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INTRODUCTION 
 

Medial vascular calcification (VC) increases with 

advanced age [1]. This process is strongly accelerated by 

the uremic environment in chronic kidney disease (CKD) 

[2], which is considered a state of premature vascular 
aging [3]. VC increases vascular stiffness and elevates 

pulse pressure, resulting in impaired organ perfusion  

and increased left ventricular afterload [4]. Accordingly, 

the presence of calcifications in the arteries is associated 

with an increased mortality risk [5]. 

 

VC is the result of a complex process that ultimately 

culminates in deposition of calcium-phosphate in the 

vascular wall [6]. Under physiological conditions, 
extraosseous calcifications are actively prevented by 

calcification inhibitors, most importantly pyrophosphate, 

matrix GLA protein or fetuin-A [6]. In aged or diseased 
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ABSTRACT 
 

Medial vascular calcification is highly prevalent in advanced age and chronic kidney disease (CKD), where it 
is associated with increased risk for cardiovascular events and mortality. Vascular smooth muscle cells 
(VSMCs) actively regulate this process, which can be augmented by inflammation and cellular senescence. 
Thus, the present study investigated the impact of fisetin, a flavonol with anti-inflammatory and senolytic 
properties, on VSMC calcification. Fisetin treatment suppressed calcific marker expression and calcification 
of VSMCs as well as p38 MAPK phosphorylation induced by pro-calcific conditions. These effects were 
abolished by silencing of dual-specificity phosphatase 1 (DUSP1), a negative regulator of p38 MAPK activity. 
Moreover, knockdown of DUSP1 alone was sufficient to increase calcific marker expression in VSMCs, 
effects blunted by pharmacological p38 MAPK inhibition. Accordingly, DUSP1 knockdown aggravated 
calcification of VSMCs during pro-calcific conditions. In addition, fisetin ameliorated the effects of uremic 
conditions in VSMCs exposed to serum from dialysis patients. Fisetin also inhibited vascular calcification as 
well as calcific marker expression ex vivo in mouse aortic explants exposed to high phosphate and in vivo in 
a cholecalciferol overload mouse model. In conclusion, fisetin acts as a potent anti-calcific agent during 
VSMC calcification, an effect involving DUSP1-mediated regulation of p38 MAPK-dependent pro-calcific 
signaling. 
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conditions, these mechanisms may be weakened and 

pro-calcific effects may be augmented in arterial tissue 

[2]. An especially important role in VC is attributed to 

vascular smooth muscle cells (VSMCs) [6]. These cells 

can take up pro-calcific functions and induce alteration 

of extracellular matrix, as well as release of pro-calcific 

vesicles and tissue-nonspecific alkaline phosphatase 

(ALPL), which cleaves the ubiquitous calcification 

inhibitor pyrophosphate [7]. The reprogramming of 

VSMCs towards a pro-calcific state is coordinated by 

various complex signaling pathways [8]. The mitogen-

activated protein kinase (MAPK) p38 plays a 

prominent, but incompletely understood role in VC  

[9, 10]. P38 MAPK is activated by phosphorylation in 

response to various stimuli and inactivated by 

phosphatases such as dual-specificity phosphatase 1 

(DUSP1, also known as MAPK phosphatase 1 or 

MKP1) [11]. P38 MAPK inhibition is sufficient to 

ameliorate VSMC calcification [12].  

 

Phosphate has been recognized as a powerful stimulator 

of VSMC reprogramming and VC and may act, at  

least partly, through the formation of calciprotein 

particles [8]. Elevated phosphate conditions induce 

metabolic alterations with increased oxidative stress 

generation and activate inflammatory pathways to 

promote pro-calcific signaling in VSMCs [2, 13]. These 

alterations may involve VSMC senescence, inducing  

a proinflammatory senescence-associated secretory 

phenotype (SASP) [14]. Phosphate exposure is able to 

up-regulate senescence markers in VSMCs [15]. In turn, 

treatment of uremic rats with phosphate binders reduced 

expression of senescence markers in the vasculature 

[16]. Senolytic substances may eliminate senescent cells 

[17] and some have been shown to reduce VSMC 

calcification, such as quercetin [18], dasatinib [19], 

piperlongumine [20] or curcumin [21]. Thus, senolytics 

have been discussed as potential treatment options in 

uremic calcification, but their specificity and exact 

mechanisms might still be debatable. 

 

One substance with senolytic potential is the flavonoid 

fisetin [22], which exhibits potent anti-inflammatory and 

antioxidant properties [23]. Fisetin increases lifespan in 

aged mice [24], attenuates renal fibrosis in cisplatin 

nephrotoxicity [25] and ameliorates atherosclerosis [26]. 

This study, therefore, investigated the vasculo-protective 

potential of fisetin in phosphate-induced VSMC 

calcification and the underlying mechanisms. 

 

RESULTS 
 

To investigate a possible impact of fisetin on VSMC 

calcification, a first series of experiments was performed 

in cultured primary human aortic VSMCs during control 

or pro-calcific conditions with addition of calcium and 

the phosphate donor β-glycerophosphate, in the absence 

and presence of increasing concentrations of fisetin  

(0 – 20 µM). As illustrated in Figure 1, calcification 

medium significantly up-regulated BMP2 and ALPL 

mRNA expression in VSMCs, effects significantly 

suppressed in the presence of 1 µM fisetin concentration. 

Lower fisetin concentrations did not significantly affect 

calcification medium-induced BMP2 and ALPL mRNA 

expression (Supplementary Figure 1).  
 

The calcification medium-induced increase of pro-

calcific markers CBFA1, SP7, BGLAP and SPP1 

mRNA expression (Figure 2A–2D), ALP activity 

(Figure 2E) as well as CBFA1 nuclear localization 

(Figure 2F) were all suppressed by 1 µM fisetin 

supplementation. Co-treatment with fisetin reduced 

 

 

 

Figure 1. Dose-dependent effects of fisetin on calcific marker expression in VSMCs during pro-calcific conditions. Relative 

mRNA expression (n=12) of BMP2 (A) and ALPL (B) in HAoSMCs treated for 48h with control (CTR) or calcification medium (Calc.) without and 
with the indicated concentrations of fisetin (Fis, 0 - 20 µM). **(p<0.01), ***(p<0.001) significant vs. control group; †(p<0.05), ††(p<0.01) 
significant vs. Calc.-treated group. 
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expression of markers associated with senescence of 

VSMCs promoted by calcification medium, as shown by 

the mRNA expression of CDKN1A and GLB1 and further 

indicated by senescence-associated (SA)-β-galactosidase 

staining (Supplementary Figure 2). Treatment with fisetin 

alone did not consistently modify pro-calcific and 

senescence markers expression at 1 µM concentration, 

but high concentrations of fisetin (20 µM) had adverse 

effects in VSMCs (Supplementary Figure 3). Moreover, 

pre-treatment of VSMCs with 1 µM fisetin did not 

significantly modify calcification medium-induced pro-

calcific marker expression (Supplementary Figure 4). 

More importantly, as illustrated by Osteosense 

fluorescence imaging and determination of calcium 

content (Figure 3), co-treatment with 1 µM fisetin 

significantly reduced calcification of VSMCs exposed to 

calcification medium. Taken together, fisetin inhibited 

pro-calcific signaling and calcification of VSMCs 

induced by mineral stress during high phosphate and 

calcium exposure. 

 

To elucidate the underlying mechanisms of the anti-

calcific effects of fisetin in VSMCs, its potential to 

interfere with p38 MAPK activation was explored. As 

illustrated in Figure 4, calcification medium induced 

phosphorylation of p38 MAPK in VSMCs, effects 

significantly blunted in the presence of fisetin. 

Subsequently, the role of dual-specificity phosphatase 1 

 

 

 

Figure 2. Effects of fisetin on pro-calcific signaling in VSMCs during pro-calcific conditions. Relative mRNA expression (n=6) of 
CBFA1 (A), SP7 (B), BGLAP (C) and SPP1 (D) in HAoSMCs treated for 48h with control (CTR) or calcification medium (Calc.) without and with 1 
µM fisetin (Fis). (E) Normalized ALP activity (n=6) in HAoSMCs treated for 7d with control (CTR) or calcification medium (Calc.) without and 
with 1 µM fisetin (Fis). *(p<0.05), **(p<0.01), ***(p<0.001) significant vs. control group; †(p<0.05), ††(p<0.01), †††(p<0.001) significant vs. 
Calc.-treated group. (F) CBFA1 (green) and nuclei (blue) shown by confocal imaging in HAoSMCs treated for 48h with control (CTR) or 
calcification medium (Calc.) without and with 1 µM fisetin (Fis). Scale bar: 20 µm. 
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(DUSP1), a negative regulator of p38 MAPK activity 

was investigated. As shown in Figure 5, fisetin 

increased total DUSP1 protein abundance in VSMCs  

as well as the phosphorylation of DUSP1 at Ser359,  

a direct phosphorylation site for p44/42 MAPK that 

could inhibit DUSP1 degradation via the ubiquitination 

pathway [27]. Moreover, fisetin increased the abundance 

of phosphorylated and total p44/42 MAPK protein  

in VSMCs (Supplementary Figure 5). Pharmacological 

inhibition of p44/42 MAPK with LY3214996 blunted 

fisetin-induced phosphorylation of DUSP1 at Ser359 

(Supplementary Figure 6). 

In further experiments, the endogenous expression in 

VSMCs was suppressed by silencing of the DUSP1 

gene using small interfering RNA (siRNA), during 

control and pro-calcific conditions with and without 

fisetin supplementation. As a result, transfection  

with DUSP1 siRNA significantly reduced DUSP1 

expression in VSMCs as compared to negative control 

siRNA-transfected cells (Figure 6A). Calcification 

medium increased DUSP1 mRNA expression in 

VSMCs (Figure 6A and Supplementary Figure 7), 

which was not significantly affected by fisetin (Figure 

6A). Knockdown of DUSP1 alone was sufficient to 

 

 

 

Figure 3. Effects of fisetin on calcification of VSMCs during pro-calcific conditions. Calcification detected by Osteosense 
fluorescence imaging (A) and normalized calcium content (n=6, B) in HAoSMCs treated for 11d with control (CTR) or calcification medium 
(Calc.) without and with 1 µM fisetin (Fis). Calcified areas: white pseudocolor. **(p<0.01), ***(p<0.001) significant vs. control group; 
†††(p<0.001) significant vs. Calc.-treated group. 

 

 

 
Figure 4. Effects of fisetin on p38 MAPK phosphorylation in VSMCs during pro-calcific conditions. Representative Western blots 
and normalized phospho-p38 and total p38 MAPK protein abundance (n=5) in HAoSMCs treated for 30 min with control (CTR) or calcification 
medium (Calc.) without and with 1 µM fisetin (Fis). *(p<0.05) significant vs. control group; †(p<0.05) significant vs. Calc.-treated group. 
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significantly up-regulate mRNA expression of  

pro-calcific markers in VSMCs (Figure 6B–6E). 

Furthermore, DUSP1 silencing abolished the protective 

effects of fisetin during pro-calcific conditions. In 

accordance, silencing of DUSP1 aggravated VSMC 

calcification induced by calcification medium and 

virtually abrogated the anti-calcific properties of  

fisetin (Figure 7).  

Moreover, knockdown of DUSP1 was sufficient  

to increase phosphorylation of p38 MAPK in  

VSMCs (Figure 8A), but DUSP1 knockdown did  

not significantly affect SAPK/JNK or p44/42  

MAPK phosphorylation (Supplementary Figure 8). 

Pharmacological inhibition of p38 MAPK with 

SB203580 significantly blunted the increased BMP2, 

CBFA1, ALPL and CDKN1A mRNA expression in 

 

 
 

Figure 5. Effects of fisetin on dual-specificity phosphatase 1 regulation in VSMCs. Representative Western blots and normalized 
phospho-DUSP1 and total DUSP1 protein abundance (n=6) in HAoSMCs treated for 30 min with control (CTR) or 1 µM fisetin (Fis). *(p<0.05) 
significant vs. control group. 

 

 
 

Figure 6. Effects of dual-specificity phosphatase 1 knockdown on anti-calcifying properties of fisetin in VSMCs. Relative mRNA 

expression (n=10) of DUSP1 (A), BMP2 (B), CBFA1 (C), ALPL (D) and CDKN1A (E) in HAoSMCs transfected for 72h with negative control (Neg.si) 
or DUSP1 (DUSP1si) siRNA and treated for 48h with control (CTR) or calcification medium (Calc.) without and with 1 µM fisetin (Fis). 
**(p<0.01), ***(p<0.001) significant vs. Neg.si group; †(p<0.05), ††(p<0.01) significant vs. Neg.si+Calc.-treated group; ‡‡(p<0.01), 
‡‡‡(p<0.001) significant between Neg.si+Calc.+Fis- and DUSP1si+Calc.+Fis-treated groups. 
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Figure 7. Effects of dual-specificity phosphatase 1 knockdown on the protective role of fisetin during VSMC calcification. 
Calcification detected by Osteosense fluorescence imaging (A) and normalized calcium content (n=7, B) in HAoSMCs transfected with 
negative control (Neg.si) or DUSP1 (DUSP1si) siRNA and treated for 11d with control (CTR) or calcification medium (Calc.) without and with 1 
µM fisetin (Fis). Calcified areas: white pseudocolor. *(p<0.05), ***(p<0.001) significant vs. Neg.si group; †(p<0.05), ††(p<0.01) significant vs. 
Neg.si+Calc.-treated group; ‡‡‡(p<0.001) significant between Neg.si+Calc.+Fis- and DUSP1si+Calc.+Fis-treated groups. 

 

 
 

Figure 8. Role of p38 MAPK in dual-specificity phosphatase 1 knockdown-induced calcific marker expression in VSMCs. 
Representative Western blots and normalized phospho-p38 and total p38 MAPK protein abundance (n=4, A) in HAoSMCs transfected for 24h 
with negative control (Neg.si) or DUSP1 (DUSP1si) siRNA. Relative mRNA expression (n=8) of DUSP1 (B), BMP2 (C), CBFA1 (D), ALPL (E) and 
CDKN1A (F) in HAoSMCs transfected for 72h with negative control (Neg.si) or DUSP1 (DUSP1si) siRNA and treated without and with 10 µM 
p38 MAPK inhibitor SB203580 (SB). *(p<0.05), **(p<0.01), ***(p<0.001) significant vs. Neg.si group; †(p<0.05), ††(p<0.01), †††(p<0.001) 
significant vs. DUSP1si group. 
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DUSP1-silenced VSMCs (Figure 8C–8F). Treatment 

with the SB203580 inhibitor alone did not significantly 

modify DUSP1 or calcific marker mRNA expression  

in VSMCs (Supplementary Figure 9). Thus, knockdown 

of DUSP1 increased p38 MAPK-dependent pro-calcific 

signaling and aggravated calcification of VSMCs.  

 

Next experiments explored the effects of fisetin on  

pro-calcific marker expression in VSMCs during uremic 

conditions. Exposure of VSMCs to uremic serum from 

hemodialysis patients significantly increased BMP2, 

CBFA1, ALPL and CDKN1A mRNA expression as 

compared to VSMCs exposed to control serum from 

healthy volunteers (Figure 9). Treatment with fisetin 

significantly suppressed uremic serum-induced BMP2, 

CBFA1 and CDKN1A mRNA expression and tended to 

reduce ALPL mRNA expression, a difference, however, 

not reaching statistical significance (p=0.0551). Thus, 

fisetin treatment induced protective effects in VSMCs 

during uremic conditions.  

 

Additional experiments explored the effects of fisetin 

following angiotensin II stimulation. Again, fisetin 

ameliorated the expression of pro-calcific markers in 

VSMCs during angiotensin II treatment (Supplementary 

Figure 10). 

 

To confirm the anti-calcific properties of fisetin, 

additional experiments were performed ex vivo in mouse 

aortic explants cultured during control or high phosphate 

conditions without and with co-treatment with fisetin. As 

shown in Figure 10, fisetin reduced calcification as well 

as the increased mRNA expression of Bmp2, Cbfa1, Alpl 

and Cdkn1a induced by phosphate exposure in mouse 

aortic explants. In addition, fisetin significantly reduced 

the abundance of phosphorylated p38 Mapk and tended 

to reduce total p38 Mapk protein abundance (p=0.0798) 

in mouse aortic explants during high phosphate conditions 

(Supplementary Figure 11). 

 

Further experiments investigated the effects of  

fisetin in vivo in the cholecalciferol-induced VC 

mouse model. As shown by alizarin Red staining  

and quantification of calcium content, cholecalciferol 

overload induced aortic calcification in mice, effects 

significantly reduced by additional fisetin treatment 

 

 
 

Figure 9. Effects of fisetin on calcific marker expression in VSMCs during uremic conditions. Relative mRNA expression (n=10) of 
BMP2 (A), CBFA1 (B), ALPL (C) and CDKN1A (D) in HAoSMCs treated for 24h with 15% normal serum (NS) or uremic serum (US) without and 
with 1 µM fisetin (Fis). *(p<0.05), **(p<0.01), ***(p<0.001) significant vs. NS group; †(p<0.05) significant vs. respective serum alone group. 
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(Figure 11A, 11B). Furthermore, fisetin suppressed 

cholecalciferol-induced Bmp2, Cbfa1, Alpl and Cdkn1a 

mRNA expression in the aortic tissues (Figure 11C–

11F). High-dosed cholecalciferol significantly increased 

serum calcium and altered cystatin C, phosphate and 

fetuin A concentrations, while fisetin ameliorated most 

effects of cholecalciferol treatment (Supplementary 

Table 1). 

 

DISCUSSION 
 

This study discloses a powerful anti-calcific effect of 

fisetin in VSMCs during mineral stress, a condition 

typically observed in CKD [2]. Mechanistically, fisetin 

requires the phosphatase DUSP1 to inhibit p38 MAPK 

in order to mediate its protective effect on VSMC 

calcification (Figure 12). 

 

Fisetin has previously been associated with protective 

effects in the vasculature and prevents neointimal 

hyperplasia [28], atherosclerosis [26], glucose-induced 

inflammation [29] and endothelial dysfunction [30]  

in animal models or cell culture. Especially the ability  

of fisetin to decrease vascular senescence has been  

well established [30, 31]. Also in the kidney, fisetin  

is associated with attenuation of fibrosis [25, 32].  

The current observations now extend the protective 

effects of fisetin on the calcifying vasculature in vitro, 

ex vivo and in vivo. Although fisetin treatment altered 

calcium-phosphate homeostasis in cholecalciferol-

treated mice and this might affect the calcification 

response, a direct effect on the vasculature is supported 

by aortic explant calcification model and cell culture 

experiments. A potential translational relevance of these 

observations for the CKD environment is underscored 

by the protective effects of fisetin in VSMCs exposed  

to uremic serum.  

 

Mechanistically, the effects of fisetin appear to be 

mediated by inhibition of p38 MAPK during pro-calcific 

conditions. P38 MAPK appears to have a central role  

in pro-calcific signaling of VSMCs [9, 10, 33]. P38 

MAPK inhibition has been shown to ameliorate VSMC 

calcification after phosphate exposure, while ERK1/2 

MAPK or SAPK/JNK inhibition showed no effect [12]. 

The downstream effects of p38 MAPK activation in  

VC apparently are mediated through a mechanism 

involving RUNX2/CBFA1 [10]. P38 MAPK also exerts 

a critical role in the intracellular signaling pathways of 

inflammatory mediators, which are able to augment VC. 

 

 
 

Figure 10. Effects of fisetin ex vivo in calcifying mouse aortic explants. Alizarin Red staining (A) of mouse aortic arches cultured for 
7d in medium supplemented with 1.6 mM phosphate (Pi) without and with 1 µM fisetin (Fis). Calcification: red staining; scale bar: 5 mm. 
Normalized calcium content (n=6, B) in mouse aortic explants cultured for 7d in medium supplemented with control (CTR) or 1.6 mM 
phosphate (Pi) without and with 1 µM fisetin (Fis). Relative mRNA expression (n=5) of Bmp2 (C), Cbfa1 (D), Alpl (E) and Cdkn1a (F) in mouse 
aortic explants cultured for 7d in medium supplemented with control (CTR) or 1.6 mM phosphate (Pi) without and with 1 µM fisetin (Fis). 
*(p<0.05), **(p<0.01), ***(p<0.001) significant vs. control group; †(p<0.05), ††(p<0.01), †††(p<0.001) significant vs. Pi-treated group. 
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Figure 11. Effects of fisetin in vivo during cholecalciferol overload. Alizarin Red staining (A) of aortas from mice receiving vehicle 

(CTR) or high-dosed cholecalciferol (vD) without and with fisetin (Fis). Calcification: red staining; scale bar: 5 mm. Normalized calcium content 
(n=6-9, B) in aortic tissue from mice receiving vehicle (CTR) or high-dosed cholecalciferol (vD) without and with fisetin (Fis). Relative mRNA 
expression (n=6-9) of Bmp2 (C), Cbfa1 (D), Alpl (E) and Cdkn1a (F) in aortic tissue from mice receiving vehicle (CTR) or high-dosed 
cholecalciferol (vD) without and with fisetin (Fis). *(p<0.05), **(p<0.01), ***(p<0.001) significant vs. control group; †(p<0.05), ††(p<0.01) 
significant vs. vD-treated group. 

 

 
 

Figure 12. Schematic illustration of mechanisms involved in the protective effects of fisetin during VSMC calcification. Mineral 
stress with disturbed phosphate and calcium homeostasis may trigger activation of pro-calcific signaling including phosphorylation and 
activation of p38 MAPK in VSMCs, which leads to a pro-calcific environment causing vascular calcification. Fisetin, a natural flavonol, induces 
the dual-specificity phosphatase 1 (DUSP1). Fisetin thereby inactivates p38 MAPK signaling through DUSP1 and inhibits further pro-calcific 
signaling and calcification of VSMCs. 
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Accordingly, the pro-calcific effects of CRP [33], IL18 

[34], ceramide [9] or angiotensin II [35] involve p38 

MAPK. 

 

P38 kinases react to a variety of cellular stress 

conditions and control a diverse array of cellular 

functions [11]. Phosphatases such as DUSP1 are 

induced by p38 MAPK and limit or terminate p38 

MAPK signaling [11]. The current observations identify 

DUSP1 as a novel regulator of VSMC calcification. 

DUSP1 is expressed in VSMCs and plays an important 

role in maintaining the contractile phenotype by 

regulating p38 MAPK [36]. Fisetin reduces p38 MAPK 

phosphorylation in calcifying VSMCs apparently through 

DUSP1. Similarly, fisetin inhibits ubiquitination and 

proteasomal degradation of DUSP1 in osteoclasts  

and thereby limits p38 MAPK signaling [37]. In  

T-cells, angiotensin II increases proteasome activity and 

degrades DUSP1 [38]. Angiotensin II and aldosterone 

attenuate DUSP1 expression in VSMCs [30]. In 

accordance, we observed a reduced pro-calcific effect  

of angiotensin II in VSMCs treated with fisetin. 

Mechanistically, fisetin might activate ERK1/2 MAPK 

[39]. ERK1/2 could phosphorylate DUSP1 on Ser359, 

leading to its stabilization [27], but other ERK1/2-

dependent phosphorylation sites could actually promote 

DUSP1 proteasomal degradation [40]. Therefore, the 

regulatory network of DUSP1 activation and its effect 

on MAPK appear intricate and multi-factorial [41].  

The exact mechanisms how fisetin regulates DUSP1  

are currently unknown.  

 

Although the gene silencing experiments indicate a 

major role for DUSP1 in the anti-calcific effects  

of fisetin, the current experiments cannot rule out 

involvement of other pathways or mechanisms. Also, 

ubiquitination of NRF2 is negatively regulated by 

fisetin [42]. NRF2 is a powerful modulator of VC  

[43]. Other pathways might therefore contribute to  

the effects of fisetin in phosphate-treated VSMCs.  

In addition, the role of cellular senescence in the  

current observations should be interpreted with caution. 

P38 MAPK is important for the development of a 

senescence-associated secretory phenotype (SASP) [44] 

and the increased expression of senescence markers in 

calcifying VSMCs are ameliorated by fisetin. However, 

the role of DUSP1 in senescence appears complex [45, 

46] and the primary effect of fisetin in this model may 

be mediated through other mechanisms than directly 

through senolytic properties [22]. In neuronal cells, 

DUSP1 is polyubiquitylated and increasingly degraded 

in response to glutamate-induced oxidative stress [47]. 

Thus, oxidative stress might shift the balance of DUSP1 
expression and degradation. Increased oxidative stress 

is also a hallmark of phosphate-induced VC [2]. In turn, 

fisetin has been attributed with substantial antioxidant 

properties [23], which could therefore be involved in its 

protective effect during VC and subsequently alter 

expression of senescence markers. 

 

Fisetin treatment has already been used in animal 

models of CKD and renal fibrosis [25, 32]. In addition, 

first clinical studies are being conducted on the 

beneficial effects of fisetin [48]. While the reduced 

renal function and uremic environment in CKD patients 

warrants caution, our observations suggest a potential 

benefit of fisetin treatment on VC. However, the current 

observations are limited by the model systems used. 

The artificial cell culture environment does not allow 

extrapolation to the in vivo situation, especially in terms 

of effective concentrations of fisetin. The cholecalciferol 

model rapidly induces VC, but differs from the situation 

in CKD, where active vitamin D levels are typically 

reduced. Therefore, CKD-specific or sex-dependent 

effects cannot be interpreted and further translational 

studies are required to delineate whether the putative 

benefits outweigh the risks of fisetin treatment in CKD. 

 

In conclusion, this study shows a novel role of fisetin as 

powerful protective agent during phosphate-induced 

VSMC calcification. Mechanistically, this effect identifies 

a critical role of DUSP1 in the pro-calcific p38 MAPK 

signaling of VSMCs during calcifying conditions. 

 

MATERIALS AND METHODS 
 

Cell culture 

 

Primary human aortic smooth muscle cells (HAoSMCs, 

Fisher Scientific and Cell Applications) were routinely 

cultured as described previously [49–51] and used in 

experiments up to passage 12. HAoSMCs were treated 

for the indicated times with 10 mM β-glycerophosphate 

and 1.5 mM CaCl2 (Sigma Aldrich) as calcification 

medium [52], 1 µM or the indicated concentrations of 

fisetin (stock in DMSO, HY-N0182, MedChemExpress), 

10 µM of p38 MAPK inhibitor SB203580 (stock in 

DMSO, 13067, Cayman Chemical) [33] and 1 µM of 

p44/42 MAPK inhibitor LY3214996 (stock in DMSO, 

HY-101494, MedChemExpress) [53]. Where indicated, 

cells were pre-treated for 48 hours with 1 µM fisetin 

prior to treatments. After informed consent, serum  

was collected from dialysis patients (uremic serum, US) 

or control serum from apparently healthy individuals 

with absence of known CKD (normal serum, NS) and 

stored at -80° C. HAoSMCs were treated with 15% 

uremic serum or control serum [52]. Treatments with 

control (age 53.6 ± 1.7 years) or uremic (age 63.3 ± 3.0 

years) serum was sex-matched (n =5 female / n=5 
male). Where indicated, HAoSMCs were transfected 

with 10 nM DUSP1 (ID: s4363) or negative control  

(ID: 4390843) siRNA using siPORT amine transfection 
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reagent (all from Fisher Scientific). Treatment with 

equal amounts of vehicle was used as control. For long-

term treatments, fresh medium with agents were added 

every 2-3 days.  

 

Animal experiments 

 

Calcification was induced in female C57BL/6 mice [54] 

by daily injections with cholecalciferol of 500 IU/g on 

d1-d3. Mice were gavaged daily with control or 100 

mg/kg fisetin (5% ETOH, 55% PEG 300, 40% Water). 

Blood was collected by retroorbital puncture on d6 and 

tissues were snap frozen or stained with Alizarin Red 

(0.0016% in 0.5% KOH) [55]. Serum concentrations  

of calcium and phosphate were determined by using  

a photometric method (FUJI Dri-Chem Nx700).  

Serum concentrations of Cystatin C (RD291009200R, 

BioVendor) and Fetuin A (MFTA00, R&D Systems) 

were determined by ELISA. 

 

Ex vivo mouse aortic explants culture 

 

C57BL/6 mice were sacrificed by cervical dislocation  

in isoflurane anaesthesia and aortic tissues were  

rapidly excised, cut into rings and cultured for 1  

hour or 7 days in DMEM high glucose medium 

supplemented with 5% FBS, 100 U/ml penicillin and 

100 µg/ml streptomycin and 0.25 µg/ml Fungizone  

(all from Fisher Scientific). Aortic rings were treated 

with 1.6 mM sodium phosphate buffer (Sigma 

Aldrich) and 1 µM fisetin (stock in DMSO, HY-

N0182, MedChemExpress). For long-term treatments, 

fresh medium with agents were added every 2 days. 

Tissues were snap frozen or stained with Alizarin  

Red (0.0016% in 0.5% KOH). 

 

RNA isolation and RT-PCR 

 

Total RNA was isolated by using Trizol Reagent  

and reverse transcription was performed by using 

oligo(dT)12-18 primers and SuperScript III Reverse 

Transcriptase (all from Fisher Scientific). RT-PCR 

was performed with iQ Sybr Green Supermix  

(Bio-Rad Laboratories) and the primers listed below 

(Fisher Scientific) [56–58]. Relative mRNA fold 

changes were calculated by the 2-ΔΔCt method using 

GAPDH as housekeeping gene. 

 

Human primers: 

 
ALPL fw: GGGACTGGTACTCAGACAACG; ALPL 

rev: GTAGGCGATGTCCTTACAGCC; BGLAP fw: 

CACTCCTCGCCCTATTGGC; BGLAP rev: CCCTCC 
TGCTTGGACACAAAG; BMP2 fw: TTCGGCCTGA 

AACAGAGACC; BMP2 rev: CCTGAGTGCCTGCGA 

TACAG; CBFA1 fw: GCCTTCCACTCTCAGTAAGA 

AGA; CBFA1 rev: GCCTGGGGTCTGAAAAAGGG; 

CDKN1A fw: TGTCCGTCAGAACCCATGC; CDK 

N1A rev: AAAGTCGAAGTTCCATCGCTC; DUSP1 

fw: AGTACCCCACTCTACGATCAGG; DUSP1 rev: 

GAAGCGTGATACGCACTGC; GAPDH fw: GAGTC 

AACGGATTTGGTCGT; GAPDH rev: GACAAGCTT 

CCCGTTCTCAG; GLB1 fw: TATACTGGCTGGCTA 

GATCACTG; GLB1 rev: GGCAAAATTGGTCCCAC 

CTATAA; SP7 fw: CACAAAGAAGCCGTACTCT 

GT; SP7 rev: GGGGCTGGATAAGCATCCC; SPP1 

fw: GAAGTTTCGCAGACCTGACAT; SPP1 rev: GT 

ATGCACCATTCAACTCCTCG. 

 

Mouse primers: 

 

Alpl fw: TTGTGCCAGAGAAAGAGAGAGA; Alpl 

rev: GTTTCAGGGCATTTTTCAAGGT; Bmp2 fw: TC 

TTCCGGGAACAGATACAGG; Bmp2 rev: TGGTGT 

CCAATAGTCTGGTCA; Cbfa1 fw: AGAGTCAGATT 

ACAGATCCCAGG; Cbfa1 rev: AGGAGGGGTAAG 

ACTGGTCATA; Cdkn1a fw: CCTGGTGATGTCCG 

ACCTG; Cdkn1a rev: CCATGAGCGCATCGCAATC; 

Gapdh fw: AGGTCGGTGTGAACGGATTTG; Gapdh 

rev: TGTAGACCATGTAGTTGAGGTCA. 

 

Protein isolation and Western blotting 

 

Total proteins were isolated by using ice-cold Pierce 

IP lysis buffer containing complete protease and 

phosphatase inhibitors cocktail (all from Fisher 

Scientific) and protein concentrations were determined 

by the Bradford assay (Bio-Rad Laboratories). Equal 

amounts of protein were boiled in Roti-Load1 Buffer 

(Carl Roth) at 100° C for 10 minutes and then 

separated on SDS-PAGE gels and transferred to PVDF 

membranes (Roche Applied Science). Membranes 

were incubated with primary antibodies: rabbit  

anti-phospho-p38 MAPK (Thr180/Tyr182) (1:1000, 

9215, Cell Signaling), rabbit anti-p38 MAPK (1:1000, 

9212, Cell Signaling), rabbit anti-phospho-SAPK/JNK 

(Thr183/Tyr185) (1:1000, 4668, Cell Signaling), rabbit 

anti-SAPK/JNK (1:1000, 9258, Cell Signaling), rabbit 

anti-phospho-p44/42 MAPK (Thr202/Tyr204) (1:1000, 

4379, Cell Signaling), rabbit anti-p44/42 MAPK 

(1:1000, 4695, Cell Signaling), rabbit anti-phospho-

DUSP1 (Ser359) (1:1000, 2857, Cell Signaling), rabbit 

anti-DUSP1 (1:1000, 35217, Cell Signaling) and  

rabbit anti-GAPDH (1:3000, 2118, Cell Signaling)  

at 4° C overnight and with secondary anti-rabbit  

HRP-conjugated antibody (1:1000, Cell Signaling)  

at room temperature for 1 hour. Membranes were 

stripped with Restore Plus Western blot stripping 

buffer (Fisher Scientific) at room temperature. Bands 
were detected with Clarity Western ECL substrate 

(Bio-Rad Laboratories) using the ChemiDoc MP 

imaging system (Bio-Rad Laboratories) and quantified 
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using the ImageJ software. Data are shown as the  

ratio of phosphorylated to total protein to GAPDH, 

phosphorylated protein to GAPDH and of total  

protein to GAPDH, normalized to the control group 

[33, 59]. 

 

Immunofluorescence staining and confocal 

microscopy 

 

Cells were fixed in 4% PFA/PBS for 15 minutes, 

permeabilized in 0.3% TritonX-100/PBS for 10 

minutes and blocked with 5% goat serum in 0.1% 

TritonX-100/PBS for 1 hour at room temperature. 

Cells were incubated with primary rabbit anti-RUNX2 

antibody (1:100 in 0.1% TritonX-100/PBS, 12556, 

Cell Signaling) [54] at 4° C overnight and then with 

goat anti-rabbit Alexa488-conjugated antibody (1:500 

in 0.1% TritonX-100/PBS, Invitrogen) for 2 hours at 

room temperature. Nuclei were stained with 0.5 µg/ml 

DAPI (Carl Roth) for 5 minutes at room temperature 

and slides were mounted with Prolong Diamond 

antifade reagent (Invitrogen). Images were acquired  

on a Nikon Ti-2 microscope (x60 oil immersion, NA 

1.42) equipped with a Clarity Laser Free Confocal 

Unit (Aurox). 
 

Senescence-associated (SA)-β-galactosidase staining 
 

HAoSMCs were stained for SA-β-Galactosidase by 

using the Senescence β-Galactosidase staining kit 

(9860, Cell Signaling).  

 

ALP activity 

 

ALP activity was determined in cell lysates by  

using a colorimetric kit (Abcam) and protein 

concentration was determined by the Bradford assay 

(Bio-Rad Laboratories). Data are shown normalized  

to total protein concentration and to the control  

group [49]. 

 

Calcification analysis  
 

HAoSMCs were incubated with OsteoSense 680EX 

(1:250, NEV10020EX, Perkin Elmer) at 37° C 

overnight and images were acquired with the ChemiDoc 

MP imaging system (Bio-Rad Laboratories) [60, 61]. 

HAoSMCs and aortic tissues were decalcified in 0.6M 

HCl at 4° C and 37° C, respectively overnight and the 

calcium content in the supernatant was quantified by 

using the QuantiChrom Calcium assay kit (DICA-500, 

BioAssay Systems). Proteins were isolated by using 

0.1M NaOH/0.1% SDS buffer and quantified by  

the Bradford assay (Bio-Rad Laboratories). Data are 

shown normalized to total protein concentration and to 

the control group. 

Statistics 

 

Data are shown as scatter dot plots and arithmetic 

means ± SEM and n represents the number of 

independent experiments performed. Normalized data 

are shown as arbitrary units (a.u.). Normality was 

determined by Shapiro-Wilk test. For two groups, 

statistical testing was performed using unpaired T-test, 

Mann-Whitney-U-test or one-sample T-test. For multiple 

group comparison, statistical testing was performed by 

using one-way ANOVA with Tukey test (homoscedastic 

data) or Games-Howell test (heteroscedastic data) and 

Kruskal-Wallis test with Steel-Dwass test (non-normal 

data). P<0.05 was considered statistically significant. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Effects of low doses of fisetin on calcific marker expression in VSMCs during pro-calcific conditions. 
Relative mRNA expression (n=6) of BMP2 (A) and ALPL (B) in HAoSMCs treated for 48h with control (CTR) or calcification medium (Calc.) 
without and with the indicated concentrations of fisetin (Fis, 0 - 1 µM). *(p<0.05), **(p<0.01), ***(p<0.001) significant vs. control group; 
†(p<0.05) significant vs. Calc.-treated group. 

 

 
 

Supplementary Figure 2. Effects of fisetin on senescence markers in VSMCs during pro-calcific conditions. Relative mRNA 

expression (n=6) of CDKN1A (A) and GLB1 (B) in HAoSMCs treated for 48h with control (CTR) or calcification medium (Calc.) without and with 
1 µM fisetin (Fis). *(p<0.05), ***(p<0.001) significant vs. control group; †(p<0.05), ††(p<0.01) significant vs. Calc.-treated group.  
(C) Senescence-associated (SA)-β-galactosidase staining in HAoSMCs treated for 5d with control (CTR) or calcification medium (Calc.) without 
and with 1 µM fisetin (Fis). SA-β-galactosidase positive cells: blue-green; scale bar: 250 µm. 
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Supplementary Figure 3. Effects of fisetin on calcific and expression in VSMCs. Relative mRNA expression (n=8) of BMP2 (A), ALPL 
(B), CDKN1A (C) and GLB1 (D) in HAoSMCs treated for 48h without and with the indicated concentrations of fisetin (Fis, 0 - 20 µM). *(p<0.05) 
significant vs. control group. 

 

 
 

Supplementary Figure 4. Effects of fisetin preincubation on calcific marker expression in VSMCs during pro-calcific 
conditions. Relative mRNA expression (n=6) of BMP2 (A), ALPL (B) and CDKN1A (C) in HAoSMCs pre-treated for 48h with control (CTR) or 1 

µM fisetin (Fis) and treated for additional 48h with control (CTR) or calcification medium (Calc.) without and with 1 µM fisetin (Fis). *(p<0.05), 
***(p<0.001) significant vs. control group; †(p<0.05), †††(p<0.001) significant vs. CTR-pre-treated and Calc.-treated group. 
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Supplementary Figure 5. Effects of fisetin on ERK1/2 MAPK regulation in VSMCs. Representative Western blots and normalized 
phospho-p44/42 and total p44/42 MAPK protein abundance (n=6) in HAoSMCs treated for 30min with control (CTR) or 1 µM fisetin (Fis). 
*(p<0.05) significant vs. control group. 

 

 
 

Supplementary Figure 6. Effects of ERK1/2 MAPK inhibition on DUSP1 regulation in VSMCs. Representative Western blots and 

normalized phospho-DUSP1 protein abundance (n=10) in HAoSMCs treated for 30min with 1 µM fisetin (Fis) without and with 1 µM p44/42 
MAPK inhibitor LY3214996 (LY). *(p<0.05) significant vs. Fis-treated group. 

 

903



www.aging-us.com 20 AGING 

 
 

Supplementary Figure 7. Dual-specificity phosphatase 1 expression in VSMCs during pro-calcific conditions. Relative mRNA 
expression (n=4) of DUSP1 in HAoSMCs treated for 2h (A), 24h (B) and 48h (C), respectively with control (CTR) or calcification medium (Calc.). 
**(p<0.01) significant vs. control group. 

 

 
 

Supplementary Figure 8. Effects of dual-specificity phosphatase 1 knockdown on SAPK/JNK and p44/42 MAPK 
phosphorylation in VSMCs. Representative Western blots and normalized phospho-SAPK/JNK and total SAPK/JNK protein abundance 

(n=4, A) as well as phospho-p44/42 MAPK and total p44/42 MAPK protein abundance (n=4, B) in HAoSMCs transfected for 24h with negative 
control (Neg.si) or DUSP1 (DUSP1si) siRNA. 
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Supplementary Figure 9. Effects of p38 MAPK inhibitor SB203580 on dual-specificity phosphatase 1 and calcific marker 
expression in VSMCs. Relative mRNA expression (n=6) of DUSP1 (A), BMP2 (B) and ALPL (C) in HAoSMCs treated for 72h without and with 
10 µM p38 MAPK inhibitor SB203580 (SB). 
 

 
 

Supplementary Figure 10. Effects of fisetin on angiotensin II-induced calcific marker expression in VSMCs. Relative mRNA 

expression (n=8) of BMP2 (A), ALPL (B) and CDKN1A (C) in HAoSMCs treated for 24h with control (CTR) or 100 nM angiotensin II (AngII) 
without and with 1 µM fisetin (Fis). **(p<0.01), ***(p<0.001) significant vs. control group; †(p<0.05), ††(p<0.01) significant vs. AngII-treated 
group. 
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Supplementary Figure 11. Effects of fisetin on p38 Mapk activation ex vivo in calcifying mouse aortic explants. Representative 

Western blots and normalized phospho-p38 and total p38 Mapk protein abundance (n=7) in mouse aortic explants cultured for 1h in medium 
supplemented with 1.6 mM phosphate (Pi) without and with 1 µM fisetin (Fis). *(p<0.05) significant vs. Pi-treated group. 
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Supplementary Table 
 

Supplementary Table 1. Effects of fisetin in mice during cholecalciferol overload.  
 

CTR Fis vD vD + Fis 
 

Calcium [mg/dl] 10.18±0.46 10.47±0.38 24.36±1.06** 17.89±0.67**,† n=6-9 

Phosphate [mg/dl] 9.42±0.42 8.5±0.32 5.72±0.15*** 8.47±0.64† n=6-9 

Cystatin C [ng/ml] 685.95±83.69 867.78±76.40 1125.80±99.28** 1059.03±70.54* n=6-9 

Fetuin A [µg/ml] 158.94±11.88 161.02±4.37 112.55±6.75** 159.80±9.26†† n=6-9 

Serum calcium, phosphate, Cystatin C and Fetuin A levels in mice receiving vehicle (CTR) or high-dosed 
cholecalciferol (vD) without and with fisetin (Fis). *(p<0.05), **(p<0.01), ***(p<0.001) significant vs. 
control group; †(p<0.05), ††(p<0.01) significant vs. vD-treated group. 
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