown to 
impact gut microbiome composition in young, inbred 
mice [37–39], has an impact on the age-related changes 
in the microbiome. We found that the abundance of 
various microbial species changed significantly with 
age in the genetically heterogenous OKC-HETB/W rats. 
Importantly, most of the age-related changes in the 
microbiome were both sex and mt-haplotype dependent. 
In addition, we observed that the changes in the 
microbiome were associated with changes in short-
chain fatty acids in the feces and in microbiome derived 
metabolites in the host’s plasma. 
 
RESULTS 
 
Changes in fecal gut microbiome composition with 
age differ by sex and mt-haplotype in OKC-HETB/W 
rats 
 
To examine how sex and mt-haplotype affect the age-
related changes in gut microbiome composition, we 
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used a rat model our group developed using a four-way 
cross strategy with four commercially available inbred 
rat strains (BN, F344, LEW, and WKY) as described in 
the Methods. Two F2 lines were created that were 
heterogenous with respect to the nuclear genome that 
had one of two mt-haplotypes: mitochondria from either 
BN (OKC-HETB) or WKY (OKC-HETW) rats. Rat body 
weights and composition are shown in Supplementary 
Figure 1. Male rats had increased body weight with age. 
While subcutaneous and gonadal fat tended to increase 
with age, the increase was not statistically significant. 
Female rats showed an increase in body weight and the 
weight of subcutaneous and gonadal fat with age. 
Interestingly, body weight and subcutaneous weight 
was significantly increased in the old female OKC-
HETW rats compared to the OKC-HETB rats. In 
humans, specific mitochondrial haplogroups have been 
associated with obesity measured using BMI [40, 41]. 
Here, we show that mt-haplotype may affect specific fat 
pads in a sex-specific manner. After identifying 
commensal gut microbes in the feces based on the 16S 
rRNA sequence in these rats, our dataset contained 205 
operational taxonomic units (OTUs). OTUs that 

appeared in only one sample were removed to reduce 
artifacts, leaving 149 features for the fecal samples from 
male and female rats. 
 
We first measured alpha-diversity of the microbiome 
using both the Chao1 and Shannon Index to test for 
differences in the number of OTU’s (richness) and OTU 
abundance variance (evenness), respectively. There 
were no significant differences in either the Chao1 or 
Shannon Index when comparing male or female rats by 
age or mt-haplotype (Figure 1). However, the Chao1 
index was marginally significant in adult female OKC-
HETB compared to the adult female OKC-HETW and 
old female OKC-HETB suggesting decreased richness in 
adult female OKC-HETB rats. 
 
Next, we evaluated how the overall microbiome 
composition changed in male and female rats using  
beta-diversity; a dimension reduction technique to 
analyze differences in microbe populations between 
groups. Beta-diversity was visualized using principal 
coordinate analysis (PCoA). The PCoA plots in Figure 2 
show age comparisons (adult vs. old) in rats of the 

 

 
 
Figure 1. Alpha-diversity is not significantly different with age and mt-haplotype in OKC-HETB/W rats. Alpha-diversity of the 
microbiome from adult (9-months) and old (26-months) OKC-HETB/W rats was measured by the Chao1 and Shannon index. The alpha-
diversity is shown for age (A) and mt-haplotype (B) comparisons for male rats; and age (C) and mt-haplotype (D) comparisons for female 
rats. Age comparisons were made by combining mt-haplotype groups for adult (gray boxes) and old (white boxes) animals. Mt-haplotype 
comparisons were made between OKC-HETB (blue boxes) and OKC-HETW (red boxes) groups. The data were collected from 6 to 10 rats per 
group, and the box plots display the 1st and 3rd quartiles with a horizontal line at the median. The whiskers display minimum and 
maximum values. ◊Values marginally significant by Fisher’s LSD p < 0.05. 
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same sex and mt-haplotype. In male rats, the 
microbiome composition was significantly different by 
age in both OKC-HETB (Figure 2A) and OKC-HETW 
rats (Figure 2B). A similar pattern was observed in 
female rats where beta-diversity was significantly 
different by age in OKC-HETB (Figure 2C) and OKC-
HETW rats (Figure 2D). Differences in the microbiome 
composition by mt-haplotype (OKC-HETB vs. OKC-
HETW) was also evaluated using beta-diversity in rats  
of the same age and sex. There were no significant 
differences in beta-diversity when comparing mt-
haplotype in either male or female rats (Figure 2E–2H). 
 
Given the significant differences in beta-diversity by 
age, we next measured the abundance of microbial 
species that changed with age for male and female OKC-
HETB and OKC-HETW rats. The identifiable species (45 
species for male, 47 species for female) in our dataset 
accounted for 0.83–0.96% of the relative abundance for 
male, and 0.81–0.97% relative abundance in females. 
Most of the species that changed significantly with age 
were sex and mt-haplotype specific except for 
R. callidus, which decreased in both males and females 
(Figure 3). In males, the abundance of five microbial 
species were identified that changed significantly with 
age (Figure 3A). R. callidus abundance decreased with 

age in both mt-haplotypes. L. reuteri increased, R. albus 
decreased, and L. garvieae decreased in male OKC-
HETB rats but not OKC-HETW rats. C. saccharogumia 
abundance was significantly increased in male OKC-
HETW but not in male OKC-HETB rats. 
 
In female OKC-HETB and OKC-HETW rats, we 
observed significant changes in the abundance of nine 
microbial species (Figure 3B), three of which also 
changed in male rats (R. callidus, L. reuteri, and 
C. saccharogumia). The abundance of R. callidus, 
B. acidifaciens, and P. distasonis decreased while 
L. reuteri increased with age in both female OKC-HETB 
and female OKC-HETW rats. In addition, the abundance 
of C. saccharogumia and G. formicilis increased while 
B. pseudolongum decreased with age in female  
OKC-HETB but not female OKC-HETW rats. In female 
OKC-HETW rats, A. indistinctus abundance decreased 
and A. muciniphilia increased with age. In total, the 
abundance of four species of microbes changed 
significantly with age in male OKC-HETB while only 
2 species changed significantly with age in male OKC-
HETW rats. In female rats, the abundance of a similar 
number of microbe species changed in the two mt-
haplotypes (e.g., 7 species for OKC-HETB rats and 
6 species for OKC-HETW rats). 

 

 
 
Figure 2. Beta-diversity is different with age in OKC-HETB/W rats. Beta-diversity of the microbiome was measured using Jenssen-
Shannon divergence comparing adult (9-months, blue ovals) and old (26-months, red ovals) rats for the following: male OKC-HETB (A), male 
OKC-HETW (B), female OKC-HETB (C), and female OKC-HETW (D) rats. Beta-diversity was also compared between OKC-HETB (blue ovals) and 
OKC-HETW (red ovals) haplotypes for the following: adult male (E), old male (F), adult female (G), and old female (H) rats. Oval outlines 
represent the 95% confidence interval for each group. The data were collected from 6 to 10 rats per group, and those values statistically 
significant by PERMANOVA at *p < 0.05 or **p < 0.01 are shown. 
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We next compared the abundance of microbes at every 
level of taxonomy by mt-haplotype in rats of the same 
sex and age (Figure 4). We did not identify any 
significant differences at the species level. However, we 
observed that the abundance of genus Lachnospira was 
significantly increased in adult male OKC-HETW rats 
compared to OKC-HETB (Figure 4A) rats. In female 
rats, the abundance of genus Bilophila was significantly 
increased in the adult OKC-HETW rats compared to 

adult OKC-HETB rats (Figure 4B). In old female rats, a 
significant increase in the abundance of the order 
Verrucomicrobiales was observed in OKC-HETW rats 
compared to OKC-HETB rats (Figure 4B). In our 
dataset, the genera Lachnospira and Bilophila are 
individual OTUs and do not have species level data. 
A. muciniphilia is the only microbial species associated 
with the order Verrucomicrobiales in our dataset. Sparse 
Correlations for Compositional Data (SparCC) and 

 

 
 
Figure 3. Microbial species that are significantly changed with age are dependent on sex and mt-haplotype. Microbial species 
in the gut microbiome from male (A) or female (B) rats were compared for adult (9-months) and old (26-months), OKC-HETB (blue boxes) 
and OKC-HETW (red boxes) rats. The box plots display the 1st and 3rd quartiles with the horizontal line denoting the median, and the 
whiskers display minimum and maximum values. The data were collected from 6 to 10 rats per group and statistically compared using 
Mann-Whitney/Kruskal-Wallis and/or Linear Modeling with significance at *p < 0.05 or **p < 0.01 shown. 
 

 
 
Figure 4. The mt-haplotype affects several microbe groups in OKCHETB/W rats. Microbial OTUs are compared for OKC-HETB (blue 
boxes) and OKC-HETW (red boxes) male (A) and female (B) rats. The box plots display the 1st and 3rd quartiles with a horizontal line the 
median. The whiskers display minimum and maximum values. The data were collected from 6 to 10 rats per group, and the mt-haplotypes 
were statistically compared using Mann-Whitney/Kruskal-Wallis and/or Linear Modeling with significance at *p < 0.05 or **p < 0.01 shown. 
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Sparse Estimation of Correlations among Microbiomes 
(SECOM) algorithms were used to determine if 
microbial species correlated linearly with other 
microbial species in rats with the same age, sex, and mt-
haplotype. We found no significant linear relationships 
between microbial species by age, sex, or mt-haplotype. 
 
Changes in fecal short-chain fatty acids (SCFAs) 
with age differ by sex in the OKC-HETB/W rats 
 
SCFAs, such as butyric acid, acetic acid, and propionic 
acid, are generated from microbial fermentation of fiber. 
SCFAs have been shown to impact the host by 
regulating metabolic pathways in the host [42]. 
Therefore, we measured the abundance of SCFAs in the 
feces collected from the colon of our rats to determine if 
there were changes in SCFAs produced by the 
microbiome with age and mt-haplotype. Supplementary 
Figure 2A, 2B shows a heat map of the average 
normalized content of the eight SCFAs we detected in 
the fecal material. These heat maps of SCFAs profile 
suggested an increase in fecal SCFA in old OKC-HETW 
rats regardless of sex. However, we only observed a 
significant age-related increase in total SCFAs in 
female OKC-HETW rats and a marginal increase  
in female OKC-HETB rats (Supplementary Figure 2C, 
2D). Figure 5 shows the three SCFAs that changed 
significantly (FDR q-value < 0.05) or were marginally 
significant (Fisher’s LSD p-value < 0.05 and FDR  
q-value > 0.05) in female rats. In female rats, the 
increase in acetic acid was significant for both OKC-
HETB and OKC-HETW rats when comparing age. 
Propionic acid levels increased with age in female 
OKC-HETW rats, while the levels of hexanoic acid 
tended to increase with age in female OKC-HETW rats. 

There were no significant changes in SCFAs when 
comparing mt-haplotypes in male or female rats. 
 
Changes in plasma tryptophan and bile acid 
metabolites with age differ by sex and mt-haplotype 
in the OKC-HETB/W rats 
 
Gut microbes are known to communicate with the host and 
influence health via microbe derived plasma metabolites 
such as tryptophan and bile acid metabolites [9, 43, 44]. 
Therefore, we measured the various tryptophan and bile 
acid metabolites in the plasma using an untargeted 
metabolomics dataset, which was obtained from the same 
rats that were used to study the microbiome. Dietary 
tryptophan is an essential amino acid that is metabolized 
by microbes into bioactive compounds. Supplementary 
Figure 3A–3F shows a heat map of the average levels of 
the nine tryptophan metabolites identified in the plasma 
isolated from OKC-HETB and OKC-HETW rats. 
Supplementary Figure 3G–3L show total abundance of 
different tryptophan derived metabolite classes. These 
metabolites arise from the three major arms of tryptophan 
metabolism: (1) indoles, (2) serotonin production, and the 
(3) kynurenine pathway. The most striking difference 
between the mt-haplotypes were observed in the indole 
profile of female rats which suggested that female OKC-
HETW rats had reduced plasma levels of the indole 
metabolites compared to the OKC-HETB rats regardless of 
age. These data suggest that mt-haplotype led to changes 
in microbiome that led to changes in tryptophan derived 
indoles (Supplementary Figure 3D). 
 
Figure 6 shows the levels of the plasma tryptophan 
metabolites that changed significantly (FDR q-value < 
0.05) or were marginally significant (Fisher’s LSD

 

 
 
Figure 5. Fecal short chain fatty acids changed with age in female rats. Fecal SCFAs were measured in adult (9-months) and old 
(26-months), OKC-HETB (blue boxes) and OKC-HETW (red boxes) rats. Only female rats, shown here, were found to exhibit a significant 
difference with age in fecal SCFAs. The box plots display the 1st and 3rd quartiles with the horizontal line the median. The whiskers display 
minimum and maximum values. The data were collected from 5 rats per group, and values significantly different by FDR *q < 0.05 or values 
marginally significant by Fisher’s LSD ◊p < 0.05 are shown. 
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p-value < 0.05) with age or mt-haplotype in male and 
female rats. In male rats, there were no tryptophan 
metabolites that changed significantly when comparing 
age or mt-haplotype; however, kynurenine was 
marginally increased in adult male OKC-HETW rats 
compared to OKC-HETB rats (Figure 6A). In contrast, 
female rats showed a significant change with age and 
mt-haplotype in several tryptophan metabolites  
(Figure 6B). Adult female OKC-HETB rats had higher 
plasma content of kynurenine and hydroxykynurenine 
compared to old female OKC-HETB rats. Additionally, 
indoxyl-3-sulfate levels were marginally increased with 
age in female OKC-HETB rats. Only kynurenine levels 
decreased significantly with age in female OKC-HETW 
rats. When comparing female rats by mt-haplotype, 
kynurenine and hydroxykynurenine plasma levels were 
significantly increased in the adult female OKC-HETB 
compared to their OKC-HETW counterparts, while the 
increase in 5-hydroxytryptophan levels were marginally 
significant in adult female OKC-HETW compared to 
adult female OKC- HETB rats. Interestingly, mt-
haplotype differences only occurred in adult animals. 

Bile acids are another mode of host-microbiome 
communication. Primary bile acids produced from 
cholesterol are conjugated with either taurine or glycine 
in the liver and released into the gastrointestinal tract in 
rats. Approximately, 95% of the bile acids are recycled 
through enterohepatic circulation. However, ~5% of the 
primary bile acids reach the colon and are metabolized 
by the gut microbiome to produce secondary bile acids 
and can be absorbed to facilitate host-microbiome 
communication [45]. 
 
Supplementary Figure 4 shows a heat map of the 
average plasma content of the fourteen bile acids and 
taurine that were detected in the plasma of the rats. In 
male rats, the overall bile acid profile suggests a robust 
increase in primary bile acids in plasma with age in both 
male OKC-HETB and OKC-HETW animals that was not 
apparent in female rats. Figure 7 shows the plasma 
content of the seven bile acids that changed with age 
and/or mt-haplotype. In male rats (Figure 7A), there 
was a significant increase in the levels of 
tauroursodeoxycholic acid (TUDCA) while the levels of

 

 
 
Figure 6. Microbial metabolism of tryptophan to kynurenine may be affected by age and mt-haplotype in female rats. 
Plasma tryptophan metabolites from male (A) and female (B) OKC-HETB (blue boxes) and OKC-HETW (red boxes) adult (9-months) or old  
(26-months) rats are shown. The box plots display the 1st and 3rd quartiles and a horizontal line at the median, and the whiskers display 
minimum and maximum values. The data were collected from 5 randomly selected rats per group, and the values significantly different by 
FDR *q < 0.05 or values marginally significant by Fisher’s LSD ◊p < 0.05 are shown. 
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taurochenodeoxycholic acid (TCDCA), glycocholic 
acid (GCA), and glycoursodeoxycholic acid (GUDCA) 
were marginally significant in male OKC-HETB rats 
with age but not in OKC-HETW rats. Cholic acid (CA) 
was the only bile acid that significantly increased with 
age in male OKC-HETW rats. When comparing mt-
haplotype in male rats, cholic acid levels were 
significantly increased in old male OKC-HETW rats 
compared to their OKC-HETB counterparts. In female 
rats (Figure 7B), the change in bile acids was limited  
to two metabolites with only plasma levels of 
lithocholytaurine (LCT) showing a significant decrease 
with age in both OKC-HETB rats and OKC-HETW rats 
(Figure 7B). The levels of taurodeoxycholic acid 
(TDCA) levels were marginally increased in old female 
OKC-HETW rats compared to adult OKC-HETW rats 
and old female OKC-HETB rats. 
 
DISCUSSION 
 
Over the past two decades, investigators have studied 
how aging impacts the gut microbiome. Laboratory 
rodents have emerged as an excellent model to study 
microbiome changes with age because variables that 
can affect the microbiome composition in humans, such 

as diet and environment [12], can be controlled over the 
lifespan of the animal. One of the limitations in 
previous rodent studies is that they have used inbred 
mouse strains [15–18, 24]. Because the genome of the 
host has been shown to affect the gut [34–36], it is 
unknown how well microbiome changes with age in one 
inbred mouse strain will translate to another inbred 
strain or to a genetically diverse population, such as that 
encountered by investigators in studying humans. This 
problem is exacerbated because all aging studies in 
mice have used only one inbred strain, C57BL/6 mice. 
While several studies have used outbred rat strains, e.g., 
Wistar or Sprague Dawley rats [19–21], the genetic 
variation is limited in these outbred rats [46] and can 
vary considerably from one commercial source to 
another [47]. To overcome these limitations, we used a 
genetically heterogenous rodent model, the OKC-
HETB/W rat, which was generated to maximize genetic 
heterozygosity [48]. This breeding strategy not only 
allows us (or other investigators) to generate similar 
genetically heterozygous rats at any time; but also 
allows us to generate two strains of rats that differ in 
their mitochondrial genomes, e.g., mitochondria from 
either BN (OKC-HETB) or WKY (OKC-HETW) rats. 
Several reports (Hirose et al., Kunstner et al., and

 

 
 
Figure 7. Changes in primary, but not secondary bile acids, are dependent on sex and mt-haplotype. Plasma bile acids from 
male (A) and female (B) OKC-HETB (blue boxes) and OKC-HETW (red boxes) adult (9-months) or old (26-months) rats are shown. The box 
plots display the 1st and 3rd quartiles with the horizontal line for the median, and the whiskers display minimum and maximum values. The 
data were collected from 6 to 10 rats per group, and significance was defined as FDR *q < 0.05 or values marginally significant by Fisher’s 
LSD ◊p < 0.05. Abbreviations: TUDCA: tauroursodeoxycholic acid; CA: cholic acid; TCDCA: taurochenodeoxycholic acid; GCA: glycocholic acid; 
GUDCA: glycoursodeoxycholic acid; LCT: lithocholytaurine; TDCA: taurodeoxycholic acid. 
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Yardeni et al.) indicate that mt-haplotype can alter the 
microbiome of young C57BL/6 mice [37–39]. Thus, the 
OKC-HETB/W rat gives us the first opportunity to 
determine if the mt-haplotype has an impact on the age-
related changes in the microbiome in a genetically 
heterozygous animal model. Another advantage of 
using the OKC-HETB/W rat model is that rats are more 
similar to humans in many respects than laboratory 
mice used in research, e.g., insulin sensitivity, muscle 
biology, cognition testing, social behavior, and sex 
differences in longevity [49, 50]. In addition, most 
laboratory strains of mice die primarily from cancer, 
while rats also die from non-neoplastic leasions such as 
heart and reneal diseases [49], which could impact the 
microbiome in old animals. Therefore, the data 
generated from the OKC-HETB/W rats are likely to be 
more translatable to humans. 
 
To determine how the gut microbiome changed with 
age, we compared the abundance of microbial species in 
adult (9 months) and old (26 months) male and female 
OCK-HETB/W rats. A total of 11 microbial species 
changed significantly with age: five species in male rats 
and nine species in female rats. Only three microbes 
changed significantly with age in the same direction in 
both male and female rats. On the other hand, six 
species changed with age only in females. Thus, we 
found that the sex of the host played an important role 
in shaping the microbiome changes that occur with age 
in the OKC-HETB/W rat. Currently, there are only two 
studies that have compared the effect of sex on the age-
related changes in the microbiome: one in rats [51] and 
one in humans [52]. Lee et al. studied the effect of 
feeding a high-fat diet to young rats (6 weeks) and old 
(2 years) inbred F344 rats [51]. While they found that 
feeding a high-fat diet significantly altered the 
microbiome of young and old male and female rats, 
they did not find any significant age-related change in 
relative abundance of microbes in either male or female 
chow fed F344 rats. The limited number of rats studied 
(especially the old rats) and/or the collection of fecal 
material after defecation, which can impact the 
microbiome composition [53], could explain the 
differences in our findings. Takagi et al. [52] studied the 
gut microbiome in healthy Japanese subjects ranging 
from 20 to 89 years of age. There were no significant 
changes in the microbiome with age observed at any 
level of taxonomy in either males or females separately. 
Interestingly, significant differences were observed in 
the microbiome between male and female participants 
at each age group studied. Fourteen genera were 
increased specifically in males compared to females, 
and 11 genera were significantly increased in female 
compared to male participants. However, these 
differences could be due to sex hormones [54–56] or 
differences in behavior (e.g., smoking, alcohol 

consumption, activity) [57] or diet [58]. Our data clearly 
demonstrate for the first time that sex of the host had a 
major impact on the age-related changes in the gut 
microbiome and emphasizes the importance of studying 
both males and females when investigating the impact 
of aging on the microbiome. 
 
The OKC-HETB/W rat model allowed us to study the 
effect of the mt-haplotype on the age-related changes in 
the gut microbiome for the first time. Previous studies 
have reported that the mitochondrial genome of the host 
could affect the microbiome of young, inbred mice 
where male and female mice were grouped together for 
analysis [37–39]. However, these studies are limited 
because the mitochondrial genomes compared differed 
by only two to five nucleotides, which is a result of the 
traditional inbred strains of laboratory mice originating 
from a single female Mus musculus domesticus mouse 
[59]. In addition, the different mitochondrial genomes 
were on the same inbred background (C57BL/6). 
Because the B- and W-haplotypes are on a genetically 
heterogenous background, any differences we observe 
in the OKC-HETB and OKC-HETW rats are robust, i.e., 
changes occur on multiple nuclear genotypes and are 
therefore more likely to occur in humans. We observed 
that most of the microbial species that changed 
significantly with age occurred in one but not both mt-
haplotypes. For example, nine out of 11 microbes that 
changed with age were mt-haplotype specific and 
occurred in one sex and not the other. Previous work in 
humans have associated increases in abundance of the 
genera Bifidobacterium and Akkermansia to 
Alzheimer’s [9, 10] and Parkinson’s [11] diseases 
respectively. In the female OKC-HET rats, species in 
the genera Bifidobacterium and Akkermansia were 
changed with age in a mt-haplotype specific manner. 
Although the previous studies did not show any 
association between the mt-haplotype and microbial 
species, they reported significant associations at the 
genus [37, 38] and family [39]. We also found mt-
haplotype differences at the level of the genus and 
order. For example, the genus Lachnospira was 
increased in adult male OKC-HETW compared to adult 
male OKC-HETB rats. The family Lachnospiraceae 
(containing genus Lachnospira) was reported to differ 
with mt-haplotypes in C75BL/6 mice [37, 39] and was 
negatively correlated with reactive oxygen species 
production [39]. We found the genus Bilophila was 
significantly increased in adult female OKC-HETW rats 
compared to adult female OKC-HETB rats. The family 
Desulfovibrionaceae, containing the genus Bilophila, 
was reported to be significantly increased in C57BL/6J 
mice with the FVB/NJ mouse mt-haplotype compared 
to their conplastic pairs containing C57BL/6 nuclear 
DNA and NZB/BlnJ mt-haplotype [37]. Finally, we 
observed that the order Verrucomicrobiales was 
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significantly increased in old female OKC-HETW 
compared to old female OKC-HETB. These observed 
differences when comparing mt-haplotypes show that 
mt-haplotype can influence microbiome composition in 
a genetically heterogenous animal model. 
 
To determine how the changes in the microbiome 
might impact the aging host, we measured the SCFAs. 
SCFAs are produced from fermentation of indigestible 
fiber from commensal bacteria in the gut and can 
regulate metabolic pathways in the host [42]. We 
observed a trend for an age-related increase in total 
fecal SCFAs in female rats with female OKC-HETW 
rats having a significant increase in total SCFAs with 
age. This change with age can be attributed to 
increased acetic acid in old female OKC-HETB and 
OKC-HETW rats and increased propionic acid in old 
female OKC-HETW rats. Previous studies in humans 
have reported that fecal SCFAs decrease with age in 
both male and female human participants [60] and 
when male and female participants are combined [61]. 
Additionally, Lee et al. [51] found that cecal SCFAs 
decreased with age in male F344 rats. However, fecal 
SCFAs were observed to increase in obese compared to 
lean individuals [62] and was positively correlated with 
risk factors associated with metabolic syndrome in 
women such as increased adiposity [63]. Therefore,  
we compared the level of total fecal SCFAs to the fat 
mass of the individual female rats. As shown in 
Supplementary Figure 5, we observed a positive 
correlation between total fecal SCFAs and subcutaneous 
fat mass that tended towards significance (p = 0.07,  
r = 0.41) in female rats. When separating female OKC-
HETW rats, there was a significant positive correlation 
(p = 0.04, r = 0.65). The changes in SCFAs in feces 
could arise from an increase in microbes that produce 
SCFAs [64, 65] or from decreased absorption of  
SCFAs into plasma [66]. Because most of the bacteria 
known to produce SCFAs, e.g., Lactobacillaceae and 
Ruminococcaceae families [42], decreased with age in 
our rats (Figure 3), the increased SCFAs we observed in 
feces of the old female rats most likely arises from a 
decrease in the absorption of the SCFAs into the 
plasma, which could arise from the age-related decline 
in intestinal absorption that has been reported in rats 
[67], mice [68], and humans [69]. 
 
Tryptophan metabolites are one of the best examples of 
the metabolic cross talk between the gut microbiome 
and host because these metabolites can influence the 
host’s health and disease processes [43, 70]. Tryptophan 
is metabolized by microbes into indoles, which can 
modulate pathways producing either serotonin or 
kynurenine from tryptophan. The production of 
serotonin and kynurenine are primarily produced by the 
host’s endochromaffin cells [71, 72] and liver [73, 74], 

respectively. However, indole and its derivatives are 
produced specifically by gut microbiota [43]. We 
observed major differences in plasma metabolites of 
tryptophan by sex. The total level of plasma indoles 
tended to be lower in adult and old female OKC-HETW 
rats compared to OKC-HETB rats (Supplementary 
Figure 3D). Four tryptophan metabolites changed with 
age in female rats and only one in males (Figure 6). The 
plasma levels of kynurenine showed the greatest change 
with age in females. Although the mechanism through 
which the microbiome impacts liver kynurenine 
production is unclear, studies using germ-free mice 
have shown that plasma levels of kynurenine are 
significantly reduced in the absence of the microbiome 
[73], which is increased after recolonization [75]. 
Plasma kynurenine decreased significantly with age in 
both mt-haplotypes in female rats. Although kynurenine 
levels did not change significantly with age in male rats, 
they were marginally decreased in male OKC-HETB 
compared to male OKC-HETW rats. A study in male 
inbred mice reported age-related increases in serum 
kynurenine levels between 3 and 28 months of age [18]. 
However, Comai et al. [76] reported an age-related 
decrease in enzymatic activity of liver indoleamine 2,3-
dioxygenase (IDO) in Sprague-Dawley rats. IDO is the 
rate-limiting step in tryptophan metabolism to 
kynurenine and is modulated by the gut microbiome 
[43], which could agree with our observation that 
kynurenine levels decrease with age in rats. In a review. 
Bakker et al. reported that 50% of the human studies, 
which measured plasma kynurenine with age, found 
increased plasma kynurenine levels [77]. Interestingly, 
for all the tryptophan metabolites that changed with age, 
we observed mt-haplotype differences in adult rats. For 
example, kynurenine and hydroxykynurenine levels 
were reduced in female OKC-HETW rats while in male 
rats, kynurenine was increased in male OKC-HETW 
rats. Thus, mt-haplotype appears to play a role in 
tryptophan metabolism, which could occur via 
modulation of gut microbiome composition. 
 
The microbiome also plays an important role in the bile 
acid pool size and composition [78]. Primary bile acids 
(PBAs) produced in the liver are secreted into the 
gastrointestinal tract of rats. Because primary 
conjugated bile acids are detergents and acidic, they 
can affect the gut microbe diversity and composition 
[79, 80]. While most of the PBAs are reabsorbed in the 
terminal ileum, the gut microbiota can deconjugate and 
metabolize them into secondary bile acids, which are 
absorbed in the terminal ileum and colon [78]. These 
secondary bile acids produced by the microbiome play 
an important role in bile acid homeostasis of the host, 
and these changes in secondary bile acids can 
contribute to conditions like non-alcoholic fatty liver 
disease, inflammatory bowel disease, and cholesterol 
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disorders [80–82]. We observed significant changes in 
the plasma levels of only PBAs with age and mt-
haplotype. In contrast to tryptophan metabolites, the 
age-related changes in plasma levels of bile acids were 
greatest in male rats, with five metabolites changing 
with age or mt-haplotype compared with two 
metabolites in female rats. In general, there was an age-
related increase in plasma bile acids in male but not 
female rats (Supplementary Figure 4). However, total 
PBAs were marginally significance with age only in 
male OKC-HETB rats. These changes can be attributed 
to increases in the plasma levels of TUDCA, TCDA, 
GCA, and GUDCA in OKC-HETB male rats. Bile acid 
secretion from the liver decreases with age in male and 
female humans as measured from the biliary duct [83] 
and is unaffected in aged male Wistar and Sprague 
Dawley rats [84]. In humans, plasma bile acids 
decrease with age in males while female plasma bile 
acid profile is largely unchanged [85]. However, our 
data support previous work in male rats suggesting 
increased plasma primary bile acids with age. For 
example, an increase in plasma bile acids was reported 
in male Wistar-Imamichi rats between three and 11 
months of age [86], and taurine-conjugated bile acids 
were increased in bile collected from the bile duct 
between six and 15, months of age in male Sprague-
Dawley rats [87]. We also observed that mt-haplotype 
had an impact on the plasma levels of the primary bile 
acids. Except for LCT, which decreased with age in 
both the B- and W-haplotypes in female rats, all the 
changes in bile acid metabolites were mt-haplotype 
specific. Particularly striking was the age-related 
increase in TUDCA, TCDCA, GCA, and GUDCA, 
which was observed only in male OKC-HETB rats. We 
did not observe any differences in secondary bile acids 
when comparing age or mt-haplotype in male and 
female OKC-HETB/W rats. Thus, age and mt-haplotype 
appear to play a greater role in the host’s ability to 
produce PBA with age than the plasma secondary bile 
acids produced by the microbiome. PBAs are known to 
influence gut microbiome composition because of their 
antimicrobial properties and by increasing the acidic 
environment of the colon [79, 80]. Therefore, we were 
interested in determining if any microbes changed 
specifically with age only in male OKC-HETB rats that 
might be associated with the increase in plasma levels 
of TUDCA, TCDCA, GCA, and GUDCA. A 
significant increase in the abundance of L. reuteri was 
observed in old male OKC-HETB rats that was 
associated with the age-related increase with PBAs in 
plasma of the male OKC-HETB rats. Because L. reuteri 
is a lactobacillus species that is resistant to an acidic 
environment [79], the age-related increase in L. reuteri 
in the male OKC-HETB rats might have arisen from 
increased PBAs in the colon that came from the 
increased levels of plasma PBAs. 

In conclusion, we used a genetically heterogenous rat 
model to study how the gut microbiome changes with 
age that should be more translatable to humans than 
previous studies with inbred mice or outbred rats, which 
have limited genetic diversity. We found the age-related 
changes in the microbiome differed greatly between 
male and female rats, demonstrating the importance of 
studying both males and females when evaluating the 
impact of age on the microbiome. Importantly, we 
found that the mt-haplotype of the rats played an 
important role in how aging altered the microbiome. 
Although previous studies have shown the 
mitochondrial genome can affect the microbiome of 
young, inbred mice [37–39], it was not clear from these 
studies if the effect of mt-haplotype would translate to 
other genetic backgrounds or differ with sex. Our data 
show for the first time that mt-haplotype differences are 
robust enough to impact the microbiome on a genetic 
heterogenous background. In addition, we found that 
the effect of the mt-haplotype was sex dependent, i.e., 
the impact of the mt-haplotype on the age-related 
changes in the microbiome almost always occurred in 
one sex and not the other. Because the microbiome has 
been shown to impact a host’s metabolic health [3], 
immunity [4], cardiovascular health [5], and cognitive 
function [6, 7], these age-related changes in the 
microbiome could play a role in the increased occurance 
of disease and pathology seen in older individuals. 
 
Recent data suggest a bidirectional interaction between 
the gut microbiome and mitochondria [73, 88, 89]. For 
example, an early study by Han et al. (2017) with C. 
elegans showed that several E. coli mutants promoted 
longevity through the secretion of colonic acid, which 
regulated mitochondrial dynamics and the unfolded 
protein response in the host’s cells. In addition, two 
species of Lactobacillus [90] and postbiotics from 
Lacticaseibacillus casei [91] were reported to alter 
mitochondrial function in the liver of rats. On the other 
hand, the deficiency of the mitochondrial protein 
(methylation-controlled J protein) in mice was shown to 
have profound effect on the microbiome [88, 92]. Thus, 
the question emerges as to how the microbiome and 
host mitochondria communicate. In a review, Zhang 
et al. (2022) proposed that SCFAs produced by the 
microbiome could be modulators of mitochondria 
function in the intestinal epithelium [89]. Interestingly, 
we showed that fecal SCFAs were increased with age  
in female rats. Yardeni et al. (2019) showed  
that differences in the mitochondrial redox status and 
ROS production that occurred in mice with different 
mitochondrial genomes were associated with 
modifications in the gut microbiome [39]. They 
proposed that changes in redox status might impact 
metabolites produced by the host cells that were then 
secreted into the gut. They also showed that expressing 
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catalase in the mitochondria of the host had the single 
greatest impact on the gut microbiome, suggesting 
hydrogen peroxide produced by the host might act 
directly on the microbes in the gut. They also proposed 
that the release of mtDNA from the mitochondria in 
stressed intestinal cells could activate the cGAS-Sting 
pathway, resulting in an inflammatory response that 
could in turn affect the gut microbiome. Thus, to 
understand the impact of mt-haplotype on the gut 
microbiome, future studies should focus on how 
mitochondrial function differs in the cells in the 
intestine of OKC-HETB and OKC-HETW rats as they 
age. Our preliminary data show that feeding a high-fat 
diet affected mitochondrial function in skeletal muscle 
differently in the B- and W-haplotypes [48]. 
 
MATERIALS AND METHODS 
 
Animals 
 
The OKC-HETB/W rats with two different mitochondrial 
haplotypes were generated by breeding four inbred 
strains of rats ((Brown Norway (BN), Fischer 344 
(F344), Wistar Kyoto (WKY), and Lewis (LEW) rats) 
obtained from Charles River as previously described 
[48]. Briefly, BN/F344 F1 rats were generated by 
crossing female BN rats to male F344 rats and 
WKY/LEW F1 rats were generated by crossing female 
WKY to male LEW rats (WKY/LEW). OKC-HETB rats 
were generated by crossing female BN/F344 to male 
WKY/LEW rats and the OKC-HETW were generated by 
crossing female WKY/LEW to male BN/F344 rats. Due 
to this selective breeding and taking advantage of the 
maternal inheritance of mitochondrial DNA, all rats 
have similar nuclear heterogeneity while containing two 
different mitochondrial haplotypes. The OKC-HETB 
rats contain mitochondria from the BN rats, and the 
OKC-HETW rats contain mitochondria from the WKY 
rats, which differ by 94 nucleotides [48]. These rats 
were bred and maintained in the Oklahoma City VA 
Medical Center animal facilities in specific pathogen 
free conditions. They were fed ad libitum on chow diet 
(Picolab Rodent Diet 5053, LabDiet, St. Louis, MO, 
USA). Male and female OKC-HETB and OKC-HETW 
rats were studied at 9- (adult) and 26- (old) months of 
age. Feces and plasma were collected from adult male 
OKC-HETB (n = 6), adult male OKC-HETW (n = 6), 
adult female OKC-HETB (n = 9), adult female OKC-
HETW (n = 9), old male OKC-HETB (n = 10), old male 
OKC-HETW (n = 6), old female OKC-HETB (n = 7), 
and old female OKC-HETW (n = 8) rats. Rats were 
fasted for 16 hours prior to termination and whole blood 
was collected in EDTA coated tubes by cardiac 
puncture, and plasma was separated from whole blood 
(1000 × g for 10 minutes), flash frozen, and stored at 
−80°C. The colon was separated from the anus and 

feces were collected directly from the colon, 
immediately flash frozen in liquid nitrogen, and stored 
at −80°C. All procedures were approved by the 
Institutional Animal Care and Use Committee at the 
Oklahoma City Veterans Affairs Health Care System 
(Protocol Number: 1640635/2108-002). 
 
Microbiome analysis 
 
DNA extraction 
DNA was isolated from colon fecal samples using the 
ZymoBIOMICS DNA miniprep Kit (D4300, ZYMO 
RESEARCH, Orange, CA, USA) as specified by the 
manufacturer. A NanoDrop Lite Spectrophotometer 
(ThermoFisher Scientific) was used to determine 
quantity and quality of isolated DNA. 
 
16S rRNA sequencing 
Library construction and 16S rRNA sequencing were 
performed on the isolated fecal DNA by the OUHS 
Institutional Research Core Facility (IRCF). Data were 
generated using Illumina MiSeq libraries prepared 
using MiSeq Reagent Kit V3-V4. Data analysis was 
provided by the OK-INBRE Data Science Core. 
Sequences were processed and analyzed using 
QIIME2 v2022.11 [93]. Standard data clean-up was 
performed using Cutadapt [94] Sequences were 
grouped into amplicon sequence variants (ASVs) using 
the DADA2 QIIME2 plugin [95]. MAFFT was used to 
align the ASVs and FastTree was used to create a 
rooted phylogenetic tree [96, 97]. Rarefaction curves 
showed that all samples reached asymptote indicating 
the sequencing depth used was sufficient. A QIIME2 
naïve Bayesian classifier trained on sequences from 
the V3-V4 region of Greengenes v13_8 99% OTUs 
was used to assign a taxonomic profile to each ASV 
[98]. Microbial abundance tables were generated to the 
species level. 
 
Analysis of plasma metabolites 
 
Metabolite extraction 
Extraction of metabolites from rat plasma was adapted 
from a previous study [90]. Metabolites from 70 µL  
of plasma were extracted in 400 µL cold 
methanol/acetonitrile (1:1, v/v) and homogenized in a 
Precellys 24 Touch Homogenizer (Bertin technologies, 
Montigny-le-Bretonneux, France) twice for 20 seconds. 
The samples were then incubated for two hours at 
−20°C to precipitate protein. Samples were centrifuged 
at 4°C for 15 minutes at 13,000 × g, and 400 µL of 
supernatant was collected. The supernatant was 
centrifuged again at 4°C for 15 minutes at 13,000 × g. 
Supernatant was collected and evaporated to dryness in 
a vacuum concentrator for two hours. The dry extracts 
were reconstituted in 150 µL of acetonitrile/DI water 
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(1:1, v/v) and then vortexed for 30 seconds to dissolve 
the dried metabolite pellet. The samples were 
centrifuged for the last time at 4°C for 10 minutes at 
13,000 × g. A quality control (QC) pooled sample was 
prepared by combining 5 µL of each sample 
supernatant. The QC is a “mean” profile representing all 
metabolites encountered in the analysis. The sample 
supernatants and QC were stored at −80°C until they 
were analyzed using liquid chromatography with 
tandem mass spectrometry (LC-MS/MS). 
 
LC-MS/MS-based metabolomics analysis 
Samples were spiked just before analysis with 3 µL of 
isotope labeled metabolite Mix 1 QReSS Kit 
(Cambridge Isotope Labs) to account for potential 
instrument performance variation throughout the 
analysis. Supplementary Figure 6. shows that our 
range of variation between the expected m/z and 
measured m/z was less than 0.05 ppm. Liquid 
chromatography was performed using a Sciex 
ExionLC AD ultra-high-performance liquid 
chromatograph (UPHLC) system. Volumes of 2 µL 
were injected into a 2.1 × 150 mm, 2 µL Intersil Ph-3 
HPLC column (GL Sciences, Torrance, CA, USA). 
The autosampler and column over temperature were 
held at 15°C and 40°C, respectively. A binary elution 
system of (A) LC-MS grade water + 0.1 % formic acid 
and (B) methanol + 0.1% formic acid was utilized to 
achieve separation using a flow rate of 0.3 mL/min in 
a 23 min gradient. Pooled QC and blanks were injected 
between every eight samples, and samples were fully 
randomized prior to injection. Mass spectrometry 
analysis was conducted with a Sciex ZenoTOF 7600 
(Framingham, MA, USA) in both positive and 
negative electrospray ionization modes, utilizing the 
information-dependent acquisition (IDA) mode. 
 
LC-MS/MS data processing 
Raw data was imported into MS Dial v5 (RIKEN 
Center, Yokohama City, Kanagawa, Japan) [99] for 
feature detection, peak alignment, and peak integration. 
Metabolites were confirmed using MS, MS/MS 
fragmentation using publicly available libraries for LC-
MS/MS from the MassBank of North America 
(MoNA), and an in-house curated IROA library (Ann 
Arbor, MI, USA). Data was acquired in both 
electrospray ionization (ESI) positive and negative 
modes. First, features were removed from the dataset  
if their peak height was not at least 5-fold higher  
than that found in blank samples. Features without 
MS/MS peaks, or known fragmentation signatures, were 
removed. Metabolites associated with microbial 
deconjugation of bile acids (primary and secondary bile 
acids) and tryptophan metabolism (serotonin, 
kynurenine, indoles) were selected from the 
metabolome for further data analysis [43, 80, 100]. 

Targeted metabolomics for fecal short-chain fatty 
acids (SCFAs) 
 
Colonic feces (200 mg) of five randomly selected rats 
per group were sent to Metabolon (Metabolon, Inc., 
Morrisville, NC, USA) where SCFAs were quantified 
with a targeted metabolomic LC-MS/MS (Agilent 1290 
UHPLC/Sciex QTrap 5500) panel of eight total 
metabolites. All eight metabolites were detected in our 
samples. 
 
Statistical analysis 
 
Statistical analysis was completed using 
MicrobiomeAnalyst 2.0 [101], MetaboAnalyst 6.0 
[102], and GraphPad v10 (Dotmatics, Boston, MA, 
USA). Statistical analysis of male and female rats was 
completed separately. Comparisons of age (adult vs. 
old) were performed in rats of the same sex and mt-
haplotype. Comparisons of mt-haplotype were 
performed on rats of the same age and sex but different 
mt-haplotypes (e.g. adult male OKC-HETB vs. adult 
male OKC-HETW). ANOVA with Tukey’s post-hoc 
analysis was used to determine differences in body 
weight, subcutaneous fat weight, and gonadal fat 
weight. T-test was used to compare fat weights in old 
female OKC-HETB/W rats. 
 
MicrobiomeAnalyst 2.0 was used to determine 
differences in Chao1 and Shannon alpha-diversity using 
Mann-Whitney/Krushkal-Wallis FDR <0.05 cutoff  
for significance. Differences in beta-diversity were 
determined using Jensen-Shannon Divergence and 
PERMANOVA FDR <0.05 to determine significance 
and were represented by principal coordinate analysis 
(PCoA) plots. Differences in abundance of individual 
microbes at different levels of taxa were determined 
using Mann-Whitney/Kruskal-Wallis (MK) FDR <0.05 
and Linear Modeling (LM) from MaAsLin2 [51] 
integrated in MicrobiomeAnalyst 2.0 after normalizing 
data using relative log expression. For ease of 
understanding, all significant differences are 
represented as relative abundance (%). SparCC [103] 
and SECOM (Pearson1) [104] algorithms embedded in 
MicrobiomeAnalyst 2.0 were used to determine linear 
correlation relationships between microbial species to 
other microbial species in rats of the same age, sex, and 
mt-haplotype. SparCC was run with 100 permutations. 
A p-value < 0.05 and correlation threshold of 0.3 was 
considered significant for both SparCC and SECOM 
(Pearson1) analyses. 
 
Statistical analysis of metabolite content was performed 
in GraphPad v10. Heat maps were created using 
MetaboAnalyst 6.0. Comparisons were completed in 
male and female rats separately. Fisher’s LSD with FDR 



www.aging-us.com 537 AGING 

<0.05 was used to determine significance. Additionally, 
differences in metabolites were considered to be 
marginally significant when Fisher’s LSD <0.5, and FDR 
>0.05. This was done to bring attention to metabolites 
that could be physiologically important though they did 
not meet the arbitrary significance value of p = 0.05. All 
variables were checked for normality and non-parametric 
tests were utilized if the test for normality was significant 
(i.e., the data were not normal). 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 

 
 
Supplementary Figure 1. Body composition of male and female OKC-HETB/W rats by age and mt-haplotype. Body weight (A), 
subcutaneous fat pad weight (B), and gonadal fat pad weight (C) of male and female, adult (9-months) or old (26-months), and OKC-HETB 

(blue boxes) and OKC-HETW (red boxes) rats are shown. The box plots display the 1st and 3rd quartiles with the horizontal line for the 
median, and the whiskers display minimum and maximum values. The data were collected from 6 to 10 rats per group, and statistical 
significance determined by one-way ANOVA with Tukey’s post-hoc (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001) or by the t-test §p < 0.05. 
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Supplementary Figure 2. Fecal SCFA profile of OKC-HETW rats. The heatmap of fecal SCFAs from male (A) and female (B), adult  
(9-months) and old (26-months) is shown. The total levels of fecal SCFAs are shown for male (C) and female (D) OKC-HETB (blue boxes) and 
OKC-HETW (red boxes) rats. The boxes display the 1st and 3rd quartiles with the horizontal line for the median, and the whiskers display 
minimum and maximum values. The data were collected from 5 randomly selected animals per group, and significance was defined as FDR 
*q < 0.05 or values marginally significance by Fisher’s LSD ◊p < 0.05. 
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Supplementary Figure 3. Plasma tryptophan metabolite profile of OKC-HETW rats. Tryptophan derived metabolites were 
measured using untargeted metabolomics in the plasma of male and female, adult (9-months) and old (26-months), and OKC-HETB (blue 
boxes) and OKC-HETW (red boxes) rats. Heatmaps are shown for metabolites of indole (A), serotonin (B), and kynurenine (C) from males and 
indole (D), serotonin (E), and kynurenine (F) metabolites from females. The total levels of indole metabolites, serotonin metabolites, and 
kynurenine metabolites are shown for male (G–I) and female (J–L) rats. The box plots display the 1st and 3rd quartiles with the horizontal 
line for the median, and the whiskers display minimum and maximum values. The data were collected from 6 to 10 rats per group, and 
significance was defined as FDR *q < 0.05 or by the t-test §p < 0.05. 
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Supplementary Figure 4. Primary bile acid profile of OKC-HETW rats. Bile acids were measured using untargeted metabolomics in 
the plasma of male and female adult (9-months) and old (26-months), and OKC-HETB (blue boxes) and OKC-HETW (red boxes) rats. 
Heatmaps of primary bile acids for male (A) and female (B) rats and secondary bile acids for male (C) and female (D) rats are shown. The 
total levels of primary and secondary bile acids from male (E, F) and female (G, H) rats are shown. The box plots display the 1st and 3rd 
quartiles with the horizontal line for the median, and the whiskers display minimum and maximum values. The data were collected from 6 
to 10 rats per group, and ◊values marginally significant by the Fisher’s LSD p < 0.05 shown. 
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Supplementary Figure 5. Subcutaneous fat and total fecal SCFA are positively correlated for female OKC-HETW rats. The 
correlation between subcutaneous fat (from Supplementary Figure 2) and total fecal SCFAs (from Supplementary Figure 3) are shown for 
the following: all female rats (A), female OKC-HETB rats (B), female OKC-HETW rats (C), all male rats (D), and all male and female rats (E). The 
data were collected from 6 to 10 rats per group and statistically analyzed by Pearson’s correlation to obtain an r-value. Significance was 
defined as p < 0.05. 
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Supplementary Figure 6. Error deviation for isotopically labeled standards for metabolomic analysis. Error deviation (ppm) for 
six isotopically labeled standards (metabolite Mix 1 QReSS Kit (Cambridge Isotope Labs) spiked in our samples (n = 61). Deviation error is 
calculated from the difference between the measured and expected exact mass (m/z value) in both positive (ESI+) and negative (ESI-) 
electrospray ionization modes. Here we show that our deviation error was <0.05 ppm in all our samples. 
 
 


