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INTRODUCTION 
 

Multiple myeloma (MM) is the second most frequent 

hematological tumor [1–3]. Around 10% of all 

hematological malignancies are MM cases, with the 

majority of patients over 40 years of age and a 5-year 

survival rate of 53% [4, 5]. Multifocal spread throughout 

the bone marrow without apparent clinical symptoms is 

the main characteristic of early-stage MM. In the last ten 

years, the advent of immunomodulatory medications, 

proteasome inhibitors, and combination therapy has 

improved the treatment of MM. For instance, immuno-

modulator drugs (IMiDs) are considered as a single-agent 

maintenance therapy after autologous stem cell 

transplantation and can be used in combination therapy 

for all stages of MM [6]. Daratumumab, the first CD38 

monoclonal antibody medication authorized for the 

treatment of MM patients, has shown promising effect on 
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ABSTRACT 
 

Background: Multiple myeloma (MM) is a cancer that is difficult to be diagnosed and treated. This study aimed 
to identify programmed cell death (PCD)-related molecular subtypes of MM and to assess their impact on 
patients’ prognosis, immune status, and drug sensitivity. 
Methods: We used the ConsensusClusterPlus method to classify molecular subtypes with prognostically 
relevant PCD genes from the MM patients screened. A prognostic model and a nomogram were established 
applying one-way COX regression analysis and LASSO Cox regression analysis. MM patients’ sensitivity to 
chemotherapeutic agents was predicted for at-risk populations. 
Results: Six molecular subtypes were classified employing PCD-related genes, notably, three of them had a 
higher tendency for immune escape and two of them were correlated with a worse prognosis of MM. 
Furthermore, the C3 subtype had activated pathways such as oxidative phosphorylation and DNA repair, while 
the C2 and C4 subtypes had activated pathways related to apoptosis. The Risk score showed that the 
nomogram can correctly predict the OS for MM patients, in particular, patients in the high-risk group had low 
overall survival (OS). Pharmacovigilance analyses revealed that patients in the high-risk and low-risk groups had 
greater IC50 values for the drugs SB505124_1194 and AZD7762_1022, respectively. 
Conclusions: A 12-gene Risk score model developed with PCD-related genes can accurately predict the survival 
for MM patients. Our study provided potential targets and strategies for individualized treatment of MM. 
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treating both newly diagnosed MM and relapsed or 

refractory MM [7]. Nevertheless, MM is still largely 

incurable and many patients relapse due to immune 

evasion and therapeutic resistance [8, 9], necessitating the 

discovery of novel molecular biomarkers to improve 

patient risk classification and therapy response prediction. 

 

Since the primary objective of cancer treatment is to 

eradicate tumor cells, inducing cancer cell death has 

become a crucial strategy [10]. The active process of 

programmed cell death (PCD) preserves bodily growth 

and survival [10], while non-PCD is a highly structured 

process that typically involves the regulation of gene 

expression and signal transmission [11]. In contrast, PCD 

is a type of necrosis stimulated by trauma, infection, or 

ischemia [12]. Although the morphology, biochemistry, 

and signaling pathways of different forms of cell death 

vary, they are all actively executed by cells as a part of 

PCD process, which is essential for maintaining tissue 

homeostasis and supporting the immune system [13, 14]. 

Moreover, the development of numerous diseases, 

including immunological problems, tissue damage, 

neurodegeneration as well as malignancies such as MM 

[15], breast cancer [12] and hepatocellular carcinoma 

[16], are closely linked to PCD. Furthermore, there is a 

strong correlation between the prognostic evaluation of 

cancer patients and PCD-related genes. Gu et al. 

discovered five important PCD genes [17] that affect 

hepatocellular carcinoma patients by controlling 

immunological function, inflammatory pathways, and 

treatment response. Recent evidence suggested that PCD-

associated genes contribute to the prognostic prediction, 

immune profile, and treatment of endometrial cancer of 

the uterine corpus [18]. Similarly, PCD-associated traits 

have been identified to evaluate the immune micro-

environment landscape, drug sensitivity and prognosis for 

patients with cutaneous melanoma [19] and acute myeloid 

leukemia [20]. Based on the above findings, the present 

work classified molecular subtypes of MM based on 

prognostically significant PCD-related genes by 

consensus clustering method, and further compared the 

differences between the subtypes in terms of pathway 

characteristics and clinical features. Differential 

expression analysis and LASSO were employed to 

determine genes related to PCD phenotype. Finally, we 

constructed a clinical prognostic model to offer novel 

understanding for the targeted drug therapy and clinical 

diagnosis of adjuvant MM. 

 

MATERIALS AND METHODS 
 

Data collection 

 
The Cancer Genome Atlas (TCGA, https://portal. 

gdc.cancer.gov/) database was accessed to obtain the 

RNA-seq data, corresponding clinical characteristics, and 

follow-up data of 859 MM patients from the MMRF-

COMPASS project. A total of 844 MM samples were 

obtained after data preprocessing. Then, these samples 

were randomly assigned into training set (592 cases)  

and validation set (252 cases) at the ratio of 7:3 to ensure 

the representativeness and randomness of the sample 

distribution. In addition, 55 cases of MM samples in  

the GSE57317 dataset were collected from the  

Gene Expression Omnibus (GEO, https://www.ncbi. 

nlm.nih.gov/geo/) database. Importantly, genes related to 

PCD were obtained from a previous study [12]. 

 

Preprocessing of RNA-seq data for TCGA 

 

1) Eliminating samples without clinical follow-up 

data; 

 

2) Retaining samples with a survival time longer than 

or equal to thirty days; 

 

3) Eliminating samples without survival state; 

 

4) Gene Symbol Conversion from Ensembl; 

 

5) The median was used to normalize the gene with 

numerous gene symbols. 

 

GEO data preprocessing 

 

After downloading the standardized microarray probe 

expression data (GSE57317), the probe expression was 

transformed into gene expression using the platform 

annotation file. The average expression of several 

probes corresponding to the same gene was used as the 

expression value of the gene, while the probes were 

eliminated when only one probe matched several genes. 

The maximum expression value was taken when more 

than one probe matched to the same gene. MM 

specimens were removed, and patients in good survival 

status with a survival time longer than 30 days were 

included in this analysis. Finally, 55 MM samples in 

GSE57317 were kept. 

 

Identification of molecular subtypes using PCD-

related genes 

 

Unsupervised clustering is a data mining approach that 

uses only internal attributes to identify unknown 

clusters of potential objects. Consensus clustering (CC) 

uses repeated subsampling and clustering to produce 

quantitative and graphical “stability” proof. 

Specifically, ConsensusClusterPlus extends the CC 

algorithm by initially subsampling a specific percentage 
of items and a specific percentage of features in the data 

matrix. A user-specified clustering method then splits 

each subsample into several categories [21]. This study 
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applied CC to classify the molecular subtypes in the 

“ConsensusClusterPlus” R program [21]. The 500 

bootstraps were conducted utilizing the “km” algorithm 

and “1 - Spearman correlation” as a metric distance. 

Each bootstrap included 80% of the training set of 

patients. The optimal subtype was determined by 

consistent cumulative distribution function, and the 

number of clusters was between two and ten. 

 

Association between molecular subtypes and 

immune properties 

 

The correlation between immune checkpoint genes in 

different molecular subtypes was analyzed. A total of 

67 immune checkpoint genes taken from early research 

were included as the representative immune checkpoints 

[22]. Using Kruskal, the levels of immune checkpoint 

gene expression in the molecular subtypes were 

assessed. Tumor immune dysfunction and exclusion 

(TIDE) algorithm was employed to evaluate potential 

responses of MM patients to immune checkpoint 

blockade (ICB) [23]. Specifically, differences in T-cell 

rejection characteristics in different MM molecular 

subtypes were further compared based on the gene 

expression profiles of dysfunction, exclusion, tumor-

associated macrophage M2 types (TAM.M2), myeloid-

derived suppressor cell (MDSC), and cancer-associated 

fibroblast (CAF) using TIDE software [23, 24]. 

 

Functional enrichment analysis 

 

Single-sample GSEA (ssGSEA) [25] refers to the 

absolute enrichment of a gene set in each sample from a 

dataset. Here, the R package “GSVA” [26] was used to 

calculate the scores of the 34 biological pathways  

to obtain ssGSEA scores for each sample. Furthermore, 

based on the HALLMARK gene set in the Molecular 

Signatures Database (MSigDB, http://software. 

broadinstitute.org/gsea/msigdb) [27], we performed 

GSEA pathway analyses to identify unique biological 

processes and evaluate differentially activated pathways 

across the molecular subtypes. 

 

Development of a PCD‑related prognostic model 

 

Differentially expressed genes (DEGs) from previously 

identified molecular subtypes were screened by the R 

package “limma” [28], and those with |logfc|>log2(1.5) 

and p<0.05 in each molecular subtype were extracted. 

Moreover, we employed one-way Cox regression 

analysis to screen genes with differential expression and 

utilized the “survival” R package to identify multiple 

important PCD-related features (p<0.05) [29]. Next, the 
R package “glmnet” was utilized to further limit the 

number of genes, and the prognostically relevant genes 

were determined by LASSO regression [30]. Next, the 

Risk score for the MM patients was calculated by the 

following formula: Risk score = Σβi × Expi), where β is 

the gene Cox regression coefficient and i is the gene 

expression level. Then the Risk score was subjected to 

Z-score, and the MM samples of the training set, 

validation set, and GSE57317 dataset were classified 

into high-risk group (zscore >0) and low-risk group 

(zscore <0) by the threshold value of “0”. Prognostic 

analyses were performed by plotting the Kaplan-Meier 

(KM) survival curves, and significant differences were 

assessed by log-rank test. Furthermore, receiver 

operating characteristic (ROC) curves were plotted and 

1-, 2-, and 3-year area under the curve (AUC) was 

computed using the R package “timeROC” [31]. 

 

Correlation analysis between Risk scores and drug 

sensitivity 

 

Based on in the Genomics of Drug Sensitivity in Cancer 

(GDSC) database, the sensitivity of MM patients to 

several drugs was predicted using the “oncPredict” 

package [32] in R software. In addition, the IC50 values 

of drugs for samples from the MMRF-COMPASS 

training set cohort was also calculated. Further, the 

correlation between drug sensitivity and Risk score was 

predicted using Pearson correlation analysis, with 

p<0.05 and |cor|>0.3 being considered as statistically 

significant. 

 

Statistical analysis 

 

R program (v4.2.1) was used to conduct statistical 

analysis. The Student t-test or Wilcoxon test was used to 

compare the two groups. The Kruskal-Wallis one-way 

ANOVA was applied to assess the comparisons between 

two or more groups. We plotted Kaplan-Meier survival 

curves and evaluated the variations between the curves. 

Correlation analysis between continuous variables was 

performed using Spearman’s rank correlation. P-value of 

0.05 served as the cutoff for statistical significance in all 

analyses. Ns represented p > 0.05; *p < 0.05, **p < 0.01, 

***p < 0.001, and ****p < 0.0001. 

 

RESULTS 
 

Identification of molecular subtypes using 

prognostically relevant PCD genes for MM  

 

The association between the expression of PCD-related 

genes in the MMRF-COMPASS training set cohort 

patients was analyzed. Here, a total of 434 genes 

significantly related to the prognosis of MM were 

filtered (p<0,001). Subsequently, according to the 

expression profiles of the 434 genes, 592 patients in 

MMRF-COMPASS training cohort were classified by 

consensus clustering method. From the results of the 
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cumulative distribution function (CDF) Delta area, the 

CDF downward slope was the smallest at k = 6, which 

had a more stable clustering result (Supplementary 

Figure 1). Therefore, the whole cohort was divided 

into six molecular subtypes (C1, C2, C3, C4, C5, C6) 

(Figure 1A) with significant prognostic differences 

(Figure 1B). Overall, MM patients in the C5 subtype 

had a better prognosis, in contrast, those in the C6 

subtype had a lower survival rate. Figure 1C shows the 

distinct clinical features of MM patients in the six 

subtypes, and it can be observed that most patients in 

the C1, C3, and C6 subtypes did not differ 

significantly in terms of their staging, grading, and 

age. Meanwhile, the results of differential analysis 

demonstrated significant differences between different 

PCD scores across the six molecular subtypes (Figure 

1D). Subsequently, analysis on the clinicopathological 

features between different subtypes in the MMRF-

COMPASS training cohort showed a higher grade of 

the C6 subtype (Figure 1E). Overall, MM prognosis 

and the expression of PCD-related genes were 

remarkably different among the six molecular 

subtypes. 

Association between the molecular subtypes and 

immunotherapy 
 

Considering the efficacy of ICB in cancer 

immunotherapy, we assessed the differential expression 

of a representative set of 67 immune checkpoint genes 

from a previous study [22] among the six molecular 

subtypes. As shown in Figure 2A, most of the 

immunosuppressive, immune-activating and TwoSide 

genes were upregulated in the C4 and C6 subtypes but 

downregulated in the C1 and C5 subtypes. Additionally, 

significant differences in the expression of the four 

immune checkpoint genes (TIGIT, CTLA4, CD274 and 

BTLA) were observed among the six molecular 

subtypes, with BTLA having a high expression and 

TIGIT and CTLA4 having a low expression (Figure 2B). 

These results indicated that the expression pattern of the 

immune checkpoint genes could be considered as a 

marker for evaluating the immunotherapy responses of 

MM patients.  
 

Subsequently, it was found that the infiltration 

abundance of MDSC, CAF and TAM differed

 

 

 

Figure 1. Cluster analysis of different subtypes of MM based on PCD-related genes. (A) Heatmap of sample clustering in MMRF-

COMPASS with a total of k = 6. (B) Relationship KM curves of OS prognosis for six molecular subtypes. (C) Differences in PCD between 
molecular subtypes in the MMRF-COMPASS cohort. (D) Heat map of statistically significant different PCD levels in different subtypes. (E) 
Clinicopathological characteristics of the six molecular subtypes in the MMRF-COMPASS training cohort. **p < 0.01, ****p < 0.0001. 
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significantly across the molecular subtypes, specifically, 

these three types of cells showed a higher infiltration in 

C6, C5, and C2, respectively. TIDE analysis also 

showed that the TIDE score was higher in C6 subtype 

(Figure 2C). The high exclusion score in the C6 subtype 

indicated that this subtype evaded the immune system 

mainly through immune exclusion mechanisms, 

whereas a high dysfunction score in the C5 subtype 

indicated that MM patients in this subtype relied on 

immune cell dysfunction for immune escape. This 

suggested that different subtypes of MM tumors 

required different immunotherapeutic strategies to 

respond effectively. 

Characterization of the pathways for the six 

molecular subtypes of MM 

 

Using the HALLMARK gene set from the MSigDB 

database, GSEA was employed to identify differentially 

activated pathways in the six molecular subtypes of 

MM, with FDR<0.05 showing a significant enrichment. 

The analysis revealed that pathways such as oxidative 

phosphorylation and DNA repair were activated in the 

C3 subtype and apoptosis-related pathways were more 

activated in the C2 and C4 subtypes, whereas  

most signaling pathways appeared to be relatively  

stable in the C1, C5 and C6 subtypes (Figure 3). 

 

 

 

Figure 2. Immunotherapy analysis. (A) Heatmap of expression of immune checkpoint genes between different molecular subtypes.  

(B) Differential expression of common immune checkpoint genes TIGIT, CTLA4, CD274 and BTLA between different molecular subtypes.  
(C) Results predicted by TIDE software. ***p < 0.001, ****p < 0.0001. 
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In addition, we further identified DEGs by comparing 

each subtype against other subtypes (e.g., C1 vs. all 

others, C2 vs. all others, etc.) using the ‘limma’ package 

under the criteria of FDR < 0.05 and |log2FC| > 

log2(1.5) (Figure 3B). Moreover, analysis on the 

distribution of DEGs across these molecular subtypes 

showed that only eight genes were consistently 

differentially expressed in all the subtype comparisons 

(C1 vs. others, C2 vs. others, C3 vs. others, C4 vs. 

others, C5 vs. others, and C6 vs. others) (Figure 3C). 

Collectively, these findings indicated that different 

subtypes of MM were characterized by specific 

genomic and molecular features, which were closely 

correlated with MM prognosis. 

Development and validation of a clinical predictive 

model 

 

Previous analyses identified the DEGs across the six 

subtypes of MM using the ‘limma’ package. 

Subsequently, 7035 genes that significantly influenced 

the prognosis of MM patients were screened by 

univariate Cox regression analysis and further subjected 

to LASSO regression using the R package “glmnet” to 

compress the gene number. As shown in Figure 4A, the 

number of independent variables whose coefficients 

tended to zero went up with the gradual increase of 

lambda. We employed 3-fold cross-validation for the 

model development and analyzed the confidence 

 

 

 

Figure 3. Signalling and genomic landscapes between different subtypes in the MMRF-COMPASS training cohort. (A) Signaling 

pathway activities of different molecular subtypes in the MMRF-COMPASS training cohort. Results of differential expression analysis (B) and 
distribution (C) of genes between molecular subtypes in the MMRF-COMPASS training cohort. 
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intervals under each lambda (Figure 4A). The model 

was the optimal when lambda=0.0539, under which a 

total of 24 genes were selected as the target genes for 

subsequent analysis. Then, using the 24 genes in the 

LASSO analysis, we conducted stepwise multivariate 

regression analysis and used the stepAIC method in 

the MASS package. Starting with the most complex 

model, one variable was removed iteratively at a  

time to reduce the AIC. Through this process, we 

finally identified 12 genes, namely, HMGB3, IL24,  

CD38, GZMB, RHOC, CEACAM1, FABP5, HPDL, 

SHROOM3, WNT9A, FOXD1, and TJP1 (Figure  

4B–4C). 

 

Each patient in the TCGA cohort was assigned with a 

Risk score calculated by the formula: Risk score=0.178* 

HMGB3+0.185*IL24-0.303*CD38+0.219*GZMB+0.19 

3*RHOC-0.141*CEACAM1+0.186* FABP5+ 0.213* 

HPDL+ 0.125*SHROOM3+ 0.233*WNT9A+ 0.213* 

FOXD1-0.097*TJP1. 

 

 

 

Figure 4. PCD-based risk model construction and validation. (A) Trajectories of each independent variable with lambda and 

confidence intervals under lambda. (B) Key genes of the prognostic model. (C) Forest plot of key genes of the prognostic model. (D–F) 
Validation of clinical prognostic models for the MMRF-COMPASS training set cohort, MMRF-COMPASS validation set cohort, and GSE57317 
cohort, respectively. They are, from left to right: Risk score, survival time versus survival status and expression of prognostic genes, KM 
Survival Curve Distribution, and ROC Curve. 
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Next, we compared the survival time of MM patients 

in different subgroups and found that high-risk 

patients had shorter survival time than low-risk 

patients (p < 0.0001). Moreover, the AUC values for 

1-, 2-, and 3- year survival reached 0.77, 0.83, and 

0.85, respectively (Figure 4D). Notably, similar 

results in the MMRF-COMPASS validation set cohort 

(p < 0.0001) and the GSE57317 cohort (p = 0.027) 

were observed, with high-risk patients showing a 

significantly worse OS. The AUC values for 1-, 2-, 

and 3- year survival prediction in the MMRF-

COMPASS validation set cohort reached 0.72, 0.76 

and 0.77, respectively (p < 0.0001, Figure 4E). In 

GSE57317 cohort, the AUC values for 1-, 2-, and 3- 

year survival prediction were 0.85, 0.84 and 0.84, 

respectively (p < 0.05, Figure 4F). These results 

demonstrated robust prognostic predictability of PCD-

related genes. 

 

Establishment and assessment of a nomogram 

 

Subsequently, differences in clinicopathological 

features between the risk subgroups in the MMRF-

COMPASS training set were compared. It was found 

that gender and age did not differ significantly between 

the two risk groups, whereas the Risk score increased as 

the clinical grade advanced (Figure 5A). We further 

performed multivariate Cox regression analysis 

combining stage, age, gender, and the Risk score to 

establish a nomogram to better evaluate OS for MM 

patients. As shown in Figure 5B, the Risk score showed 

the greatest impact on the OS prediction in 

 

 

 

Figure 5. Nomogram construction for predicting the prognosis of MM patients. (A) Differences in clinicopathological characteristics 

between risk subgroups in the MMRF-COMPASS training set. (B) Risk score combines clinical features to create column-line plots.  
(C) Calibration curves were used to validate the established column line plots. (D) Decision curve analysis of column-line plots. Ns represents 
p > 0.05, and ****p < 0.0001. 
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MM, followed by age and stage. Further, the calibration 

curves demonstrated that the 1-, 2-, and 3-year 

prediction calibration curves were close to the standard 

ones, suggesting that the model had a high prediction 

accuracy (Figure 5C). Interestingly, the accuracy of our 

risk model further assessed by the decision curve 

analysis (DCA) also performed well in assessing MM 

prognosis. (Figure 5D). 

 

Enrichment pathway analysis and drug sensitivity 

assessment for MM patients in different risk groups 

 

Subsequently, we calculated ssGSEA scores for each 

sample based on the HALLMARK Pathway and used 

Wilcoxon rank-sum test to identify differential path-

ways between the two risk groups of MM. Pathways 

such as hypoxia, angiogenesis and apoptosis were 

notably activated in the high-risk group, whereas 

pathways including NOTCH_SIGNALING and KRAS_ 

SIGNALING_DN were more activated in the low-risk 

group (Figure 6A). After calculating the IC50 values for 

each drug in the MMRF-COMPASS training set cohort, 

a significant correlation (FDR<0.05 and |cor|>0.3) 

between nine drugs and the Risk score was detected. 

Analysis on the correlation between the Risk score, the 

expression of key model genes and the IC50 values of 

the drugs revealed that MM patients in the high-risk 

group had a higher IC50 values for the drug 

SB505124_1194 (Figure 6B, 6C), suggesting that MM 

patients with higher Risk score value might be resistant 

to SB505124_1194 (p=3.7e-22). Similarly, patients in 

the low-risk group may be resistant to AZD7762_1022 

(p=1e-20). Thus, SB505124_1194 and AZD7762_1022 

were considered as valid references for evaluating 

chemotherapy resistance in MM patients. 

  

DISCUSSION 
 

Due to drug resistance and surgical recurrence, MM as 

the second most common hematological malignancy is 

largely incurable [33]. Study confirmed that PCD is 

crucially involved in carcinogenesis, immunological 

 

 

 

Figure 6. Risk models and pathway characteristics and drug sensitivity differ between patients in different MM risk groups. 
(A) HALLMARK pathway differences between high and low-risk subgroups. (B) Bubble plots of Risk score in the MMRF-COMPASS training set 
cohort and expression of key genes in the model versus drug IC50 values, size and color indicate the strength of the association.  
(C) Comparison of IC50 scores versus drugs between high and low-risk groups. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. 
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infiltration, progression, prognosis, and treatment 

effectiveness of cancers [34, 35]. For example, Zou  

et al. [12] developed a PCD signature based on immune 

checkpoint genes to evaluate the prognosis and drug 

sensitivity for patients with triple-negative breast 

cancer. Similarly, Qin et al. [36] discovered 16 PCD 

genes that are highly effective in predicting the 

prognosis and immunotherapy response for patients 

with oesophageal squamous cell carcinoma. 

Additionally, a significant correlation between PCD and 

immune features, including immune cell infiltration and 

the expressions of immune checkpoint molecules, has 

also been found in lung adenocarcinoma [37]. At 

present, the study of PCD in MM is largely limited to 

individual form of PCD, such as apoptosis [38], 

ferroptosis [39], autophagy [40] and cuproptosis [41]. 

However, different PCD forms are not necessarily 

mutually exclusive. Numerous redundancies and 

crosstalk have been observed in signaling pathways that 

regulate these patterns of cell death, suggesting that 

they may work together to influence tumorigenesis and 

tumor progression [42]. Therefore, using predictive 

features that integrate information from multiple PCDs 

may better characterize tumor status. This study 

analyzed the integrated landscape of PCD in the context 

of translational medicine, aiming to improve the 

understanding of the role of PCD in MM. 

 

The TME and its components provide the foundation 

for the proliferation and survival of malignant  

cells [43]. The TME is also involved in checkpoint 

blockade immunotherapy and immunosuppression [44]. 

According to previous reports, immunosuppressive cell 

infiltration in the TME is a key marker of the immune 

microenvironment in tumors, significantly influencing 

the development of malignancies. Pro-tumourigenic 

immune cells are attracted by CAF to prevent pro-

tumourigenic CD8+T cell infiltration [45]. Furthermore, 

in addition to impeding the invasion of immune cells, 

MDSC in the TME can directly bind to immune 

checkpoint receptors on tumor cells, blocking the 

oncogenic effects of T cells [46]. Similarly, TAM 

infiltration in TME is related to treatment resistance, 

metastasis, and immunosuppression in the majority of 

malignancies [47]. It has been demonstrated that 

immunological failure in MM patients is associated 

with the infiltration of immunosuppressive cells, and 

that the immunosuppressive mediators of these cells are 

correlated with the prognosis of patients [48, 49]. In the 

present study, high MDSC infiltration in the C6 subtype 

may have a suppressive effect on immune cell functions 

and this was correlated with high rejection scores in the 

subtype, suggesting that MDSC may evade the immune 
system mainly through immune rejection mechanisms. 

Similarly, high CAF infiltration in the C5 subtype was 

associated with a high dysfunction score, indicating that 

CAF cells may rely on immune cell dysfunction for 

immune escape. In addition, macrophage infiltration 

could also induce immune suppression. Patients with 

higher TIDE scores have shown a higher likelihood of 

immune escape and less active response to immune 

checkpoint inhibitors (ICI) therapy [23]. Overall, TAM, 

MDSC and CAF cell infiltration in the TME may be the 

main cause of immune escape in MM patients. 

 

Immune checkpoints could preserve the balance in the 

body and inhibit abnormal immune response activation. 

Tumor cells, however, avoid immune response by 

taking advantage of this feature of immune checkpoint 

molecules [50]. Immune checkpoint blockade (ICB) 

therapy has attracted much research interest and 

demonstrated promising outcomes in cancer treatment 

[51]. The immunoglobulin-associated receptor family 

(TIGIT, CTLA4, CD274, and BTLA) have inhibitory 

effects on T cell function and have been used as a part 

of immunomodulatory strategy for treating cancers [52]. 

Study reported that high-expressed CTLA4 and CD274 

in head and neck squamous cell carcinoma (HNSCC) 

may cause immune dysfunction in the patients [53]. In 

addition, Hong et al. also found a positive link between 

the expression level of BTLA and that of TIGIT in renal 

cell carcinoma, showing the potential to be considered 

as a pair of targets in the immunotherapy for the tumor 

[54]. It was found that dysregulated expression of 

immune checkpoints may account for a lower clinical 

response to immune checkpoint therapy in MM [55]. 

Here, we found significant differences in the expression 

of TIGIT, CTLA4, CD274 and BTLA among all the  

six molecular subtypes. Notably, BTLA had higher 

expression levels in these molecular subtypes, 

suggesting that immune checkpoint therapy blocking 

BTLA may have better efficacy to MM patients in 

different subtypes.  

 

To further improve the clinical applicability, we identified 

12 PCD-related genes that affected the prognosis of MM 

using stepwise regression analysis, including HMGB3, 

IL24, CD38, GZMB, RHOC, CEACAM1, FABP5, HPDL, 

SHROOM3, WNT9A, FOXD1, and TJP1. HMGB3 could 

regulate breast cancer cell autophagy and apoptosis, 

promoting cell migration, invasion and metastatic 

potential [56]. IL24 inhibits MM cell tumor growth by 

inducing tumor cell autophagy, thus suppressing MM cell 

tumor growth [57]. The transmembrane glycoprotein 

CD38 mediates T-cell activation and has an 

immunomodulatory effect on the TME in MM [58]. 

Although, CD38 expression is commonly increased in 

MM, it is present as a tumor suppressor in HNSCC [59]. 

This phenomenon may be related to the drug resistance of 

the samples selected in this study, which requires further 

validation. GZMB has been reported to serve as an 

immune response regulator in the immune activation of 
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artificial pluripotent stem cells in MM [60]. Li et al. [61] 

observed that GZMB hinders immune evasion by inducing 

pyroptosis and apoptosis in acute myeloid leukemia 

(AML) cells. In addition, RHOC, a ferroptosis and 

cuproptosis-related gene that affects the prognosis of 

AML, has a strong ability in predicting the OS of the 

cancer [62]. RHOC can promote tumor growth and induce 

tumor angiogenesis in MM [63]. In addition, CEACAM1 

plays an oncogenic role in MM by inhibiting tumor cell 

proliferation, invasion and migration, and inducing 

apoptosis [64]. The lipid chaperone protein FABP5 

promotes cell proliferation, inhibits apoptosis and 

enhances chemotherapy resistance in MM patients [4, 65]. 

High expression of HPDL in pancreatic ductal 

adenocarcinoma is predictive of poorer prognosis and 

immunosuppression in the patients [66]. In addition, 

bioinformatics analysis revealed that SHROOM3 is a 

strong predictor of prognosis, immune activity, and 

treatment response of clear cell renal cell carcinoma [67]. 

Previous research verified that the mRNA expression 

level of WNT9A is significantly associated with the 

biochemical recurrence of prostate cancer [68]. FOXD1 

could be able to promote cell proliferation and inhibit 

apoptosis by regulating polo-like kinase 2 in colorectal 

cancer [69]. Another study reported that TJP1, whose 

expression is low in MM, inhibits tumor metastasis by 

increasing the adhesion of MM cells to bone marrow 

stroma [70]. These results suggested that most of these 

genes were associated with the development of one or 

more PCD forms in tumors, and that their different roles 

in tumors may be related to the TME. In accordance with 

the available analyses, these genes were largely linked to 

cell invasion and metastasis, immune infiltration and 

therapeutic response, which was of important value in the 

prognostic prediction in MM. 

 

Subsequently, we identified differential pathways 

between high- and low-risk groups, and found that 

pathways such as hypoxia and angiogenesis, which 

were closely related to tumor development and 

progression, were remarkably activated in the high-risk 

group [71]. The activation of the apoptotic pathway 

once again proved the anti-tumor effect of CEACAM1 

in MM [64]. In the low-risk group, pathways such as 

NOTCH_SIGNALING and KRAS_SIGNALING_DN 

were more activated, indicating that the bone marrow 

microenvironment of low-risk MM patients may be an 

ideal microenvironment for the proliferation and 

migration of MM cells [72–74]. These results suggested 

that differences in tumor behaviors in different 

subgroups of MM may be a result of aberrant activation 

of different genes and pathways, which was a crucial 

cause leading to tumor progression and a key clinical 
target. The therapeutic efficacy of post-surgical 

adjuvant chemotherapy in treating most tumors  

has been widely recognized [75]. However, the 

heterogeneity of the TME may cause resistance and 

different responses to the therapy in different patients 

[8]. Similarly, improving drug resistance in MM 

patients could contribute to a better prognosis of the 

patients. Therefore, we developed a risk model with the 

sensitivity to several most commonly used drugs in MM 

therapies. Higher IC50 values of SB505124_1194 in the 

high-risk group may explain the unfavorable prognostic 

outcomes in this group. The anticancer sensitivity of the 

drug predicted by ferroptosis-related genes has also 

been verified in AML [76]. AZD7762 could enhance 

tumor cell sensitivity to DNA damage and cisplatin-

induced apoptosis in osteosarcoma cells [77]. 

Considering the fact that low-risk MM patients may be 

resistant to AZD7762_1022, it can be speculated that 

MM patients could respond to most PCD-related 

chemotherapeutic agents. These findings supported that 

the Risk score developed with the PCD genes 

contributed to the clinical management of MM patients. 

 

However, there were certain limitations in this study to 

be noted. Firstly, bias may be unavoidably caused by 

the retrospective recruitment of patients. Secondly, 

additional experimental research is required to analyze 

the biological roles of some PCD genes that have not 

been investigated in MM cells. Furthermore, this study 

only assessed the sensitivity of MM to two different 

types of medications applying bioinformatics analysis, 

therefore tissue tests are needed to confirm the validity 

of the current results. Finally, multicenter randomized 

controlled studies with large sample sizes and follow-up 

data are also encouraged to be carried out for further 

validation. 

 

CONCLUSIONS 
 

In this study, six molecular subtypes of MM were 

identified using PCD genes, which can be employed to 

characterize different prognostic and immune states of 

MM patients. In addition, a robust 12-gene Risk score 

model developed based on the differential genes were 

independent of clinicopathological characteristics and 

showed stable prediction performance in both 

independent datasets. Moreover, the model could be 

applied to assess the sensitivity of MM patients to 

anticancer drugs. This helped to better understand the 

mechanism through which PCD influenced the 

progression of MM and also provided a theoretical 

reference for the clinical targeted therapy of MM. 
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Supplementary Figure 1. Formulaic cluster analysis of MM prognosis-associated PCD genes. (S1) Horizontal coordinates indicate 

the number of categories k and vertical coordinates indicate the relative change in area under the CDF curve. 
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