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INTRODUCTION 
 

Neurological syndromes including Parkinson’s and 

Alzheimer’s disproportionately affect the older 

population [1]. Moreover, these disorders (and others) 

are major contributors to mortality [2] and cause a 

significant financial burden [3]. The primary risk factor 

for developing most neurological disorders is aging [4]. 

While aging is characterized by a loss of physiological 

function and an exponential increase in mortality [5], 

aging is also a highly heterogeneous process [6] 

influenced by a range of intrinsic and extrinsic factors 

[7]. 

Lopez-Otin et al. [8] proposed a set of hallmarks of 

aging, which can be further classified into three distinct 

categories: primary, antagonistic, and integrative 

hallmarks. These hallmarks aim to capture the 

underlying causes of damage, the key responses to such 

damage, and the resulting effects responsible for the 

ultimate functional decline of aging organisms. 

 

Alterations in lipid composition play a critical role as 

they are involved in metabolic energy, homeostasis, 

and cell signaling [9, 10]. In addition, aging is known 

to significantly alter the brain lipidome [11], which 

will impact the hallmarks of aging, such as 
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ABSTRACT 
 

Aging is a multifaceted process influenced by intrinsic and extrinsic factors, with lipid alterations playing a 
critical role in brain aging and neurological disorders. This study introduces DoliClock, a lipid-based biological 
aging clock designed to predict the age of the prefrontal cortex using post-mortem lipidomic data. Significant 
age acceleration was observed in autism, schizophrenia, and Down syndrome. Additionally, an increase in 
entropy around age 40 suggests dysregulation of the mevalonate pathway and dolichol accumulation. Dolichol, 
a lipid integral to N-glycosylation and intracellular transport, emerged as a potential aging biomarker, with 
specific variants such as dolichol-19 and dolichol-20 showing unique age-related associations. These findings 
suggest that lipidomics can provide valuable insights into the molecular mechanisms of brain aging and 
neurological disorders. By linking dolichol levels and entropy changes to accelerated aging, this study highlights 
the potential of lipid-based biomarkers for understanding and predicting biological age, especially in conditions 
associated with premature aging. 
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proteostasis [12], and result in decreased resilience and 

neuronal plasticity [13]. It therefore stands to reason 

that age-dependent alterations in the lipidome may 

contribute to brain aging and increase the risk of 

developing neurological disorders [4]. Evidence 

already exists that lipid alterations contribute to 

specific age-dependent neurological disorders. For 

instance, dysregulated lipid homeostasis has been 

linked to inflammaging which plays a role in the 

etiology of Alzheimer’s disease [14]. In addition, lipid 

peroxidation is positively correlated with Alzheimer’s 

disease, Down syndrome, and other neurological 

disorders [15]. Although neurological disorders are 

mostly found in aged individuals, they can develop at 

a younger age under certain contexts. Prenatal stress 

and other environmental stressors can increase the risk 

of developing neurological disorders, such as 

schizophrenia, and autism spectrum disorders [16–18]. 

People with Down syndrome, schizophrenia, and 

autism also tend to die at a younger age [19–21], 

which may indicate accelerated aging. 

 

Age acceleration can be measured using aging clocks, 

which may provide insight into the underlying factors 

that contribute to the aging process. Numerous aging 

clocks have been developed to predict biological age. 

The first prominent clock, developed by Hannum et al. 

[22], was based on DNA methylation data from whole 

blood. Subsequently, various other aging clocks using 

DNA methylation data have been developed and 

proposed [23, 24]. This has been followed by the 

development of aging clocks utilizing other omics data, 

such as transcriptomics [25], proteomics [26], 

lipidomics [27], or a combination of various data 

sources [28, 29]. Most of these models are considered 

first-generation aging clocks as they predict chrono-

logical age. However, chronological age may not 

always be the most accurate marker, which has 

prompted researchers to directly predict mortality [30, 

31]. These clocks are known as second-generation 

clocks. 

 

Horvath et al. [32] also used their aging clock [23] on 

brain tissue from individuals with Down syndrome 

showing a significant age acceleration effect. In 

addition, Cole et al. [33] utilized neuroimaging data to 

identify factors associated with age acceleration in 

individuals with Down Syndrome. Both studies found 

significant age acceleration and showed that age 

acceleration is measurable through DNA methylation 

and neuroimaging. 

 

Age acceleration has also been proposed in 
schizophrenia, although studies are conflicting [34]. 

Higgins Chen et al. [35] explored 14 epigenetic clocks 

and found that 3 mortality-based clocks were able to 

identify significant acceleration in schizophrenia 

patients. Conversely, other studies utilizing epigenetic 

clocks based on chronological age or mortality data did 

not observe significantly accelerated tissue specific 

brain aging [36, 37]. This may be caused by the 

relatively low number of samples. It seems that DNA 

methylation clocks lack the capability to measure aging 

in individuals with schizophrenia, whereas mortality 

clocks are proficient, although they depend on clinical 

parameters. Developing an aging clock based on lipids 

provides another perspective. 

 

Additionally, there is very limited data on brain aging in 

individuals with Autism [22, 38], highlighting a critical 

gap in our understanding of how Autism may influence 

the aging process. 

 

In this study, we aimed to determine if lipidomics data 

from the prefrontal cortex could predict biological age. 

While several clocks have been devised for human brain 

tissue [32, 39, 40], they predominantly rely on DNA 

methylation data, or on transcriptomic data [41, 42]. 

However, to our knowledge, no model based on lipids 

from the prefrontal cortex has been developed thus far, 

making this study a novel exploration in the field of 

aging clocks. Lipids are integral to understanding the 

relationship between aging and neurological disorders, 

given that they constitute approximately 40% of the 

dry-weight gray matter [43], with the brain exhibiting 

the highest diversity of lipid species [44]. These 

findings suggest that a lipid-based clock might pinpoint 

aging-associated lipids, potentially shedding light on 

conditions like Down syndrome, schizophrenia, and 

autism. Additionally, we identify molecules strongly 

linked with age and propose them as predictive 

biomarkers [45, 46]. Our study demonstrates that 

variations in brain lipids suffice for estimating 

biological age. 

 

RESULTS 
 

In the present study, we utilized the publicly available 

dataset by Yu et al. [11]. We retained 242 samples and 

163 lipid species, selected for unique chemical formulas 

to ensure dataset granularity. Among 39,446 lipid 

concentration values, 1.98% were missing, with 47% of 

lipids having at least one missing value. The dataset 

included 195 samples without neurological disorder 

(WND), 27 samples with schizophrenia (SZ), 15 

samples with autism spectrum disorder, and 5 samples 

with Down syndrome (DS). Supplementary Table 1 

provides a comprehensive breakdown of the pre-

processed dataset. No outliers were identified. This 

preprocessing step ensured that the dataset was suitable 

for downstream modeling and analysis by reducing 

noise and maintaining data integrity. 
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Identifying a robust model 

 

To develop a predictive model based on lipidomic 

profiles, we first evaluated multiple machine learning 

approaches to determine the most reliable method for 

age prediction. Twenty-six machine learning models 

were trained using 100 bootstrap iterations to identify 

the most generalizable model. Linear regression models 

demonstrated the best performance (Supplementary 

Figure 1), and detailed model performance metrics are 

presented in Supplementary Table 2. Based on these 

findings, we developed an Elastic Net model and 

applied principal component analysis (PCA) to reduce 

dimensionality and mitigate noise. PCA projections 

were used as input for the model, a strategy commonly 

employed in similar studies [27, 39, 47]. To ensure 

robustness, we bootstrapped the data 10,000 times with 

replacement, stratifying by age group, sex, and 

ethnicity, and trained Elastic Net models using WND 

samples. During training, we included ethnicity, sex, 

and the post-mortem interval (PMI) as covariates to 

account for additional variance. This approach enables 

us to capture lipidomic patterns while minimizing 

overfitting and enhancing model interpretability. 

 

Exploring principal components and lipid patterns 

 

After establishing a robust predictive model, we 

proceeded to investigate how lipidomic features, 

particularly the principal components, correlated with  

age and other biological variables. To investigate  

whether there was a relationship between the principal 

components and the metadata, we conducted a 

correlation analysis (Supplementary Figure 2). The first 

principal component showed no substantial correlation 

with the meta data, but was enriched for PG(0-20:0/22:4), 

a glycerophospholipid involved in membrane signaling, 

likely due to its high variance. In contrast, principal 

components two and three exhibited significant Pearson 

correlation coefficients (r) with Shannon entropy (r = 

−0.30, P < 0.001 and r = 0.30, P < 0.001, respectively). 

Dolichol-19 and dolichol-20 were identified as primary 

contributors to entropy in 31% of samples. When entropy 

was recalculated using only dolichols, a striking 

correlation with chronological age (r = 0.92, P < 0.001) 

emerged. These findings suggested that dolichols could 

serve as potential age-associated markers, warranting 

further investigation into their role in aging processes. 

 

Entropy and aging 

 

Given the strong correlation between entropy and age, 

we further examined how entropy levels varied across 
different age groups. To explore the relationship 

between entropy and aging, samples were divided into 

six age bins (20–80 years, 10-year interval), and entropy 

levels were compared using the Mann-Whitney U-test. 

Samples aged 40–50, 50–60, and 60–70 exhibited 

significantly higher entropy levels than their younger 

counterparts (P < 0.001 for each group; significant after 

Holm-Bonferroni correction). These results indicate a 

substantial increase in entropy around the age of 40–50 

(Figure 1A). Interestingly, no significant differences in 

entropy were observed between ASD, SZ, and DS 

samples, and corresponding controls (P > 0.05 after 

Holm-Bonferroni correction; Supplementary Figure 3), 

suggesting that age-related changes in entropy were 

more pronounced than disorder-specific patterns. To 

further characterize lipidomic aging patterns, we 

examined the specific principal components that 

contributed most significantly to age-related variation. 

 

Aging-associated principal components 

 

Principal component five emerged as a key aging-

related feature, exhibiting a strong correlation with age 

(r = 0.61, P < 0.001) and receiving the highest 

coefficient in the Elastic Net model. The loadings of 

principal component five were dominated by dolichol-

19, dolichol-20, and specific glycerophospholipids such 

as PG(17:1(9Z)/0:0) and PG(22:6). These findings 

indicated that principal component five encapsulates a 

broader set of aging-related processes beyond dolichol 

metabolism. 

 

Given that ethnicity and sex can influence lipidomic 

profiles, we next examined whether lipid composition 

varied across different populations. 

 

Ethnicity, sex and lipid profiles 

 

Ethnicity emerged as a significant factor influencing 

lipid composition, with principal component six 

positively correlated with Han Chinese ethnicity (r = 

0.54, P < 0.001) and negatively correlated with 

Caucasian ethnicity (r = −0.32, P < 0.001). These 

findings suggest distinct lipid concentration patterns 

across ethnic groups, emphasizing the need to account 

for population-specific lipid profiles in lipidomic aging 

models. In contrast, surprisingly, sex exhibited no 

significant correlation with any principal component, 

indicating that sex-based differences play a limited role 

in lipid variance within this dataset. Given the observed 

impact of ethnicity on lipid composition, we next 

explored how lipid levels change with chronological 

age to assess whether certain lipidomic shifts are 

consistent aging markers across populations. 

 

Lipid trends with age 

 

To identify molecules significantly associated with age, 

we conducted pairwise comparison between different 
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age groups using the Mann-Whitney U-test 

(Supplementary Table 3). Multiple lipids exhibited 

significant increases with age after Bonferroni 

correction, particularly between the 0–20 and 20–40 age 

groups. Notably, dolichols showed a strong linear 

increase with age and increasing variance (Figure 1B). 

Specifically, dolichol-19 C95H160NO and C95H157O, 

as well as dolichol-20 C100H164ONa, C100H165O, 

C100H168NO, demonstrated significant increases 

between age groups 0–20, and 20–40 (P < 0.00007 for 

each), and between groups 20–40 and 40–60 (P < 

0.00007 for each). However, only dolichol-20 

C100H164ONa exhibited a significant increase between 

groups 40–60 and 60–80 (P < 0.00007), with no 

significant increases observed between groups 60–80 

and 80–100, possibly due to limited sample size and 

 

 
 

Figure 1. Association between entropy, biological age, and biomarkers across neurological conditions. (A) Boxplots of entropy 

across different age groups (only significant P-values are annotated: P < 0.05 = *, P < 0.01 = **, P < 0.001 = ***). (B) Behavior of summed 
dolichol concentration through age, with a 95% confidence interval. (C) Predicted values of the models for all samples, including groups 
with no neurological disorder, autism, schizophrenia, and Down syndrome. (D) Boxplot comparing age acceleration across the different 
groups (Only significant P-values are annotated: P < 0.05 = *, P < 0.01 = **, P < 0.001 = ***). 
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high variance. The log fold changes for these 

comparisons are shown in Supplementary Table 4. 

 

Based on these findings, it was hypothesized that 

dolichol may serve as a biomarker for predicting 

biological age, given its significant and consistent 

increase across age groups. These results reinforce the 

role of dolichols as aging markers, with their 

accumulation reflecting progressive biological aging. 

 

DoliClock 

 

To test whether these findings could be leveraged for 

biological age prediction, we developed a lipid-based 

aging clock, DoliClock, an Elastic Net model trained 

exclusively on dolichol lipids. The model incorporated 

sex, ethnicity, and PMI as covariates to account for 

additional sources of variation. Using the default Elastic 

Net parameters, we performed 10,000 bootstrap 

iterations stratified by ethnicity and sex. The model 

achieved a median absolute error of 8.96 years, with the 

median-performing model selected for further analyses. 

The distribution of the performance can be found in 

Supplementary Figure 4. These results demonstrate that 

a lipid-based clock can reliably estimate biological age, 

reinforcing the role of dolichols in aging prediction. 

 

To further assess the applicability of DoliClock, we 

tested its performance in samples with neurological 

disorders to determine whether the pace of aging differs 

in these conditions. DoliClock was applied to predict 

the biological ages ASD and SZ samples, as shown in 

Figure 1C. We assessed whether the relationship 

between chronological age and DoliClock-predicted age 

differed across groups using regression analysis, 

excluding DS samples due to their limited number in 

comparable age ranges. Chronological age was a 

significant predictor of DoliClock in all groups (P < 

0.001), with an estimated increase of 0.38 units per year 

in controls. Although ASD samples showed a trend 

toward a steeper aging slope (an additional 0.23 

units/year), the slope was not significantly greater (P = 

0.10). Similarly, the slope for SZ samples (an additional 

0.08 units/year) was not significantly greater in 

comparison with samples without neurological 

disorders (P = 0.27). 

 

To further evaluate aging dynamics, we calculated age 

acceleration (Figure 1D). ASD, SZ, and DS samples 

exhibited significantly greater age acceleration 

compared to WND samples (P = 0.047, P = 0.008, and 

P=0.015, respectively; all significant after Holm-

Bonferroni correction), suggesting these conditions are 
associated with accelerated aging. This highlights the 

potential of dolichol-based clocks for identifying 

biological age deviations in neurological disorders. 

Next, we examined which lipid species contributed 

most to DoliClock’s predictions, providing insight into 

the molecular basis of its accuracy. 

 

A correlation analysis of dolichol species (Figure 2A) 

revealed strong correlations among most dolichols, 

except C100H164ONa, which exhibited a distinct 

pattern. Unlike other dolichols, dolichol-20 

C100H164ONa showed weaker correlations with 

related species, suggesting a unique regulatory 

mechanism or functional divergence in its role in aging. 

 

To better understand how dolichol levels change over 

time, we analyzed their variability across the lifespan. 

This analysis revealed that the variance of dolichol 

levels increases with age (Figure 2B–2F), with a 

pronounced rise observed around the age of 40 (P < 

0.001 for all dolichols, Levene’s test; all significant 

after Holm-Bonferroni correction). This increasing 

heterogeneity suggests that age-related changes in 

dolichol concentrations reflect not only chronological 

aging but also growing individual differences in 

biological aging trajectories. 

 

Building on these findings, we assessed the predictive 

value of individual dolichols for biological aging. 

Feature importance analysis using SHAP values 

identified dolichol-20 C100H164ONa as the most 

influential predictor of biological age (Figure 3A). 

Lower concentrations of dolichol-20 and dolichol-19 

were linked to younger predicted ages, while moderate 

or high concentrations corresponded to older predicted 

ages. This relationship between dolichol and 

chronological age changes over time, as can be seen 

across the different age groups (Figure 3B); in younger 

individuals, lower levels correlate with a more youthful 

biological profile, whereas in older individuals, rising 

dolichol levels signal biological aging due to their 

progressive accumulation with age. These results 

further support the role of dolichols as robust lipid-

based biomarkers of aging. 

 

Beyond individual lipid markers, we also investigated 

the influence of ethnicity on DoliClock predictions, as 

population differences in lipid metabolism could impact 

biological age estimates. 

 

Ethnicity had a minor but measurable effect on 

DoliClock predictions. Han Chinese samples were 

generally predicted to be younger, whereas Caucasian 

samples were predicted to be older. However, 

differences in age distributions across ethnic groups in 

the training data likely contributed to these patterns 
(Supplementary Figure 5). This underscores the 

importance of considering demographic factors when 

applying lipid-based aging models across populations. 
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DISCUSSION 
 

Age acceleration 

 

Our study identified significant age acceleration in 

samples with autism, schizophrenia, and Down 

syndrome. The findings for schizophrenia align with 

and extend conflicting outcomes reported in prior 

studies using epigenetic clocks, which assess 

chronological age and mortality [35–37]. This suggests 

that lipid-based aging clocks may provide additional 

insights where epigenetic clocks have shown 

inconsistencies. 

 

Lipidomic profiling, as applied in this study, appears to 

capture distinct age-related signatures in schizophrenia, 

 

 
 

Figure 2. Dolichol correlation matrix and age-related concentration changes. (A) Correlation matrix illustrating the relationships 
between different dolichol subspecies. (B–F) Scatter plots showing the behaviour of dolichol subspecies across age. 

1410



www.aging-us.com 7 AGING 

offering an alternative perspective on aging processes in 

this population. Similarly, while further exploration into 

brain aging in autism remains necessary [20, 38], our 

results demonstrate significant age acceleration in 

individuals with autism. This aligns with prior research 

suggesting a potential role of genetic factors linked to 

both aging and autistic traits or the indirect influence of 

these traits on lifestyle, thereby modulating the aging 

process [48]. For samples with Down syndrome, our 

findings corroborate earlier studies that documented 

premature aging through epigenetic markers and 

neuroimaging [32, 33]. This consistency highlights the 

utility of lipidomic analysis in understanding age-

related changes in Down syndrome. 

 

Entropy and age-related dysregulation 

 

Furthermore, our study highlights a striking escalation 

in entropy, particularly around the age of 40. This 

suggests a possible dysregulation in the mevalonate 

pathway, potentially leading to the accumulation of 

dolichol. The observed strong correlation between

 

 
 

Figure 3. SHAP values illustrating the contribution of each feature to predicted age. (A) Beeswarm plot displaying the relative 

importance and direction of influence of each feature on age predictions. (B) Bar plot showing how each feature contributes to age 
predictions across different age groups, binned by decade. 
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entropy and chronological age supports the hypothesis 

that entropy reflects age-dependent dysregulation in 

dolichol-related pathways. 

 

Dolichols, a subclass of polyprenols, are essential for 

intracellular transport [49], N-glycosylation [50], and 

play a pivotal role in the mevalonate pathway [51], 

which synthesizes key molecules such as cholesterol, 

dolichol, and ubiquinone. Alterations in the 

concentration levels of these molecules, particularly the 

age-related increase in dolichol [52–56], suggest a 

dysregulation of the mevalonate pathway. This 

dysregulation may be driven by an age-related increase 

in HMG-CoA reductase, the rate-limiting enzyme of 

this pathway [57]. Since these pathways are integral to 

cellular function, disruptions may have significant 

consequences for age-related decline in brain function. 

 

Our findings align with those of Shen et al. [58], who 

observed a transition in lipid metabolism around age 40, 

indicating a fundamental shift in systemic lipid 

regulation. The authors identified a module related to 

plasma lipoprotein remodeling, a process that relies on 

the glycosylation of lipoproteins and their receptors, 

which in turn depends on dolichol biosynthesis. If 

dolichol metabolism is altered, glycosylation efficiency 

may decline, potentially impacting lipoprotein 

metabolism and contributing to the lipid remodeling 

changes observed at midlife. These findings suggest that 

the entropy increase we report may reflect a broader 

systemic reorganization of lipid homeostasis during 

aging. 

 

Recent research further supports the role of entropy and 

stochastic variation in aging. Studies on aging clocks 

emphasize that increasing biological disorder is a 

fundamental feature of aging, with stochastic 

fluctuations alone being sufficient for predicting 

biological age [59, 60]. Moreover, insights into 

epigenetic aging suggest that while some changes occur 

randomly, others are biologically regulated [61]. This 

dual framework may apply to lipidomic entropy as well, 

where dolichol accumulation could result from both 

passive molecular drift and active metabolic shifts. The 

observed alterations reinforce the link between entropy 

and lipidomic dysregulation. Collectively, these 

findings highlight entropy as a key characteristic of 

biological aging and support the relevance of lipidomic 

biomarkers in aging research. 

 

Dolichol as an aging biomarker 

 

Dolichol’s potential as an aging biomarker is supported 
by extensive research across various organisms, 

including mice [62–64], rats [52, 65–70], drosophila 

[71], and humans [53–55, 72–75]. Dolichol, a 

compound comprising a variable number of isoprene 

units depending on the species [76], has garnered 

attention for its association with aging processes [77, 

78]. Studies have reported an accumulation of dolichol 

in multiple tissues with age, although concentrations 

may vary among tissue types. For instance, research  

on rats’ liver revealed that dolichol concentration 

increases in tandem with HMG-CoA reductase levels 

[66], with caloric restriction shown to retard dolichol 

accumulation [67, 68]. Similarly, investigations on 

brain tissue have shown a several-fold increase in 

dolichol concentration during aging and development, 

suggesting potential developmental roles [52]. Studies 

in humans have echoed these findings, with dolichol 

levels increasing dramatically in adults compared to 

neonates [72]. Notably, specific dolichol molecules, 

such as those with isoprene unit 17 up to 21, have been 

found to be particularly abundant in brain tissue [73]. 

However, studies have also linked elevated dolichol 

levels to neurodegenerative diseases, suggesting a 

potential link to lysosomal dysfunction [53]. 

Additionally, individuals with conditions like Down 

syndrome and autism have been observed to exhibit 

elevated dolichol levels [54, 55], further supporting its 

role as a biomarker of both aging and neurological 

conditions. 

 

Dolichol also plays critical roles in organelle transport 

and N-glycosylation [49, 50], serving as the mevalonate 

pathway's end product [51]. Its role as a lipid carrier for 

glycan precursors suggests a potential link between 

glycan and dolichol biomarkers, hinting at a 

mechanistic relationship [79, 80]. Additionally, caloric 

restriction has shown promise in reducing dolichol 

accumulation, although its effectiveness may vary 

depending on the duration and timing [66, 67]. 

 

Emerging evidence also suggests dolichol may protect 

aging membranes against free radical damage, 

potentially slowing biological aging [68]. Conversely, 

an unstable dolichol system could accelerate aging 

processes [81]. Another hypothesis posits that dolichol 

accumulation might involve low-density lipoprotein 

dysregulation, impairing lysosomal function leading to 

autophagic degradation [68, 82]. 

 

Tissue-specific versus systemic aging 

 

While our study utilized brain tissue, the regression on 

chronological age raises questions about whether 

observed changes reflect tissue-specific aging or 

systemic aging processes. Brain tissue might uniquely 

capture certain age-related signatures, but further 
research is needed to determine whether similar patterns 

occur in other tissues. Distinguishing between tissue-

specific and systemic effects is crucial for under-
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standing the role of dolichol in aging. Understanding 

whether lipidomic aging patterns are exclusive to the 

brain or extend to peripheral tissues could help 

determine the broader applicability of DoliClock and 

similar models. 

 

Limitations and confounding variables 

 

The post-mortem nature of our dataset necessitates 

consideration of confounding factors. Cause of death, 

medication usage, and post-mortem interval (PMI) 

could all influence lipid levels. Notably, the 

disproportionately high number of samples with a PMI 

of exactly 14 among healthy individuals suggests this 

value might be a default placeholder rather than an 

exact measurement. This could introduce bias in our 

analysis, though the extent of its impact remains 

unclear. Additionally, the unknown medication status 

of individuals with schizophrenia, a condition often 

treated with lipid-altering drugs, could further 

confound results [83]. This means we were unable to 

include any medication information as a covariate or 

assess its potential influence on lipidomic profiles. 

Given that antipsychotic and other neuropsychiatric 

medications are known to alter lipid metabolism, it is 

possible that some of the variance observed in our 

dataset is attributable to medication effects rather than 

underlying biological aging processes. However, 

without access to medication records, we are unable  

to disentangle these effects from disorder-related 

lipidomic changes. Furthermore, ethnicity also 

represents a potential confounding variable, as genetic, 

environmental, and lifestyle differences across ethnic 

groups may influence lipid metabolism and other 

biological aging markers. While our models account 

for key covariates, unmeasured ethnic-specific effects 

could contribute to variability in the results. 

Addressing these factors in future research will be 

critical for refining dolichol's utility as an aging 

biomarker and improving their robustness across 

diverse populations. 

 

Another major limitation of our study is the limited 

generalizability of findings due to sample size 

constraints. Biological variability, including differences 

in genetic background, health conditions, and lifestyle 

factors, may not be fully captured within our cohort, 

potentially reducing the broader applicability of our 

results. This issue is particularly pronounced in our 

analysis of samples with Down syndrome, where we 

observe significant age acceleration. Given that this 

finding is based on only five samples, it remains unclear 

whether the observed lipidomic changes represent a true 
biological signal or random variation. Larger sample 

sizes will be necessary to confirm whether these 

alterations are consistent features of DS aging. 

Future directions 

 

Future research should prioritize validating the findings 

of this study through external datasets or experimental 

approaches, given the inherent limitations of post-

mortem tissues. Understanding the mechanisms linking 

dolichol and aging, particularly the functional 

distinctions between dolichol-19 and dolichol-20, is 

crucial for unraveling their roles in the aging process. 

Investigating their potential contributions to autophagic 

degradation and lipid peroxidation may also clarify their 

involvement in cellular aging. 

 

Additionally, a key avenue for exploration is the 

comprehensive analysis of dolichol levels across 

various tissues to uncover clinical aging markers or 

surrogate indicators for brain aging. Since dolichol 

concentrations vary significantly between tissue types, 

integrating lipidomic data from multiple sources could 

enhance the precision and generalizability of age-

related biomarkers. Notably, since DoliClock was 

developed using prefrontal cortex lipidomic data, its 

immediate clinical applications are constrained to 

post-mortem analysis. However, one promising 

direction for translation is investigating whether the 

lipid aging signatures identified in brain tissue are 

reflected in biofluids, such as blood plasma or 

cerebrospinal fluid. If similar lipid patterns can be 

detected in accessible samples, DoliClock could serve 

as a foundation for developing non-invasive bio-

markers of brain aging and neurological disorders, 

facilitating earlier diagnosis and monitoring of 

neurodegenerative conditions. 

 

Beyond diagnostics, DoliClock could also play a role in 

therapeutic intervention planning. By providing insights 

into how lipid metabolism contributes to accelerated 

aging in neurological disorders, it could be leveraged as 

a research tool to assess whether interventions targeting 

lipid metabolism—such as dietary modifications, 

statins, or metabolic regulators—influence lipid aging 

signatures in experimental models or patient cohorts. 

Although direct therapeutic applications remain 

speculative, such investigations could pave the way for 

novel strategies aimed at modulating lipid homeostasis 

to mitigate age-related dysfunction. 

 

Furthermore, the interplay between entropy, dolichol, 

and aging presents an exciting frontier. The observed 

entropy increase and dolichol-19 concentration shift 

around age 40 suggest that combining insights  

from information theory and lipidomics could yield 

novel perspectives. This interdisciplinary approach 
may uncover unique molecular signatures of aging, 

offering deeper insights into its underlying biological 

mechanisms. 
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CONCLUSION 
 

This study explored the potential of lipidomic data to 

predict biological age in the prefrontal cortex and to 

identify critical lipid molecules linked to aging. We 

introduced DoliClock, a novel tool leveraging prefrontal 

cortex lipid profiles to estimate age. Notably, DoliClock 

uncovered previously unreported isotopic and chemical 

variations in dolichol molecules associated with age, 

highlighting its capacity to detect subtle, age-related 

biological effects. 

 

DoliClock demonstrated robust performance in 

estimating biological age across a spectrum of 

individuals, including those with neurological disorders 

like Down syndrome, schizophrenia, and autism, which 

are commonly associated with accelerated aging 

phenotypes. Our findings revealed significant age 

acceleration in autism, schizophrenia, and Down 

syndrome. 

 

Furthermore, we identified a notable increase in entropy 

around age 40. These results emphasize the potential of 

lipidomic data to inform biological age prediction and 

underscore its utility in advancing our understanding of 

lipid-based biomarkers of aging. 

 

MATERIALS AND METHODS 
 

Samples 

 

This study utilized the publicly available dataset by Yu 

et al. [11], comprising 452 samples from various brain 

banks: NICHD Brain and Tissue Bank, Maryland 

Psychiatric Research Center, Maryland Brain 

Collection Center, Netherlands Brain Bank, Chinese 

Brain Bank Center, Harvard Brain Tissue Resource 

Center, and Autism Tissue Program. Samples, 

primarily gray matter from the anterior prefrontal 

cortex, weighed approximately 12.55 mg (±1.65). The 

dataset included 403 samples without neurological 

disorders (WND), 5 with Down syndrome (DS), 17 

with autism spectrum disorder (ASD), and 27 with 

schizophrenia (SZ). Age ranges varied: WND samples 

from 0 to 99 years (median age 24 years, excluding 12 

prenatal samples), DS samples from 58 to 65 years 

(median age 61 years), ASD samples from 18 to 60 

years (median age 30 years), and SZ samples from 23 

to 64 years (median age 48 years). Post-mortem 

intervals (PMI) ranged from 0 to 44 hours, with median 

values of 14, 6.2, 20.3, and 19.5 hours for WND, DS, 

ASD, and SZ samples, respectively. Ethnicity data 

were incomplete, labeled as unknown, thus limiting its 
use for matching case and control groups. Detailed 

sample statistics are provided in Supplementary Table 

5. A comprehensive description of these data, the 

methodology, and availability can be found in the 

publication of Yu et al. in 2018 [11]. 

 

Data analysis 

 

Data preprocessing 

To standardize ages, we adjusted reported values by 

subtracting a gestational period of 0.767 years. Subjects 

younger than 20 clustered in feature space 

(Supplementary Figure 6), likely reflecting ongoing 

brain development, while those over 80 were mostly 

Caucasian (Supplementary Figure 5). To address these 

biases, we limited our analysis to individuals aged 20 to 

80. After filtering, the dataset contained 5,024 lipid 

species, of which 2,222 were annotated with LIPID 

MAP IDs (LM IDs). To manage degenerate LM IDs, 

we computed a conformity index, resulting in 360 

unique lipid species mapped to LM IDs, molecular 

weights, and retention times. Isotopic variations were 

reviewed for discrepancies in m/z values, and mass 

searches against LIPID MAPS adduct lists were 

conducted across lipid classes in both ionization modes. 

Any unmatched values were treated as missing, 

resulting in a final dataset with 242 samples and 163 

features. 

 

Outliers were identified by running PCA and 

calculating the pairwise Euclidean distances between 

samples. The distances were then averaged per sample. 

An outlier was defined as any distance below the first 

percentile − 3 × the interquartile range or above the 

third percentile + 3 × the interquartile range. 

 

Model development and bootstrapping 

We trained and evaluated all models using bootstrap 

resampling to enhance robustness. A total of 100 

bootstrap iterations were performed to select the best-

performing null models, as additional iterations did not 

improve model selection. As some models are capable 

of capturing complex, nonlinear patterns, we did not use 

PCA at this stage. For both Elastic PCA and DoliClock, 

10,000 bootstrap iterations were conducted to ensure 

stable estimates of biological age. Bootstrapping was 

performed with replacement, preserving the original 

sample size in each iteration. The resampling was 

stratified by age (5-year bins), sex, and ethnicity, 

ensuring demographic diversity in each bootstrap 

sample. Sex, ethnicity, and PMI were included as 

covariates to minimize potential confounding effects. 

Model performance was evaluated using out-of-

bootstrap samples, which served as independent test 

sets, ensuring an unbiased performance assessment. All 

preprocessing steps were applied exclusively to the 
training data and projected onto the test set. Missing 

values were imputed using K-nearest neighbors (k = 5), 

followed by scaling and normalization via the Yeo-
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Johnson transformation [84]. Elastic PCA incorporated 

an additional PCA step before model training. 

 

Statistical analyses were conducted using the Mann-

Whitney U-test to compare entropy and lipid levels 

across age groups, as well as to assess age acceleration 

between diagnostic groups. Regression analysis was 

employed to compare the slopes of aging trends 

between groups, and Levene’s test was used to evaluate 

differences in lipid variance across age groups. For all 

hypothesis-driven comparisons, we applied the Holm-

Bonferroni correction to control for multiple testing. 

Bonferroni correction (P < 0.00007) was used 

specifically for exploratory correlation analyses, given 

the higher number of comparisons. 

 

Age acceleration was computed by fitting a linear 

regression model to the predicted and actual ages, with 

residuals representing deviations from the expected 

aging trajectory. 

 

Dimensionality reduction, mutual information, and 

interpretation 

For dimensionality reduction, we applied PCA, using 

singular value decomposition (SVD) to decompose the 

data’s correlation matrix into eigenvalues and 

eigenvectors, represented as S = QΛQT [85]. PCA was 

implemented via the scikit-learn library [86] for 

visualization and subsequent analysis. To further 

explore relationships among features, eigenvectors were 

rescaled based on mutual information [87], calculated 

following the method of Platt et al. [88]. 

 

Elastic net was employed to identify sparse, informative 

features while minimizing overfitting [89]. Using the 

ElasticNet class from scikit-learn [86], PCA loadings 

were multiplied by elastic net coefficients to determine 

feature importance for models using PCA. Feature 

importance for models utilizing raw data we assessed 

using model coefficient and SHAP values [90]. 

 

Entropy 

Shannon entropy [91], was calculated to assess 

information content, under the assumption of stable 

prefrontal cortex function among those aged 20–40 

(Supplementary Figure 7). To standardize lipid values, 

the Yeo-Johnson transformation was trained on data 

from individuals within this age range and then applied 

to all other samples to ensure comparability [84, 86]. 

Following transformation, lipid values were binarized 

by assigning a value of 1 if they deviated beyond two 

standard deviations from the normalized reference 

distribution, and 0 otherwise. 
 

To evaluate lipidomic variability across the lifespan, we 

calculated group-based entropy within 10-year age bins. 

For each age group, the proportion of individuals 

exhibiting lipid deviations (0 or 1) was computed for 

each lipid feature, and Shannon entropy was calculated 

based on these proportions. Group-level entropy values 

were then compared across adjacent age bins (e.g., 20–

30 vs. 30–40, 30–40 vs. 40–50) to assess age-related 

changes in lipid variability. 

 

In addition, we calculated entropy for each individual to 

understand how much their lipid profile differs from what 

is typical for their age. To do this, we first looked at how 

often each lipid showed deviations in healthy people of 

the same age group. Then, for each individual, we gave 

more weight to lipid deviations that are rare in healthy 

people of the same age. Using these weighted values, we 

calculated entropy to capture how unusual or variable 

each person’s lipid profile is, compared to normal 

patterns for their age. This allowed us to compare 

individuals with neurological disorders to healthy 

controls, to see if their lipid profiles show greater 

differences from what is normally expected with aging. 

 

Implementation details 

 

The analysis pipeline was implemented in Python 

(v3.9.7, (59)). Numpy (v1.25.2, [92]), Pandas (v2.1.1, 

[93]) and Scipy (v1.11.3, [94]) were used for 

computational purposes and scikit-learn (v1.5.2, [86]) 

was used for the development of machine learning 

models. For visualization matplotlib (v3.8.0, [95]) and 

seaborn (v0.13.2, [96]) were used. For interpretation of 

models the SHAP library (v0.43.0, [90]) was used. 

 

Code to reproduce the results are made available at 

https://github.com/ddlatumalea/DoliClock-2.0. 
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schizophrenia; ASD: autism spectrum disorder; DS: 
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interval. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Comparison of 26 models based on their R² test score versus training score. Each point represents a 

model, illustrating its performance on both the training and test datasets. 
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Supplementary Figure 2. Correlation heatmap of principal components and metadata from the individuals. The Pearson 

correlation coefficient was used to calculate correlation. Warmer colors indicate positive correlations, whereas cooler colors indicate 
negative correlations. 

 

 
 

Supplementary Figure 3. Sample-wise entropy across neurological conditions and age groups. Boxplots of sample-wise entropy 

values for samples without neurological disorder, and for samples with autism spectrum disorder, schizophrenia, and Down syndrome 
stratified by age (only significant P-values are annotated: P < 0.05 = *, P < 0.01 = **, P < 0.001 = ***). 
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Supplementary Figure 4. Distribution of all model scores, with the median value indicated. 

 

 
 

Supplementary Figure 5. Histogram showing the age distribution across different ethnicities. Age is divided into bins of 10 

years, and each ethnicity is represented by a distinct color to highlight demographic variation within the dataset. 
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Supplementary Figure 6. Scatter plots illustrating dimensionality reduction techniques applied to the dataset. Clusters were 

identified using DBScan and visualized with convex hulls. The figure presents PCA, PCA with Mutual Information (MI) rescaling, t-SNE, and 
UMAP, each displaying sample clustering based on all lipid species. The axes represent the first two dimensions of each respective method. 
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Supplementary Figure 7. Age-related variability in dolichol distributions. Each plot visualizes lipid distributions relative to a 

reference group (ages 20–40), standardized using Yeo-Johnson transformation. Individuals marked in blue have lipid profiles within two 
standard deviations of the reference distribution, while individuals marked in green deviate beyond this threshold. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–3. 

 

Supplementary Table 1. Lipids and demographics of the processed dataset, including sample counts by 
neurological disorder status (No Neurological Disorder, Down Syndrome, Autism, Schizophrenia). Gender, age 
groups, ethnicity, and postmortem interval (PMI; median ± SD assumed to be in hours) are detailed. Dashes 
(“−”) indicate unavailable data. 

 

Supplementary Table 2. Model performance metrics for all 26 models, including R², RMSE, MAE, explained 
variance, and MedAE, calculated for both training and test datasets. 

 

Supplementary Table 3. P-values from Mann-Whitney U tests comparing groups of 20 years, corrected using a 
Bonferroni adjustment with a significance threshold of 7.67 × 10⁻⁵. 

 

Supplementary Table 4. Log fold changes of dolichol concentration across different groups. 

lipid_index 
LogFC [0–20]  

[20–40] 
LogFC [20–40]  

[40–60] 
LogFC [40–60]  

[60–80] 
LogFC [60–80]  

[80–100] 

Dolichol-19_C95H157O 1.082794112 1.02362787 0.579947149 0.369038402 

Dolichol-19_C95H160NO 1.484802507 1.001635751 0.485293785 0.318561547 

Dolichol-20_C100H164ONa 1.006039152 1.292070672 0.937477928 0.411000008 

Dolichol-20_C100H165O 1.532039971 0.997398856 0.583720461 0.412647358 

Dolichol-20_C100H168NO 1.509776453 0.819964455 0.55020163 0.270673998 

 

Supplementary Table 5. Demographics of the original dataset, including sample counts by neurological disorder 
status (No Neurological Disorder, Down Syndrome, Autism, Schizophrenia). 

 No neurological disorder Down syndrome Autism  Schizophrenia 

Count 403 5 17 27 

Gender 

Male 260 3 12 20 

Female 141 2 5 7 

Unknown 2 - − − 

Age 

<0 12 − − − 

0–20 169 − 2 − 

20–30 45 − 3 4 

30–40 26 − 6 5 

40–50 41 − 2 7 

50–60 33 2 3 7 

60–70 30 3 1 4 

70–80 21 − − − 

80+ 26 − − − 

Ethnicity 

Han Chinese 148 − − − 

Caucasian 136 5 − 1 

African American  61 − − − 
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Hispanic 3 − − − 

Pacific Ocean Islands 2 − − − 

Unknown 53 − 17 26 

Other 

PMI median (std) 14 (5.14) 6.167 (2.12) 21.08 (8.42) 19.5 (10.68) 

Gender, age groups, ethnicity, and postmortem interval (PMI; median ± SD assumed to be in hours) are detailed. Dashes (“−”) 
indicate unavailable data. 
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