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INTRODUCTION 
 

Radiotherapy plays a fundamental role in the treatment 

of cancer. Even though radiotherapy is widely used, its 
outcomes can vary significantly depending on the 

cancer type. It was observed that GBM patients who 

received radiotherapy have better overall survival than 

those who did not receive radiotherapy [1]. Conversely, 

it was observed to have the opposite effect with LGG 

patients [2]. Tumor heterogeneity is a major factor that 

affects radiotherapy response rates, even among patients 

diagnosed with the same tumor type [3]. The variability 

in radiotherapy outcomes across cancer types may lie in 

the complex interactions between treatment, anatomical, 
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ABSTRACT 
 

Radiotherapy is a crucial treatment option for various cancers. However, the results of radiotherapy can vary 
widely across different cancer types and even among patients with the same type of cancer. This variability 
presents a major challenge in optimizing treatment strategies and improving patient survival. Here, we 
collected radiotherapy phenotype and expression data from 32 TCGA cancer datasets and performed overall 
survival analysis for 32 cancer types. Additionally, we conducted a signaling pathway enrichment analysis to 
identify key pathways involved in radiotherapy resistance and sensitivity. Our findings show that radiotherapy 
improves survival outcomes in certain cancer types, such as glioblasoma multiforme (GBM), while worsening 
outcomes in others, such as low-grade glioma (LGG). Next, we focused on exploring the differences in 
radiotherapy outcomes between GBM and LGG, focusing on the molecular mechanisms contributing to these 
variations. We identify differential regulation of pathways related to programmed cell death, DNA repair, 
telomere maintenance, chromosome condensation, antiviral responses, and interferon signaling between GBM 
and LGG patients perhaps explaining radiotherapy efficacy. A genetic analysis confirmed the importance of 
immune response and radiotherapy outcome for LGG patients. These insights underscore the importance of 
personalized treatment approaches and the need for further research to improve radiotherapy outcomes in 
cancer patients. 
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tumor and patient-related variables. These interactions 

can significantly influence treatment efficacy and 

patient prognosis [4]. Additionally, the use of radio-

therapy varies significantly across different cancer 

diagnoses, and understanding these variations can help 

improve treatment strategies [5]. GBM and LGG are 

particularly interesting to study together because GBM 

often originates from a preexisting LGG, representing a 

progression from a lower-grade to a higher-grade 

malignancy [6]. This progression is associated with 

significant changes in gene expression profiles [7], 

which may underlie the differences in radiotherapy 

outcomes observed between these two cancer types. 

Understanding these differences is crucial, as it can 

inform personalized treatment strategies and improve 

survival outcomes. 

 

Recent advancements in radiotherapy for GBM and 

LGG include the exploration of various targeted 

therapies [8], novel radiotherapy approaches, and 

immunotherapies. For instance, vaccine strategies  

have shown promising results in early-phase clinical 

studies [9]. Particle irradiation and dose escalation 

strategies, including modern molecular imaging, are 

being evaluated for their long-term outcomes [10]. 

Intraoperative radiotherapy (IORT) is being explored  

to sterilize the margins from persistent tumor cells  

and bridge the therapeutic gap between surgery and 

radio chemotherapy [11]. Immunotherapy is another 

promising modality, with radiotherapy potentially 

enhancing the effect of immunotherapy through various 

mechanisms. These include understanding the 

microenvironment to overcome “tumor coldness” and 

employing dual immunotherapy, which targets immune 

pathways at different stages and through different 

receptors [12]. The combination of radiotherapy with 

targeted therapies against key DNA damage response 

players, including TP53, WEE1, BRCA, and PARP, is 

another example of promising combinations, as DNA 

damage is a key mechanism by which tumor cell death 

might be achieved [13]. PARP inhibitors have been 

shown to sensitize high-grade glioma, medulloblastoma, 

and ependymoma cell lines to ionizing radiation [14]. 

 

Despite these advancements, the survival rate for GBM 

patients has not significantly improved in recent years, 

indicating a need for novel therapies that could be used 

in conjunction with standard radio chemotherapy 

approaches [15]. Radiotherapy resistance is frequently 

observed in GBM patients and is a major cause of the 

high mortality rate [16]. This resistance is often 

multifactorial and heterogeneous, associated with the 

recurrence of GBM after surgery [17]. Similarly, 
advancements in radiotherapy for LGG have been 

significant, driven by improvements in neuroimaging, 

radiotherapy planning, and delivery techniques, 

contributing to better tumor control and reduced 

radiation-related toxicity [18]. Despite these 

advancements, the role of radiotherapy in LGG remains 

debated, with some studies failing to demonstrate a 

radiotherapeutic dose-response effect [19]. The optimal 

timing of radiotherapy is also debated, with some 

evidence suggesting that delayed and reduced dose 

irradiation may be beneficial [20]. 

 

In response to these challenges, our study aims to 

investigate the variability in radiotherapy outcomes 

between GBM and LGG patients. We collected 

radiotherapy phenotype data for 32 TCGA cancer 

datasets and performed an overall survival analysis for 

32 cancer types. We also conducted a signaling pathway 

enrichment analysis to uncover the underlying biological 

processes that may contribute to the observed 

differences in radiotherapy outcomes for GBM and LGG 

cancer patients. A differential regulation of pathways 

related to programmed cell death, DNA repair, telomere 

maintenance, chromosome condensation, antiviral 

responses, and interferon signaling was observed. 

Importance of the immune response in radiotherapy 

outcome for LGG cancer patients were confirmed using 

genetic data. The findings could have a significant 

impact on personalized treatment approaches and novel 

co-treatment approaches with radiotherapy. 

 

MATERIALS AND METHODS 
 

Data collection and differential expression analysis 

 

Gene expression, phenotype, and survival data for 32 

TCGA cancers and CNV data (GDC GISTIC copy 

number dataset) for TCGA-LGG and TCGA-GBM 

cancers and mutation data (MuTect2 Variant 

Aggregation and Masking) for TCGA-LGG cancers 

were collected from the UCSC Xena database [21]. 

CNV and mutation data were already preprocessed 

according to the NCI GDC pipeline. Definitions of all 

available in TGCA data mutations were manually 

categorised into 4 major groups including “protein 

coding”, “disruptive protein coding”, “splice site” and 

“noncoding” (Supplementary Table 1, Column called 

“All detected mutations in TCGA cancers” describes 

the original name of mutations provided in UCSC Xena 

database, columns called “category” represents the 

names of the mutations categorized into 4 major 

groups). FPKM-UQ expression data obtained from 

patients’ samples were uploaded into PandaOmics [22] 

and preprocessed according to the PandaOmics 

pipeline. Differential expression analysis was performed 

using the limma package for TCGA-GBM and TCGA-

LGG datasets, comparing patients who received 

radiotherapy to those who did not receive radiotherapy. 

The obtained gene-wise p-values were corrected using 
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the Benjamini–Hochberg procedure. Differential 

expression results were later used for gene set 

enrichment analysis. 

 

Overall survival analysis of IR-treated and IR-

untreated cancer patients 

 

Survival analysis was conducted using the 

KaplanMeierFitter function from the lifelines Python 

package. Patients were divided into two groups: those 

who received radiotherapy and those who did not 

receive radiotherapy. Only patients with available 

expression data and known irradiation status were 

included in the analysis. Briefly, 32 TCGA cancers 

(Supplementary Table 2) were analyzed, and survival 

analysis was performed between the two described 

groups of patients. The log-rank test was used to 

calculate statistical significance. The significance of 

survival outcomes was plotted on a heatmap and 

colored red if radiotherapy increased survival outcomes 

and blue if the application of radiotherapy decreased 

survival outcomes. Non-significant results were colored 

white. Combined survival plots for patients who 

received and did not receive radiotherapy across all 

TCGA cancers were plotted using the matplotlib 

package. Sub-stratification of IR-treated GBM and 

LGG patients was performed according to CNV loss or 

gain status of a gene compared with neutral status of the 

same gene. Only genes that exhibit alterations in at least 

10% of cancer-specific patient samples were considered 

for the survival analysis. 

 

Signaling pathway enrichment analysis 

 

Pathway enrichment analysis was performed using the 

GSEApy package with the enrichr() function, following 

standard protocols. The Reactome database was 

selected as the source of gene sets from the GSEApy 

internal library for signaling pathway enrichment 

analysis. Genes that were significantly up-regulated in 

TCGA-GBM and simultaneously down-regulated in 

TCGA-LGG, and vice versa, were used as input for the 

pathway enrichment analysis. The top 20 significantly 

perturbed signaling pathways were visualized on a dot 

plot using the GSEApy.plot function. Additionally, 

genes whose loss of function compared with neutral 

status were associated with significant stratification of 

IR-treated LGG patients were used as input for the 

pathway enrichment analysis. The top 20 significantly 

perturbed signaling pathways were visualized on a dot 

plot using the GSEApy.plot function. 

 

Paper draft preparation 

 

The draft of this paper was generated using DORA, 

Insilico Medicine’s LLM-based paper drafting assistant. 

Draft Outline Research Assistant (DORA) is designed 

to streamline the process of publication creation, 

making it faster and simpler. The process of paper 

generation is curated by over 30 AI agents, powered by 

Large Language Models (LLMs), and integrated with 

internal and other curated databases, to assist in 

generating high-quality scientific papers. Each agent 

employs Retrieval-Augmented Generation (RAG) to 

perform comprehensive data collection and analysis, 

reduce the probability of hallucinations, and provide 

relevant PubMed links to make the generation of the 

paper more transparent. Followed by generation, the 

draft was manually curated and extended by the authors. 

 

Data availability 

 

All data supporting the conclusions of the paper are 

available in the article and corresponding figures. 

TCGA datasets used in the paper are described in the 

materials and methods section. 

 

RESULTS 
 

Patient and tumor characteristics in TCGA cancers 

 

Radiotherapy phenotype data were collected for 32 

TCGA cancer datasets from the UCSC Xena database. 

TCGA-LAML was excluded from the analysis since 

there were no patients who received radiotherapy. The 

total number of samples varies between 1,194 and 45 

for TCGA-BRCA and TCGA-CHOL, respectively. 

Similarly, the percentage of patients who received 

radiotherapy varies between 82% and 0% for TCGA-

GBM and TCGA-KIRC/TCGA-CHOL/TCGA-KICH/ 

TCGA-KIRP, respectively. It was noted that TCGA-

GBM and TCGA-LGG are the cancers with the highest 

percentage of patients who received radiotherapy, at 

82% and 54%, respectively (Figure 1). 

 

Overall survival analysis of patients who received 

and did not receive radiotherapy 

 

To study whether radiotherapy treatment could be used 

as a trait capable of stratifying cancer patients with 

different outcomes, we performed an overall survival 

analysis for 32 cancer types from the TCGA dataset. 

The overall survival analysis was conducted for patients 

who received radiotherapy and for those who did not 

receive radiotherapy (Figure 2A). In some cases, 

radiotherapy can improve survival outcomes, while in 

others, it worsens them. For example, it was found that 

patients with GBM, BRCA, READ, UCEC, STAD, and 

HNSC who received radiotherapy lived longer 

compared to patients who did not receive radiotherapy. 

Conversely, it was noted that patients with UVM, 

LUAD, and LGG who received radiotherapy had 
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shorter survival compared to those who did not receive 

radiotherapy (Figure 2B). This observation led us to 

focus on the differences between GBM (Figure 2C, left) 

and LGG (Figure 2C, right) patients who received and 

did not receive radiotherapy, since GBM can develop 

from LGG. 

 

Signaling pathway enrichment analysis of GBM and 

LGG patients and patients’ genetic profiles 

 

To find differences at the transcriptional level between 

GBM and LGG patients who were exposed to 

radiotherapy and those who were not, we collected gene 

expression data for those patients. Then we created 

comparisons between patients who received 

radiotherapy and those who did not, and calculated 

differentially expressed genes. After that, we obtained a 

list of genes that were significantly down-regulated in 

GBM patients and at the same time significantly up-

regulated in LGG patients, and vice versa. Those gene 

lists were used for pathway enrichment analysis to 

uncover the underlying biological processes 

contributing to the observed differences in radiotherapy 

outcomes (Figure 3). The rationale behind the pathway 

enrichment analysis choices was to identify and 

understand the specific biological processes and 

molecular pathways that are differentially regulated in 

response to radiotherapy in GBM and LGG patients, 

thereby providing insights into the mechanisms 

underlying their distinct responses to treatment and 

potentially revealing targets for therapeutic intervention. 

It was noted that pathways related to programmed cell 

death and DNA repair, such as “Diseases Of 

Programmed Cell Death” and “Base-Excision Repair,” 

were down-regulated in GBM but up-regulated in LGG. 

This suggests a potential mechanism by which LGG 

cells might be more susceptible to radiotherapy-induced 

damage, whereas GBM cells might evade such damage. 

It was also observed that pathways involved in telomere 

maintenance and chromosome condensation, such as 

“Packaging Of Telomere Ends” and “Condensation Of 

Prophase Chromosomes,” were differentially regulated, 

indicating a possible role in the differential radiotherapy 

outcomes between GBM and LGG (Figure 3A). 

Moreover, pathways associated with antiviral responses 

and interferon signaling, including “ISG15 Antiviral 

Mechanism” and “Interferon Signaling,” were up-

regulated in GBM and down-regulated in LGG. This 

could imply an enhanced immune response in GBM, 

potentially contributing to its resistance to radiotherapy. 

Finally, pathways related to gene expression and protein 

metabolism, such as “Gene Expression (Transcription)” 

and “Metabolism Of Proteins,” were up-regulated in 

GBM and down-regulated in LGG, suggesting a higher 

metabolic and transcriptional activity in GBM that 

might support its aggressive nature and resistance to 

treatment (Figure 3B). 

 

Next, we focused on sub-stratification of GBM and 

LGG patients who were exposed to IR, according to 

 

 
 

Figure 1. Overview of the patient’s samples downloaded from TCGA. Number of samples for each cancer type is shown, sorted by 

the total number of samples. Stacked bars are colored according to the sample category, including non-irradiated control samples, 
irradiated control samples, irradiated case samples, non-irradiated case samples, control samples without information about radiotherapy 
and case samples without information about radiotherapy. 
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CNV status of genes that have genetic perturbation (loss 

or gain of function) in at least 10% of cancer-specific 

patient samples. It was noted that both genetic gain and 

loss abnormalities are associated with worsening 

survival outcomes of patients who received radio-

therapy (Figure 3C). Particularly, gain of function of 

KIT and loss of function of SPTBN5 genes compared 

with corresponding neutral CNV statuses of KIT and 

SPTBN5 genes respectively are associated with worse 

prognosis of IR-treated GBM patients. Survival analysis 

 

 
 

Figure 2. Survival analysis across 32 TCGA cancers. (A) Survival curves for patients who received radiotherapy and those who didn’t 

presented on a Kaplan-Meier plot for 32 TCGA cancers. (B) The significance of survival results is plotted on a heatmap and colored red if 
radiotherapy increased survival outcomes and blue if the application of radiotherapy decreased survival outcomes. Non-significant results 
were colored white (p-value > 0.05). The log-rank test was used to calculate statistical significance. (C) Survival analysis for IR treatment is 
presented on a Kaplan–Meier plot for TCGA-GBM (Glioblastoma, left figure) and TCGA-LGG (Brain Lower Grade Glioma, right figure) cancers. 
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of IR-treated LGG patients revealed that there is only 

one gene whose gain of function significantly worsens 

survival outcome - EGFR. At the same time, loss of 

function of 30 genes, including CDKN2B, CDKN2A, 

MTAP, ELAVL2, IZUMO3, DMRTA1, IFNA8, IFNE, 

IFNA1, IFNA2, KLHL9, IFNA13, IFNA5, IFNA6, 

IFNW1, IFNA21, IFNA14, IFNA4, IFNA17, IFNA10, 

IFNA7, IFNA16, FOCAD, IFNB1, HACD4, MLLT3, 

 

 
 

Figure 3. Signaling pathway enrichment analysis results and patients' genetic profiles. (A) Signaling pathways enriched with 

genes significantly down-regulated in the comparison of IR-treated and untreated GBM patients and simultaneously significantly  
up-regulated in the comparison of IR-treated and untreated LGG patients. (B) Signaling pathways enriched with genes significantly  
up-regulated in the comparison of IR-treated and untreated GBM patients and simultaneously significantly down-regulated in the 
comparison of IR-treated and untreated LGG patients. (C) Venn diagram describing the intersection of genes whose loss/gain status 
significantly stratifies IR-treated patients. (D) Signaling pathways enriched with genes whose loss status in TCGA-LGG IR-treated patients 
is associated with worse prognosis. (E) Mutation profile of low-grade glioma cancer tissues in patients receiving radiotherapy. 
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NGEF, GBX2, ASB18, and AGAP, is associated with 

worse prognosis in IR-treated LGG patients. Signaling 

pathway enrichment analysis of these genes revealed 

that the major pathways are related to immune response 

and cellular processes, including “Interferon Signaling” 

and other immune response and cellular processes 

(Figure 3D). These results are in agreement with the 

previously obtained results on the gene expression level, 

suggesting that immune modulation of LGG patients is 

important for survival outcomes. 

 

Finally, the mutation profile of LGG patient samples 

that received radiotherapy was obtained. The top 15 

genes with the highest number of mutations across 

radiotherapy-received LGG patients are plotted on a 

heatmap (Figure 3E). Among the top 15 genes, IDH1 

and TP53 stand out due to their well-known roles in 

glioma biology. ATRX was found to be the gene with 

the highest number of disruptive protein-coding 

mutations. Interestingly, EGFR was also observed in the 

list of the top 15 most mutated genes across IR-treated 

LGG patients. 

 

DISCUSSION 
 

The study presented here shows the variability in 

radiotherapy outcomes across different cancer types, 

with a specific focus on glioblastoma multiforme 

(GBM) and low-grade gliomas (LGG). One of the 

unique aspects of this study is its focus on the 

differential radiotherapy outcomes between GBM and 

LGG. While radiotherapy remains a fundamental 

treatment for GBM, the high resistance to treatment and 

subsequent poor prognosis emphasize the need for 

novel therapeutic strategies [23]. Conversely, LGG 

patients often show a more favorable response to 

radiotherapy, which can be predicted by MRI 

evaluations post-treatment [24]. The findings from this 

study have the potential to impact clinical practices and 

treatment protocols by providing a more detailed 

understanding of how radiotherapy should be tailored to 

individual patients based on their specific cancer type. 

 

Radiotherapy was found to improve survival outcomes 

in GBM while worsening outcomes in LGG. GBM and 

LGG, despite their differences, share a common lineage, 

with GBM often developing from LGG [6]. The 

differential regulation of pathways related to 

programmed cell death, DNA repair, telomere main-

tenance, chromosome condensation, antiviral responses, 

and interferon signaling between GBM and LGG 

patients those receiving radiotherapy or not may explain 

the underlying reasons for these observed differences. 

For instance, the down-regulation of DNA repair 

pathways in GBM suggests a mechanism for 

radiotherapy resistance, while their up-regulation in 

LGG indicates a higher susceptibility to radiotherapy-

induced damage. The use of radiotherapy in 

combination with temozolomide has been shown to 

improve survival rates in GBM patients [25]. However, 

radiotherapy resistance remains a significant challenge, 

often leading to poor outcomes [16]. In LGG, the timing 

and dosage of radiotherapy are crucial factors that can 

influence survival outcomes [26]. Given the up-

regulation of DNA repair pathways in LGG, combining 

radiotherapy with DNA repair inhibitors could make 

LGG cells more vulnerable to treatment. For example, 

using PARP inhibitors could enhance the effectiveness 

of radiotherapy [27]. On the other hand, the down-

regulation of antiviral and interferon signaling pathways 

in LGG indicates a less active immune environment. 

Taking into account additional confirmation of the 

importance of the immune response at the genetic level, 

combining radiotherapy with immune modulators, such 

as interferon therapy or immune checkpoint inhibitors, 

could boost the immune response against LGG cells and 

improve treatment outcomes [28]. It was also found that 

ATRX loss of function is associated with increased 

radiosensitivity in GBM [29, 30]. Furthermore, LGG 

patients who received radiation therapy and carried 

disruptive protein-coding mutations in the ATRX gene 

had prolonged survival compared to radiotherapy-

treated patients without disruptive protein-coding 

mutations in the ATRX gene (Supplementary Figure 1). 

This suggests that the status of ATRX might be used as 

a biomarker for both GBM and LGG. EGFR was 

previously associated with radioresistance in various 

cancers, including oropharyngeal carcinoma, head and 

neck cancer, and GBM [31–33]. Identifying the link 

between the amplification of the EGFR gene in LGG 

patients and the worsening survival prognosis of 

radiotherapy-treated patients might be beneficial for 

patient stratification before therapy assignment. The 

results of this study align with these findings, further 

emphasizing the importance of personalized treatment 

approaches. While this study provides valuable insights 

into the differential radiotherapy outcomes between 

GBM and LGG, it is important to acknowledge 

potential limitations associated with our methodology. 

Specifically, biases may arise from dataset hetero-

geneity, as variations in patient demographics, treatment 

regimens, and data collection methods could influence 

the observed results and interpretations. 

 

In conclusion, this study provides valuable insights into 

the variability in radiotherapy outcomes across different 

cancer types, with a specific focus on GBM and LGG. 

The identification of key pathways involved in 

radiotherapy resistance and sensitivity offers potential 
biomarkers for future therapeutic strategies. The 

findings highlight the importance of personalized 

treatment approaches and further research into the 
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molecular mechanisms behind radiotherapy response 

along with the development of novel therapeutic 

strategies to improve clinical outcomes for patients with 

these distinct types of brain tumors. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Survival analysis for the group of LGG patients who received radiation therapy and carried 
disruptive protein-coding mutations in the ATRX gene compared to radiotherapy-treated patients without disruptive 
protein-coding mutations in the ATRX gene. 
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Supplementary Tables 
 

Supplementary Table 1. Original names of the mutations and their categories in all available TCGA data 
mutation types. 

All detected mutations in TCGA cancers Category 

missense_variant Protein coding 

splice_acceptor_variant Splice site 

intron_variant Splice site 

frameshift_variant Disruptive protein coding 

mature_miRNA_variant Noncoding 

stop_lost Disruptive protein coding 

downstream_gene_variant Noncoding 

regulatory_region_variant Noncoding 

splice_region_variant Splice site 

non_coding_transcript_exon_variant Splice site 

intergenic_variant Noncoding 

start_lost Disruptive protein coding 

splice_donor_variant Splice site 

coding_sequence_variant Protein coding 

non_coding_transcript_variant Noncoding 

stop_retained_variant Protein coding 

protein_altering_variant Protein coding 

NMD_transcript_variant Disruptive protein coding 

upstream_gene_variant Noncoding 

incomplete_terminal_codon_variant Protein coding 

inframe_insertion Disruptive protein coding 

inframe_deletion Disruptive protein coding 

synonymous_variant Protein coding 

3_prime_UTR_variant Noncoding 

5_prime_UTR_variant Noncoding 

stop_gained Disruptive protein coding 

 

 

Supplementary Table 2. TCGA cancer abbreviations and their full names. 

TCGA abbreviation Cancer 

TCGA-GBM Glioblastoma multiforme 

TCGA-THYM Thymoma 

TCGA-BRCA Breast invasive carcinoma 

TCGA-CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma 

TCGA-KIRP Kidney renal papillary cell carcinoma 

TCGA-SKCM Skin Cutaneous Melanoma 

TCGA-DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 

TCGA-THCA Thyroid carcinoma 

TCGA-PRAD Prostate adenocarcinoma 

TCGA-PCPG Pheochromocytoma and Paraganglioma 

TCGA-MESO Mesothelioma 

TCGA-READ Rectum adenocarcinoma 

TCGA-SARC Sarcoma 
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TCGA-LUSC Lung squamous cell carcinoma 

TCGA-TGCT Testicular Germ Cell Tumors 

TCGA-LIHC Liver hepatocellular carcinoma 

TCGA-UCEC Uterine Corpus Endometrial Carcinoma 

TCGA-ESCA Esophageal carcinoma 

TCGA-STAD Stomach adenocarcinoma 

TCGA-ACC Adrenocortical carcinoma 

TCGA-COAD Colon adenocarcinoma 

TCGA-KIRC Kidney renal clear cell carcinoma 

TCGA-BLCA Bladder Urothelial Carcinoma 

TCGA-OV Ovarian serous cystadenocarcinoma 

TCGA-CHOL Cholangio carcinoma 

TCGA-UVM Uveal Melanoma 

TCGA-LUAD Lung adenocarcinoma 

TCGA-KICH Kidney Chromophobe 

TCGA-PAAD Pancreatic adenocarcinoma 

TCGA-LGG Brain Lower Grade Glioma 

TCGA-UCS Uterine Carcinosarcoma 

TCGA-HNSC Head and Neck squamous cell carcinoma 
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