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SUPPLEMENTARY MATERIALS 
 

Stochastic process models: Interpretation and 

illustration of components, parameters, and related 

null hypotheses 

 

As described in the main text (section Stochastic 

process models: General specifications), for stochastic 

process models (SPM) applications, we used a one-

dimensional version with time-dependent components 

[1]. This model has two equations: one for modeling 

individual age trajectories of LPC species 𝑌(𝑡, 𝑐) 
(where t is age and c denotes covariates; see section 

Stochastic process models: Specific parameterizations 

used in applications in the main text) and one 

representing individual mortality rate 𝜇(𝑡, 𝑐, 𝑌(𝑡, 𝑐)) as 

a function of age, covariates, and LPC levels: 

 

d𝑌(𝑡, 𝑐) = 𝑎(𝑡, 𝑐)(𝑌(𝑡, 𝑐) − 𝑓1(𝑡, 𝑐))d𝑡 +

𝑏(𝑡, 𝑐)d𝑊(𝑡),   (Eq. 6) 

𝜇(𝑡, 𝑐, 𝑌(𝑡, 𝑐)) = 𝜇0(𝑡, 𝑐) + 𝑄(𝑡, 𝑐)(𝑌(𝑡, 𝑐) −

𝑓0(𝑡, 𝑐))
2
.   (Eq. 7) 

 

Note that these equations model individual 

trajectories/rates; we do not use an index to indicate that 

t, c, and 𝑌(𝑡, 𝑐)  are individual-based quantities, for 

simplicity of notation and visualization. Here, 𝑌(𝑡0, 𝑐) 
is the initial condition (𝑡0 denotes age at entering the 

study) and 𝑊(𝑡) is the stochastic Wiener process (also 

known as Brownian motion [2]), which is assumed to be 

independent of 𝑌(𝑡0, c). This process defines random 

paths of 𝑌(𝑡, 𝑐) . Below, we provide a detailed 

description of the model’s components and parameters, 

and illustrate the meaning of related null hypotheses. 

This can assist in the interpretation of SPM results 

presented in Figure 1 and Supplementary Figure 10A, 

10B, and Supplementary Tables 2–4. 

 

Baseline mortality rate 𝜇0(𝑡, 𝑐)  represents the part of 

the mortality rate in Eq. (7) that is not related to LPC 

(𝑌(𝑡, 𝑐)). As SPM is a parametric model, we need to 

specify the parametric form of 𝜇0(𝑡, 𝑐), along with other 

components. For our applications, we chose the 

Gompertz baseline hazard, which is commonly used in 

demography to represent a typical pattern of mortality 

rate at adult and old ages. In this parameterization, the 

logarithm of the baseline mortality rate is a linear 

function of age and covariates: ln 𝜇0(𝑡, 𝑐) = ln 𝑎μ0 +

𝑏μ0(𝑡 − 𝑡min) + 𝛽μ0𝑐 , where 𝑡min = 50  in our 

applications. Here, 𝑎μ0  is the baseline mortality rate 

corresponding to age 𝑡min and zero values of covariates 

in a (column) vector c. Parameter 𝑏μ0 represents the rate 

of change in ln 𝜇0(𝑡, 𝑐)  with age, and 𝛽μ0  is a (row) 

vector of parameters corresponding to covariates in c. 

The baseline mortality rate is not of direct interest in our 

applications. Therefore, we do not test any null 

hypothesis related to 𝜇0(𝑡, 𝑐). 
 

The quadratic hazard term 𝑄(𝑡, 𝑐) (assumed to be non-

negative for all t and c) is the multiplier scaling the 

quadratic component of the hazard in Eq. (7). Such a 

quadratic shape of the mortality rate used in SPM 

reflects common epidemiological observations 

(including our own research [3–6]) that mortality as a 

function of various biomarkers has a U-shape. This 

means that there is an optimal value of a biomarker 

(𝑓0(𝑡, 𝑐)) that minimizes the mortality risk at a specific 

age (and specific values of covariates, if relevant) and 

that the deviations of the biomarker to smaller or larger 

values induce an additional mortality risk. This is 

captured by the quadratic shape of the mortality rate, 

and 𝑄(𝑡, 𝑐) controls the width of the U-shape. We test 

several null hypotheses (H0) related to this component 

of SPM. 

 

First, we test H0: 𝑄(𝑡, 𝑐) = 0 (denoted Qzero). This is 

the key H0 to test because if we are not able to reject it, 

it indicates that the respective biomarker (LPC) is not 

related to the risk of death, making testing any other 

H0s for that particular LPC irrelevant. Supplementary 

Figure 2A illustrates the situation when Qzero is 

rejected, i.e., LPC values are related to the mortality 

risk (as illustrated by a U-shape of the mortality rate). 

Supplementary Figure 2B, conversely, shows the case 

when 𝑄(𝑡, 𝑐) = 0 , so that the mortality rate equals 

𝜇0(𝑡, 𝑐) and it is independent of LPC values. 

 

Second, we test H0 about the age pattern of 𝑄(𝑡, 𝑐). We 

use a parsimonious parameterization of 𝑄(𝑡, 𝑐) : 

𝑄(𝑡, 𝑐) = 𝑎Q + 𝑏Q(𝑡 − 𝑡min) + 𝛽Q𝑐.  The parameter 𝑎Q 

corresponds to the “baseline” width of the U-shape at 

age 𝑡min  and zero covariate(s) c. We use only one 

covariate (sex) in 𝑄(𝑡, 𝑐) , so this corresponds to the 

width of the U-shape in 50-year-old females. The 

parameter 𝑏Q  models how the width of the U-shape 

changes with age. We test H0: 𝑏Q = 0  (QnoT). 

Supplementary Figure 3A presents three possible age 

patterns of 𝑄(𝑡, 𝑐): age independent (𝑏Q = 0), declining 

with age (𝑏Q < 0), and increasing with age (𝑏Q > 0). 

Supplementary Figure 3B–3D display corresponding 

values of the quadratic part in the hazard (i.e., 

𝑄(𝑡, 𝑐)(𝑌(𝑡, 𝑐) − 𝑓0(𝑡, 𝑐))
2
) for different ages and LPC 

levels (with c = 0 for the simplicity of illustration). For 

example, if 𝑏Q > 0  (Supplementary Figure 3D), then 

the U-shape of the mortality rate shrinks with age so 

that the same deviation of LPC from an optimal (age-

specific) level results in a larger additional mortality 
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risk at older ages compared to younger ages, i.e., the 

impact of deviations of LPC trajectories from optimal 

levels aggravates with age. Such observations would 

correspond to an increase in vulnerability to deviations 

of LPC from optimal values, which is the manifestation 

of age-related decline in biological robustness [7, 8]. 

 

Third, we test H0 about the dependence of 𝑄(𝑡, 𝑐) on c 

(sex-dependence), H0: 𝛽Q = 0 (QnoC). The parameter 

𝛽Q specifies how/if the U-shape of the mortality rate as 

a function of LPC is different in females and males. If 

𝛽Q = 0, then the width of the U-shape is the same in 

females and males at each age. If 𝛽Q < 0 (𝛽Q > 0), then 

the U-shape is wider (narrower) in males compared to 

females at each age. Supplementary Figure 4A, 4B 

show the patterns of 𝑄(𝑡, 𝑐)  and the corresponding 

values of the quadratic part in the hazard 

( 𝑄(𝑡, 𝑐)(𝑌(𝑡, 𝑐) − 𝑓0(𝑡, 𝑐))
2

) for females and males 

when 𝛽Q > 0 (assuming zero optimal levels 𝑓0(𝑡, 𝑐) in 

females and males, for the simplicity of illustration). In 

this case, the U-shape is narrower in males at each age, 

and the same deviation of LPC from the optimal level 

results in higher additional mortality risk in males 

compared to females (thus increasing the overall 

mortality risk in males even if the baseline mortality 

rates are the same in both sexes). 

 

The (negative) feedback coefficient 𝑎(𝑡, 𝑐)  in Eq. (6) 

regulates the dynamic behavior of LPC trajectories 

(𝑌(𝑡, 𝑐)). The particular form of the equation used for 

modeling 𝑌(𝑡, 𝑐)  in SPM was selected to incorporate 

homeostatic regulation in the model, which is a 

fundamental feature of living organisms. The trajectory 

of 𝑌(𝑡, 𝑐) modeled by this equation tends to move back 

to its long-term mean trajectory (or “equilibrium” level) 

(𝑓1(𝑡, 𝑐)) if it deviates from this equilibrium trajectory. 

For this to happen, the feedback coefficient has to be 

negative, hence the restriction used in the model: 

𝑎(𝑡, 𝑐) < 0, for all values of age t and covariate(s) c 

observed in the data. The rate of return to the 

equilibrium level is regulated by this coefficient 𝑎(𝑡, 𝑐). 
The larger the absolute value of the feedback coefficient 

𝑎(𝑡, 𝑐), the faster 𝑌(𝑡, 𝑐) returns to its equilibrium level. 

This coefficient is also called the adaptive capacity [1] 

because it represents the rate of adaptive response 

(associated with biological resilience [7, 9, 10]) to any 

factors causing deviations of 𝑌(𝑡, 𝑐) from their dynamic 

equilibrium levels 𝑓1(𝑡, 𝑐). 
 

In our applications, we use a linear function for 𝑎(𝑡, 𝑐): 
𝑎(𝑡, 𝑐) = 𝑎Y + 𝑏Y(𝑡 − 𝑡min) + 𝛽Y𝑐 , where 𝑎Y < 0 , 

𝑏Y ≥ 0 . The parameter 𝑎Y  represents the “baseline” 

value of this coefficient corresponding to age 𝑡min and 

zero covariate(s) c (i.e., 50 years old females in our 

case). The parameter 𝑏Y  models the rate of change in 

𝑎(𝑡, 𝑐)  with age. We test H0: 𝑏Y = 0  (AnoT). 

Supplementary Figure 5A shows examples of the 

absolute value of the feedback coefficient (|𝑎(𝑡, 𝑐)|) for 

zero and positive 𝑏Y  (with c = 0 for the simplicity of 

illustration). Supplementary Figure 5B displays sample 

trajectories of 𝑌(𝑡, 𝑐) in these two cases. As one can 

see, in case of a positive 𝑏Y (when the absolute value of 

the feedback coefficient becomes smaller with age), it 

takes more time for a trajectory of 𝑌(𝑡, 𝑐) to go back to 

the equilibrium level 𝑓1(𝑡, 𝑐) at older ages compared to 

younger ages. This illustrates the aging-related decline 
in adaptive capacity or the associated notion of the 

decline in biological resilience, which is a key 

manifestation of aging [9]. Note that we show the 

absolute value of 𝑎(𝑡, 𝑐), |𝑎(𝑡, 𝑐)|, rather than 𝑎(𝑡, 𝑐) in 

Supplementary Figure 5 so that a decline in the 

displayed quantity would have the interpretation of a 

decline in adaptive capacity/biological resilience. 

 

We also test H0: 𝛽Y = 0  (AnoC). The parameter 𝛽Y 

specifies the difference in the baseline levels of the 

adaptive capacity between males and females. If it is 

zero, then the baseline level of 𝑎(𝑡, 𝑐) is the same in 

females and males. If 𝛽Y > 0 (𝛽Y < 0), then females are 

more (less) resilient compared to males in terms of a 

faster (slower) rate of return of 𝑌(𝑡, 𝑐)  (LPC) to its 

equilibrium levels. Supplementary Figure 5C, 5D 

present examples of |𝑎(𝑡, 𝑐)| and sample trajectories of 

𝑌(𝑡, 𝑐)  in females and males. This illustrates the 

situation when 𝛽Y > 0 corresponding to better adaptive 

capacity in females (i.e., a faster return of 𝑌(𝑡, 𝑐) to the 

equilibrium level 𝑓1(𝑡, 𝑐)). 
 

The volatility coefficient 𝑏(𝑡, 𝑐) controls the volatility of 

the process 𝑌(𝑡, 𝑐). The volatility of 𝑌(𝑡, 𝑐) represents 

the intensity of the random fluctuations (or noise) in the 

process. It determines how much the process can 

deviate from its mean due to random impacts. Higher 

volatility means larger deviations from the mean, while 

lower volatility indicates smaller deviations. 

Supplementary Figure 6 shows examples of the process 

𝑌(𝑡, 𝑐) with higher and lower volatility. Based on our 

prior simulations showing the best accuracy of 

parameter estimates for models with a constant 

volatility coefficient [1], we use the following 

specification of 𝑏(𝑡, 𝑐) : 𝑏(𝑡, 𝑐) = 𝜎1 + 𝛽W𝑐  (with the 

constraint: 𝑏(𝑡, 𝑐) > 0 for all values of covariates c, i.e., 

sex in our case). In our applications, 𝜎1 represents the 

value of this coefficient in females and 𝜎1 + 𝛽W is the 

volatility coefficient in males, which can be larger 

(𝛽W > 0), smaller (𝛽W < 0), or the same (𝛽W = 0) as 

in females. We test the respective H0: 𝛽W = 0 (BnoC) 

to determine if the volatility of LPC is sex-specific. 

 

The equilibrium trajectory 𝑓1(𝑡, 𝑐) represents the long-

term mean of the process 𝑌(𝑡, 𝑐)  (see the paragraph 
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describing 𝑎(𝑡, 𝑐)). This SPM component is also known 

as the “mean allostatic trajectory” because it features 

the effect of allostatic adaptation [11], i.e., the LPC 

levels forced by an organism’s regulatory systems 

functioning in non-optimal conditions (as postulated by 

the theory of allostasis [11–13]). In our applications, we 

assume that the equilibrium LPC levels can depend on 

age (t) and covariates (c) (i.e., sex). We use the 

following specification of 𝑓1(𝑡, 𝑐) : 𝑓1(𝑡, 𝑐) = 𝑎f1 +

𝑏f1(𝑡 − 𝑡min) + 𝛽f1𝑐  . Here, the parameter 𝑎f1  is the 

equilibrium LPC level at age 𝑡min and zero values of 

covariates c (i.e., in 50-year-old females). The 

parameter 𝑏f1  quantifies the rate of change in the 

equilibrium LPC level with age, which can increase 

(𝑏f1 > 0), decrease (𝑏f1 < 0), or be stable (𝑏f1 = 0). 

The parameter 𝛽f1  determines how/if the baseline 

equilibrium LPC level differs by sex: higher (𝛽f1 > 0) 

or lower (𝛽f1 < 0) in males, or sex-independent (𝛽f1 =

0 ). We test two null hypotheses about 𝑓1(𝑡, 𝑐)  to 

determine its age pattern and dependence on sex: H0: 

𝑏f1 = 0  (F1noT), i.e., equilibrium LPC levels are the 

same for all ages, and H0: 𝛽f1 = 0 (F1noC), i.e., the 

baseline equilibrium LPC levels do not differ by sex. 

Supplementary Figure 7A, 7B display sample 

trajectories of 𝑌(𝑡, 𝑐) for different age (Supplementary 

Figure 7A) and sex (Supplementary Figure 7B) patterns 

of 𝑓1(𝑡, 𝑐). 
 

The optimal trajectory 𝑓0(𝑡, 𝑐) represents the values of 

𝑌(𝑡, 𝑐) minimizing the risk at age t and covariate values 

c. It is interpreted as a physiological or biological 

optimum (also known as “sweet spots” [14–16]). In our 

applications, 𝑓0(𝑡, 𝑐)  models LPC levels minimizing 

mortality risks at respective ages and covariate values. 

We parameterize 𝑓0(𝑡, 𝑐) as a linear function: 𝑓0(𝑡, 𝑐) =
𝑎f0 + 𝑏f0(𝑡 − 𝑡min) + 𝛽f0𝑐. Here, 𝑎f0  is the LPC value 

corresponding to the minimal mortality risk at age 𝑡min 

for individuals with zero c (i.e., 50 years old females). 

The parameter 𝑏f0  defines the rate of change in the 

optimal LPC level with age. It can increase (𝑏f0 > 0), 

decrease (𝑏f0 < 0), or remain stable (𝑏f0 = 0) with age. 

The parameter 𝛽f0  specifies how/if the baseline optimal 

LPC level differs by sex: higher (𝛽f0 > 0) or lower 

( 𝛽f0 < 0 ) in males, or sex-independent ( 𝛽f0 = 0 ). 

Similar to 𝑓1(𝑡, 𝑐), we test two null hypotheses about 

𝑓0(𝑡, 𝑐) to determine its age pattern and dependence on 

sex: H0: 𝑏f0 = 0 (F0noT), i.e., optimal LPC levels do 

not change with age, and H0: 𝛽f0 = 0 (F0noC), i.e., the 

baseline optimal LPC levels are equal in females and 

males. Supplementary Figure 8A, 8B present the 

quadratic part in the hazard (i.e., 𝑄(𝑡, 𝑐)(𝑌(𝑡, 𝑐) −

𝑓0(𝑡, 𝑐))
2
) for different ages and LPC levels (with c = 0 

for the simplicity of illustration) in the case of 

increasing and declining optimal levels. Supplementary 

Figure 8C, 8D show corresponding mortality rates 

𝜇(𝑡, 𝑐, 𝑌(𝑡, 𝑐)) for different ages and LPC levels (with 

zero covariates c, for the purpose of this illustration). 

We also assumed in this illustration that 𝑄(𝑡, 𝑐) does 

not depend on age t so that the width of the U-shape of 

mortality as a function of the biomarker 𝑌(𝑡, 𝑐) is the 

same for all ages. As Supplementary Figure 8A shows, 

if the optimal trajectory increases with age, then the U-

shape of the quadratic part in the hazard shifts to the 

right (to larger values of 𝑌(𝑡, 𝑐)) so that smaller values 

of 𝑌(𝑡, 𝑐) result in a larger additional risk compared to 

the baseline mortality 𝜇0(𝑡, 𝑐) observed at the optimal 

level 𝑓0(𝑡, 𝑐)  (see Supplementary Figure 8C). 

Conversely, when the optimal trajectory declines with 

age (Supplementary Figure 8B), the parabola in the 

hazard rate shifts to the left (to smaller values of 

𝑌(𝑡, 𝑐)) so that larger values of 𝑌(𝑡, 𝑐) induce a larger 

additional risk (Supplementary Figure 8D). 

 

Note that the equilibrium and optimal trajectories can be 

different, and the absolute value of this difference, 

𝐴𝐿(𝑡, 𝑐) = |𝑓0(𝑡, 𝑐) − 𝑓1(𝑡, 𝑐)| , is related to the 

practical realization of the theoretical concept of the 

allostatic load (AL) suggested in the literature [11–13, 

17]. If the optimal and equilibrium trajectories coincide 

(i.e., 𝐴𝐿(𝑡, 𝑐) = 0), then LPC trajectories (𝑌(𝑡, 𝑐)) tend 

to converge to 𝑓0(𝑡, 𝑐)  so that the mortality rate 

𝜇(𝑡, 𝑐, 𝑌(𝑡, 𝑐)) gets closer to the baseline level 𝜇0(𝑡, 𝑐) 

as the quadratic part in Eq. (7) (i.e., 𝑄(𝑡, 𝑐)(𝑌(𝑡, 𝑐) −

𝑓0(𝑡, 𝑐))
2

) gets close to zero. However, if the 

equilibrium trajectory differs from the optimal one, then 

LPC values tend to a trajectory which is different from 

that minimizing the mortality rate. As a result, the 

mortality rate fluctuates around the level 𝜇0(𝑡, 𝑐) +

𝑄(𝑡, 𝑐)(𝑓1(𝑡, 𝑐) − 𝑓0(𝑡, 𝑐))
2

. As 𝑄(𝑡, 𝑐) ≥ 0  by the 

assumption of SPM, this means that this level is higher 

than the baseline mortality 𝜇0(𝑡, 𝑐). The larger the value 

of this measure 𝐴𝐿(𝑡, 𝑐) , the larger this additional 

mortality risk (“load”) 𝑄(𝑡, 𝑐)(𝑓1(𝑡, 𝑐) − 𝑓0(𝑡, 𝑐))
2
. We 

test two H0s related to 𝐴𝐿(𝑡, 𝑐) . First, we test H0: 

𝑓1(𝑡, 𝑐) = 𝑓0(𝑡, 𝑐), i.e., 𝐴𝐿(𝑡, 𝑐) = 0  (ALzero), that is, 

the optimal and equilibrium trajectories are the same. 

Second, we test H0: 𝑏f1 = 0 and 𝑏f0 = 0 (ALnoT), i.e., 

that the difference between the optimal and equilibrium 

trajectories does not change with age. Supplementary 

Figure 9A, 9B illustrate the quadratic part in the hazard 

( 𝑄(𝑡, 𝑐)(𝑓1(𝑡, 𝑐) − 𝑓0(𝑡, 𝑐))
2

) and the mortality rate 

(𝜇(𝑡, 𝑐, 𝑌(𝑡, 𝑐))) (Eq. 7) evaluated at the equilibrium 

𝑓1(𝑡, 𝑐) and optimal (𝑓0(𝑡, 𝑐)) levels for different ages t 

(with c = 0 for the simplicity of illustration). This shows 

the case when the optimal and equilibrium trajectories 

diverge at older ages, i.e., when 𝐴𝐿(𝑡, 𝑐) increases with 
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age. As this illustrative example shows, if the 

equilibrium and optimal levels coincide at age 50, then 

there is no additional mortality risk when LPC is at the 

equilibrium level. Therefore, the mortality rate for an 

“average” individual with LPC at the equilibrium level 

equals the optimal (baseline) level 𝜇0(50, 𝑐). However, 

if the equilibrium and optimal trajectories diverge with 

age, then the mortality rate of a centenarian whose LPC 

level follows the equilibrium trajectory will be about 

0.32 higher than the mortality rate of a centenarian with 

the optimal LPC level for that age. 
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Code implementing likelihood estimation procedure of SPM 

 

This section describes the code that can be used to estimate the likelihood function of the Stochastic Process Model 

(SPM) used in the paper. It provides the code for "unrestricted" model, which can be modified to specify one or more 

restrictions on parameters to perform hypothesis testing presented in the text. 

 

The function estimates the likelihood for SPM represented by equations: 

 

 
 

 
 

with the following specification of components: 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
Syntax: 

function lnLik = LogLik(Param, DataSPM, t_min, NamesCovar) 

 

Parameters: 

 

Param - a column vector of model parameters in the following order: 

 

, , , , , , , , , , , , , , , , ,  
 

DataSPM - a table with the following variables (in any order; can have additional variables which will be ignored): Age 

(start of age interval), AgeNext (end of age interval), IndicatorEvent (a binary variable indicating an event (1) or no event 

(0) within the age interval ( Age , AgeNext )), Yt (longitudinal variable modeled by Y(t,c)), IsFirstRow (a binary variable 

indicating the first record for an individual: 1 - first record; 0 - otherwise), IsLastRow (a binary variable indicating the 

last record for an individual: 1 - last record; 0 - otherwise), and variables to be included as additional covariates (c), see 

NamesCovar 

 

t_min - minimal age used in formulas, see above 

https://doi.org/10.1007/s11357-023-00895-2
https://pubmed.ncbi.nlm.nih.gov/37688655/
https://pubmed.ncbi.nlm.nih.gov/8379800/
https://doi.org/10.1161/CIRCULATIONAHA.107.714592
https://pubmed.ncbi.nlm.nih.gov/18765388/
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NamesCovar - cell array with names of variables in DataSPM to be used as additional covariates (c): the first cell 

contains names of variables to be used as covariates in  and the second cell contains names of variables to be 

used as covariates in other components 

 

Output: 

 

lnLik - minus logarithm of the likelihood function 

 

function lnLik = LogLikSPM(Param, DataSPM, t_min, NamesCovar) 

 

NumRows = height(DataSPM); 

 

NamesCovarMu0 = NamesCovar{1}; 

NamesCovarOther = NamesCovar{2}; 

NumCovarMu0 = length(NamesCovarMu0); 

NumCovarOther = length(NamesCovarOther); 

 

ln_a_mu0 = Param(1); 

b_mu0 = Param(2); 

b_covar_mu0 = Param(3:(3 + NumCovarMu0 - 1)); 

a_Q = Param(3 + NumCovarMu0); 

b_Q = Param(4 + NumCovarMu0); 

b_covar_Q = Param((5 + NumCovarMu0):(5 + NumCovarMu0 + NumCovarOther - 1)); 

a_Y = Param(5 + NumCovarMu0 + NumCovarOther); 

b_Y = Param(6 + NumCovarMu0 + NumCovarOther); 

b_covar_Y = Param((7 + NumCovarMu0 + NumCovarOther):(7 + NumCovarMu0 + 2*NumCovarOther - 1)); 

sigma0 = Param(7 + NumCovarMu0 + 2*NumCovarOther); 

sigma1 = Param(8 + NumCovarMu0 + 2*NumCovarOther); 

b_covar_W = Param((9 + NumCovarMu0 + 2*NumCovarOther):(9 + NumCovarMu0 + 3*NumCovarOther - 1)); 

a_f1 = Param(9 + NumCovarMu0 + 3*NumCovarOther); 

b_f1 = Param(10 + NumCovarMu0 + 3*NumCovarOther); 

b_covar_f1 = Param((11 + NumCovarMu0 + 3*NumCovarOther):(11 + NumCovarMu0 + 4*NumCovarOther - 1)); 

a_f0 = Param(11 + NumCovarMu0 + 4*NumCovarOther); 

b_f0 = Param(12 + NumCovarMu0 + 4*NumCovarOther); 

b_covar_f0 = Param((13 + NumCovarMu0 + 4*NumCovarOther):(13 + NumCovarMu0 + 5*NumCovarOther - 1)); 

 

delta_i_all = DataSPM.IndicatorDeath; 

t = DataSPM.Age; 

t_next = DataSPM.AgeNext; 

Yt = DataSPM.Yt; 

IsFirstRow = DataSPM.IsFirstRow; 

IsLastRow = DataSPM.IsLastRow; 

 

if NumCovarOther == 1 

    Xt_other = DataSPM.(NamesCovarOther{1}); 

else 

    Xt_other = NaN*ones(NumRows, NumCovarOther); 

    for i = 1:NumCovarOther 

        Xt_other(:, i) = DataSPM.(NamesCovarOther{i}); 

    end 

end 

 

if NumCovarMu0 == 1 

    Xt_mu0 = DataSPM.(NamesCovarMu0{1}); 
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else 

    Xt_mu0 = NaN*ones(NumRows, NumCovarMu0); 

    for i = 1:NumCovarMu0 

        Xt_mu0(:, i) = DataSPM.(NamesCovarMu0{i}); 

    end 

end 

 

lnLik = 0; 

for i = 1:NumRows 

    delta_i = delta_i_all(i); 

    tk = t(i); 

    tk_next = t_next(i); 

    Ytk = Yt(i); 

    Xtk_other = Xt_other(i, :); 

    Xtk_mu0 = Xt_mu0(i, :); 

 

    mu0_tk = exp(ln_a_mu0 + b_mu0*(tk - t_min) + Xtk_mu0*b_covar_mu0); 

    f0_tk = a_f0 + b_f0*(tk - t_min) + Xtk_other*b_covar_f0; 

    Q_tk = a_Q + b_Q*(tk - t_min) + Xtk_other*b_covar_Q; 

    mu_tk = mu0_tk + Q_tk*(Ytk - f0_tk)^2; 

 

    if IsFirstRow(i) == 1 

        lnLY = 0; 

        lnLQ = 0; 

 

        t0 = t(i); 

        Yt0 = Yt(i); 

 

        Ybar_tk_prev = a_f1 + b_f1*(t0 - t_min) + Xtk_other*b_covar_f1; 

        if (sigma0 > 0) 

            lnLY = lnLY - log(sqrt(2*pi)*sigma0) - ((Yt0 - Ybar_tk_prev)^2)/(2*sigma0^2); 

        end 

    else 

        tk_prev = t(i-1); 

        Ytk_prev = Yt(i-1); 

 

        a_tk_prev = a_Y + b_Y*(tk_prev - t_min) + Xtk_other*b_covar_Y; 

        f1_tk_prev = a_f1 + b_f1*(tk_prev - t_min) + Xtk_other*b_covar_f1; 

 

        Ybar_tk_prev = Ytk_prev + a_tk_prev*(Ytk_prev - f1_tk_prev)*(tk - tk_prev); 

        sigma1_tk = sigma1 + Xtk_other*b_covar_W; 

        if (sigma1_tk > 0) && ((tk - tk_prev) > 0) 

            lnLY = lnLY - log(sqrt(2*pi*(tk - tk_prev))*sigma1_tk) - ((Ytk - Ybar_tk_prev)^2)/(2*(tk - 

tk_prev)*sigma1_tk^2); 

        end 

    end 

 

    if IsLastRow(i) == 1 

        if delta_i == 0 

            lnLQ = lnLQ - mu_tk*(tk_next - tk); 

        elseif delta_i == 1 

            lnLQ = lnLQ + log(1 - exp(-mu_tk*(tk_next - tk))); 

        end 

    else 

        lnLQ = lnLQ - mu_tk*(tk_next - tk); 

    end 
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    if IsLastRow(i) == 1 

        lnLik = lnLik + lnLY + lnLQ; 

    end 

end 

lnLik = -lnLik; 

Published with MATLAB® R2024b 
 


