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INTRODUCTION 
 

The aging clock is a machine learning model that 

estimates biological age based on omics data, capturing 

molecular changes beyond chronological age [1]. DNA 

methylation has been widely used as a primary aging 

biomarker [2, 3]. However, its gene regulatory effects 

remain poorly understood, complicating biological 

interpretation [4, 5]. Gene expression offers a more 

functionally relevant biomarker with enhanced temporal 

resolution compared to CpG site-based measures [6–8]. 

This enables gene expression to reflect whole-body health 

conditions in real physiological time with greater acuity. 

 

Certain genes exhibit consistent expression changes in 

blood throughout the human lifespan, correlating with 

age-related phenotypes such as IL-6 levels and muscle 

strength [9–11]. Building on these findings, Peters  

et al. (2015) pioneered a blood transcriptomic clock 

based on 1,497 genes associated with chronological  

age from large-scale microarray data. The clock 

showed stronger correlations with age-related blood 

traits, such as blood pressure and cholesterol, than  

with chronological age [12]. Ren and Kuan (2020) 

introduced a concept of transcriptomic age acceleration 

analogous to epigenetic age acceleration. Here, they 

illustrated accelerated age among cancer subtypes 

measured by multi-tissue RNA clocks [13]. Moreover, 

Holzscheck and colleagues (2021) inferred accelerated 

transcriptomic age in skin fibroblasts from patients 

with Hutchinson–Gilford Progeria Syndrome (HGPS) 

and reduced transcriptomic aging in mice undergoing 
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ABSTRACT 
 

We developed the first genome-wide transcriptomic clock specific to Korean ethnicity to predict chronological 
age using whole blood samples from 440 healthy individuals. Our analysis revealed profound age acceleration – 
up to 21.31 years – during homeostatic disruption in COVID-19 patients, which reverted to baseline upon 
recovery. These findings highlight the ability of the blood transcriptome to dynamically track reversible changes 
in age-associated inflammatory responses during infections. Our study underscores the potential of anti-aging 
interventions in managing infectious diseases. 
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caloric restriction (CR) [14]. Recent advancements 

have expanded transcriptomic clocks to single-cell 

resolution to scrutinize the cell-type-specific progression 

of biological aging [15, 16]. 

 

Despite these developments, the application of RNA 

clocks to systematically investigate transcriptomic  

age shifts caused by disease states remains limited, 

particularly in East Asian populations. Robust 

biomarkers associated with these shifts also remain 

underexplored. 

 

This study fills these critical gaps by leveraging bulk 

mRNA sequencing to investigate the transcriptomic age 

shifts in blood during both transient (COVID-19) and 

chronic (Mental illnesses) pathological states. We also 

identify novel aging biomarkers to provide deeper 

molecular insight into the aging process. 

 

RESULTS 
 

Whole blood mRNA accurately predicts chronological 

age in healthy individuals 

 

We developed a machine learning model to predict 

transcriptomic age using bulk RNA sequencing data 

from 350 healthy individuals of Korean ethnicity 

(Supplementary Figure 1). From 13,834 stably expressed 

genes in whole blood, 301 genes were significantly 

correlated with chronological age (|r| > 0.35 and FDR < 

0.05, Supplementary Table 1). Using the LARS LASSO 

method, we constructed a linear prediction model that 

selected 36 genes with strong predictive power. The 

model achieved high accuracy in the training cohort 

(R2
train = 0.80; Figure 1A) and robust performance in 

validation and test cohorts of 90 and 96 individuals, 

respectively (R2
validation

 = 0.70 and R2
test

 = 0.63; Figure 

1B, 1C). Consistent age-gene correlations were observed 

across all cohorts (Supplementary Figure 2). 

 

Our clock outperformed existing transcriptomic aging 

clocks for Korean samples but performed less 

effectively on Caucasian samples compared to Ren 

Clock trained on the same ethnicity (GSE134080; 

Supplementary Figure 3). These results emphasize the 

necessity of population-specific models, justifying the 

development of a tailored RNA clock for accurate age 

prediction in Korean individuals. 

 

The 36 age-predictive genes, ranked by regression 

coefficients, revealed both positive and negative 

associations with aging (Figure 1D and Supplementary 

Table 2). Gene-set enrichment analysis with 180 co-
expressed genes highlighted angiogenesis and lymphoid 

immunity as the dominant pathways (FDR < 0.05; 

Figure 1E, 1F). A two-dimensional t-SNE plot of the 36 

genes revealed moderate stratification according to age 

groups, but did not differentiate between sex groups 

within the embedded space (Supplementary Figure 4). 

 

Transcriptomic age acceleration in response to 

COVID-19 and mental illnesses 

 

The 36-gene clock was applied to disease cohorts  

for analysis. Despite a near-uniform age distribution 

across cohorts (Supplementary Figure 5), the clock 

failed to accurately predict the chronological age of 

certain unhealthy individuals (Supplementary Figure 6). 

We quantified transcriptomic age acceleration (TAA)  

to measure the deviation between chronological  

and transcriptomic age. Healthy cohorts showed no 

significant age acceleration (Figure 2A; Healthy). Mean 

TAA of the healthy cohorts in validation was no more 

than 0.98 years (95% CI: -0.79 to 3.6, FDR = 0.199), 

supporting their non-diseased status (Supplementary 

Table 3). 

 

In SARS-CoV-2 infection, longitudinal samples showed 

significant TAA during the acute phase (mean TAA = 

21.31 years; 95% CI: 7.59 to 35.04, P = 0.004).  

This dramatically declined in mid (8.86 years; 95%  

CI: 1.49 to 16.23, P = 0.023) and late phases (4.54 

years; 95% CI: -0.38 to 9.46, P = 0.078). Notably,  

an independent cohort of 141 convalescent samples 

showed no evidence of acceleration (0.90 years; 95% 

CI: -0.24 to 2.04, P = 0.122) (Figure 2A; COVID-19). 

Consistent with these findings, TAA was negatively 

correlated with the time since infection, indicating a 

gradual return to transcriptomic homeostasis (Regression 

coefficient = -8.49, P = 0.02; Supplementary Figure 7). 

Expression dynamics of the 36 blood aging biomarkers 

in COVID-19 mirrored these trends, with VSIG4 levels 

declining during acute phases and recovering over time, 

independent of stage-specific differentially expressed 

genes (Supplementary Figure 8 and Supplementary 

Table 4). 

 

COVID-19 patients with higher inflammatory status, 

indicated by C-reactive Protein (CRP), showed 

significantly elevated TAA during acute and mid  

phases (P = 0.03 for both), while no differences were 

observed in the late phase (P = 0.37; Figure 2B). TAA 

was also associated with higher neutrophil counts, lower 

lymphocyte counts, and declining serum albumin levels 

(P < 0.05; Supplementary Figure 9). 

 

In psychiatric cohorts, TAA was modest and statistically 

insignificant overall (mean TAA = 0.94 years; 95% CI:  

-3.03 to 4.50, FDR = 0.199; Supplementary Table 3). 
These results suggest that acute infection drives transient 

TAA more strongly than chronic conditions such as 

mental illnesses. 
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Validation of transcriptomic age acceleration in 

public infection cohorts 

 

To validate the dynamics of transcriptomic age 

acceleration (TAA), we analyzed publicly available 

RNA-seq datasets from two independent cohorts: 

COVID-19-related acute respiratory distress syndrome 

(ARDS; GSE273149) and Hepatitis C Virus infection 

(HCV; GSE119117). 

 

In the COVID-19 ARDS cohort, non-survivors 

exhibited persistent TAA across all measured time 

points. On Day 1, TAA was 46.14 years (95% CI:  

31.55 to 60.74, P = 0.003), remaining elevated on Day 3 

 

 
 

Figure 1. Chronological age prediction using 36 genes in healthy cohorts. (A–C) Scatter plots showing the performance of the age 

prediction model on (A) training (N=350), (B) validation (N=90), and (C) independent test (N=96) data. The x-axis shows chronological age, 
and the y-axis shows predicted age based on the mRNA clock. Each sample is represented by an open black dot, with a solid red line 
indicating the regression trend and a dotted blue line indicating perfect correlation. (D) Bar plot showing genes ranked by their importance in 
age prediction. The x-axis shows regression coefficients, and the y-axis lists the gene symbols of the 36 age-predictive genes. The top ten 
genes are shown in bold. Blue and red bars indicate positive and negative associations with aging, respectively. (E, F) Dot plots displaying 
gene-set enrichment results of the 36 age-predictive genes with their 180 co-expressed genes based on (E) Gene Ontology (Biological 
Processes) and (F) Molecular Signatures Database (Cell Type). The x-axis represents fold enrichment, and the y-axis portrays the top ten 
annotated biological functions, sorted by fold enrichment (FDR < 0.05). Dot color denotes the statistical significance, and dot size indicates 
the number of enriched genes. MAE = Mean Absolute Error; r = Pearson’s Correlation Coefficient; R2 = Coefficient of Determination; FDR = 
False Discovery Rate. 
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(37.75 years; 95% CI: 16.90 to 58.60, P = 0.024)  

and Day 7 (49.33 years; 95% CI: 12.15 to 86.52,  

P = 0.060). By Day 10, TAA increased further (58.36 

years; 95% CI: 25.18 to 91.55, P = 0.041), reflecting 

unresolved systemic inflammation and failure to 

recover (Figure 3A). Survivors, in contrast, showed 

high TAA on Day 1 (75.15 years; 95% CI: 34.87 to 

115.44, P = 0.035) but showed a progressive return  

to baseline by Day 7 (31.72 years; 95% CI: 22.94 to 

40.49, P = 0.006) and Day 10 (22.59 years; 95% CI: 

9.95 to 35.23, P = 0.177), indicating recovery (Figure 

3A). Although not statistically significant, COVID-19 

survivors exhibited an initial increase in TAA 

compared to non-survivors on Day 1 (+13.86 years,  

P = 0.26), which reversed upon Day 10 (-35.77 years, 

P = 0.13; Figure 3B). Accordingly, TAA trajectories  

in survivors trended downward to baseline, whereas 

non-survivors showed sustained elevation at Day 7 

(Pinteraction = 0.047; Supplementary Table 5). 

 

In the HCV cohort, TAA was 12.15 years (95%  

CI: 6.49 to 17.81, P = 0.008) in the acute phase of  

the resolved cases, decreasing to 5.03 years (95%  

CI: -0.77 to 10.83, P = 0.150) during follow-up.  

Pre-infection samples showed negligible TAA (-1.48 

years, 95% CI: -16.16 to 13.20, P = 0.47). Chronic 

HCV cases exhibited stable TAA across all stages, 

with no significant changes (P > 0.05, Figure 3C). 

Across all stages, there was no evidence of TAA 

difference between resolution (green) and chronic 

(orange) groups (P > 0.05, Figure 3D). TAA 

trajectories in HCV showed no significant distinction 

between the subgroups (Pinteraction > 0.05, Supplementary 

Table 5). 

 

 
 

Figure 2. Transcriptomic age acceleration (TAA) across healthy, COVID-19 and mental illness cohorts. (A) A forest plot illustrates 

interval estimates of TAA across cohorts. Red-filled diamonds indicate statistically significant TAA (P < 0.05), while grey-filled diamonds 
denote no significance. The x-axis represents TAA in years, and the y-axis lists the study cohorts. Nominal P-values for TAA are displayed on 
the right-hand side, with bold red figures indicating statistical significance. (B) A line plot depicts TAA trajectories in COVID-19 patients, 
stratified by CRP levels (Low, High, and Unknown). The x-axis shows infection stages with respective sample sizes of High and Low CRP 
groups, while the y-axis displays TAA in years. Bold lines represent the group trends for High CRP (orange) and Low CRP (green) groups. Error 
bars indicate the mean ± SEM. Nominal P-values are shown at the bottom for each phase using two-sided Welch's t-test. Red indicates 
statistical significance while black shows no significance. The group trend of Unknown CRP (green) was omitted. SEM = Standard Error of 
Sample Means; TAA = Transcriptomic Age Acceleration. 
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DISCUSSION 
 

Our study provides compelling evidence for the 

reversibility of transcriptomic age in response to 

systemic stressors such as infections [17, 18]. In  

whole blood, transcriptomic age exhibits dynamic and 

transient shifts that are independent of chronological 

age. These shifts likely reflect deviations from a healthy 

state rather than permanent changes in biological age, 

given that the clock was exclusively trained on the 

chronological age of non-diseased individuals. Notably, 

transcriptomic age closely tracked the inflammatory 

course of COVID-19 patients from acute illness  

through recovery. Among clinical markers, C-reactive  

Protein (CRP) exhibited the strongest correlation with 

transcriptomic age acceleration (TAA). CRP is a well-

established inflammation marker linked to increased all-

cause mortality, including sepsis-related deaths [19, 20]. 

 

Early inflammatory response is critical in determining 

later disease outcomes [21]. In COVID-19, a robust 

initial inflammatory surge facilitates viral clearance and 

recovery, while a delayed or insufficient response can 

lead to prolonged systemic inflammation and adverse 

 

 
 

Figure 3. Transcriptomic age acceleration (TAA) across COVID-19 ARDS and HCV cohorts using publicly available RNA-seq 
data. (A, B) COVID-19 ARDS cohort. (A) Forest plot showing the interval estimates of TAA. Statistically significant TAA values (P < 0.05) are 

indicated by red-filled diamonds, while non-significant values are marked with grey-filled diamonds. The x-axis represents TAA in years, and 
the y-axis shows cohort labels. Statistical results for TAA are listed on the right, with significant values in bold red. (B) Line plot of TAA 
trajectories stratified by clinical outcome (survivors, orange; non-survivors, green). The x-axis indicates infection stages with sample sizes; the 
y-axis shows TAA in years. Lines represent group means ± SEM; nominal P-values from two-sided Welch’s t-test are shown below each phase. 
(C, D) HCV cohort. (C) Forest plot showing TAA in years with significance as in (A). (D) Line plot of TAA trajectories stratified by resolution 
stage (chronic, orange; resolution, green), with interpretation as in (B). ARDS = Acute Respiratory Distress Syndrome, Chron. = Chronic; HCV = 
Hepatitis C Virus; Non-Surv. = Non-Survivor; Res. = Resolution; SEM = Standard Error of Sample Means; Surv. = Survivor; TAA = Transcriptomic 
Age Acceleration. 
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clinical outcomes [22]. Despite the small sample size, 

the COVID-19 ARDS cohort demonstrated that 

survivors exhibited a sharp inflammatory surge which 

resolved to baseline, indicating effective immune 

activation. Non-survivors had a blunted response  

with persistently high TAA, reflecting immune failure 

and disease progression. Taken together, blood 

transcriptomic age is a useful proxy for age-associated 

inflammatory responses, offering insights into disease 

progression through the lens of aging biology. 

 

CXCL9, a plasma protein previously implicated in 

inflammation and experimentally validated to promote 

endothelial cell senescence [23], showed a positive 

correlation with chronological age in our whole blood 

data. However, the strength of this correlation was 

insufficient for inclusion in our analysis (Supplementary 

Table 6). Instead, VSIG4 emerged as a key surrogate 

marker of blood aging. VSIG4, a potent negative 

regulator of pro-inflammatory macrophages and T-cells, 

demonstrated significant downregulation during recovery, 

indicating a reduced inflammatory environment [24, 25]. 

Alongside NREP, a gene included in the 36-gene set, 

VSIG4 has been identified as a deleterious signature of 

aging across multiple tissues and species [26]. 

 

Viruses act as pro-aging factors. Virus-induced 

senescence (VIS) is linked to disease severity through 

senescence-associated secretory phenotypes (SASPs), 

which drive systemic inflammation [27]. While causality 

remains to be established, our results suggest that 

infection-induced changes in aging biomarkers challenge 

the notion of aging as merely a risk factor for infection 

susceptibility [28]. Recent studies indicate that senolytics 

mitigate complications of viral infections, highlighting 

their therapeutic potential [29, 30]. Moreover, our 

findings support the role of anti-aging interventions  

in improving vaccine efficacy [31]. Taken together, 

these results underscore the potential for repurposing 

anti-aging interventions as complementary strategies to 

enhance resilience and health outcomes in the context of 

infectious diseases. 

 

Mental health issues have been associated with 

epigenetic age acceleration [32], and chronic 

psychosocial stress has been implicated in epigenetic 

aging [33]. However, our results did not align with 

these findings. We suggest that the transcriptomic clock 

may be more sensitive to acute stress, such as COVID-

19, rather than chronic stress, such as mental health 

disorders. Future research should involve larger sample 

sizes and classify patients based on clinically approved 

indices to better establish a definitive relationship. 
 

Our study highlights significant challenges in predicting 

transcriptomic age across diverse ethnic groups. A clock 

trained on a single ethnic group failed to generalize 

across populations, with our Korean-trained clock 

overestimating age in Caucasian COVID-19 patients 

(Supplementary Figure 10) and performing poorly on the 

predominantly Caucasian GTEx dataset (Supplementary 

Figure 11). This mirrors Ren & Kuan’s observation that 

ethnicity-matched models minimize error [13], indicating 

that blood aging signatures are compounded by ethnic-

specific genetic, environmental, and socioeconomic 

factors [34, 35]. Moreover, technical variability in RNA 

sequencing – such as differences in RNA quality, 

sample handling, and sequencing platforms – introduces 

batch effects that exacerbate prediction errors. In future, 

comprehensive batch correction methods, such as 

ComBat-seq and RUVSeq, should be systematically 

employed in both intra- and inter-ethnic contexts to 

ensure reproducible cross-cohort age prediction [36, 37]. 

 

Recent studies propose that aging clocks reflect 

stochastic molecular variation, or entropy, accumulated 

over time [38, 39]. While our clock is primarily driven 

by inflammation, inflammation itself may amplify 

transcriptional variability [40, 41], implying that 

stochasticity is a core component of the blood 

transcriptomic clock presented here. Although we have 

utilized LASSO regression to prioritize highly 

performant features of age prediction, we cannot 

confidently claim that all 36 genes, including VSIG4 

and NREP, reflect programmed aging. Future studies 

are warranted to elucidate the variance explained  

by entropic aging in the clock, particularly at the  

single-cell level to resolve cellular heterogeneity that  

is masked in bulk transcriptomic data as used in our 

study. 

 

MATERIALS AND METHODS 
 

Study population and sample collection 

 

We collected a total of 559 whole blood samples  

from healthy donors who participated in the Korean 

Genome Project (KGP) with no apparent disease onset 

at the time of blood draw [42, 43]. Additionally, we 

obtained 124 whole blood samples from the Mental 

Health Cohort [44]. From the COVID-19 Infection  

and Recovery Cohorts, we collected 146 and 141  

whole blood samples, respectively. Out of the 146 

COVID-19 Infection Cohort samples, 134 samples were 

longitudinally collected from 48 subjects over a one-

month period, covering the acute (N=48), mid (N=45), 

and late (N=41) phases of infection (unpublished). 

 

Bulk mRNA sequencing using illumina sequencers 

 

Whole blood samples collected in PAXgene® Blood 

RNA Tubes were stored frozen at -80° C. Total RNA 
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extraction utilized the PAXgene Blood RNA Kit  

from Qiagen following the manufacturer’s protocol. 

RNA quality was assessed by analyzing 1 μl on the 

Bioanalyzer system (Agilent) to ensure RNA Integrity 

Number (RIN) and rRNA ratio met required standards. 

We used 100 ng of total RNA for library preparation 

with the TruSeq RNA Library Prep Kit and TruSeq 

Stranded mRNA Sample Preparation Kit (Eukaryote) 

for the HiSeq2500 and NovaSeq5000 platforms, 

respectively, following the manufacturer’s instructions. 

Library quality was assessed with the Agilent 2100 

BioAnalyzer and quantified using the KAPA library 

quantification kit (Kapa Biosystems). Paired-end 

(2×101 or 2×151) RNA sequencing was performed on 

HiSeq2500 and NovaSeq5000 sequencers. 

 

Bulk mRNA sequencing using BGI/MGI sequencers 

 

To enrich polyadenylated mRNA and deplete rRNA, we 

used the Dynabeads mRNA Purification Kit (Invitrogen). 

Libraries were assessed for size distribution using  

the Agilent D1000 ScreenTape. Library preparation  

was conducted using BGI’s custom protocol or the 

MGIEasy RNA Directional RNA Library Prep Set 

(BGI) for the BGISeq500 and DNBSEQ-T7 platforms, 

respectively, following manufacturer protocols. Library 

quantification was performed using the Qubit 2.0 

Fluorometer with the Qubit DNA HS Assay kit 

(Thermo Fisher Scientific). Paired-end (2×100 or 

2×150) RNA sequencing was conducted on the 

DNBSEQ-T7RS (MGI) platform. 

 

Quality check and expression quantification 

 

Sequenced RNA reads had adapters removed and were 

filtered for low-quality reads using fastp (version 0.23.1) 

with default options [45]. The filtered RNA reads  

were aligned to the human reference genome FASTA 

(GRCH38 p.13) using STAR (version 2.7.10b) with 

default settings [46]. Only those samples with Q30  

Rate > 0.90, GC Rate > 0.46, and Total Mapping Rate  

> 70% were included (Supplementary Tables 7, 8). 

Transcripts and respective genes were annotated with 

their Ensembl ID and gene symbol using the annotation 

GFF3 file (GENCODE version 43) and RSEM (version 

1.3.3) [47]. We removed any genes with duplicate gene 

symbols. Raw expression of each gene was estimated  

by RSEM (version 1.3.3) with default parameters [48]. 

DESeq2 (version 1.42.0; R package) was used to 

normalize the expression counts for sequencing depth 

and RNA library composition [49]. To normalize raw 

counts from publicly available RNA-seq data, size factors 

were computed using the geometric means of genes 
across samples in the Korean study population with  

the “geoMean” argument in the “estimateSizeFactors” 

function of the DESeq2 package. 

Expression count preprocessing 

 

To ensure stable mRNA signals, genes with a median 

expression of zero were removed. Then, we removed 

the genes with median expression below 20. This 

reduced the number of input genes from 69,222 to 

13,834. The remaining genes had their expression values 

standardized across the samples to Z-scores using 

“preprocessing.StandardScaler” (scikit-learn version 

1.3.2). The mean and standard deviation for the scaler 

were calculated using the training dataset only. 

 

Sample selection for training the age prediction model 

 

We randomly selected samples from our RNA-seq 

dataset to achieve a near-uniform age distribution. Of the 

initial 440 samples, 350 were assigned to the training 

dataset and 90 to the validation dataset in an 80:20  

ratio using “model_selection.train_test_split” (scikit-learn 

version 1.3.2). The split was stratified into six age group 

bins using “np.digitize” (numpy version 1.26.2). From 

the principal component analysis (PCA) using all 13,834 

genes, we separated out the cluster of 90 samples with 

distinct batch information and expression profiles – 

sequencing performed in 2019 by BGISeq500 platform. 

PCA was performed using “decomposition.PCA” from 

scikit-learn (version 1.3.2) for each cohort. 

 

Finding age-associated genes via simple correlation 

analysis 

 

DESeq2-normalized expression values of each gene 

were correlated with chronological age using Pearson’s 

test, restricted to the 350 samples in the training dataset 

to prevent data leakage. P-values were adjusted for 

multiple tests using the Benjamini-Hochberg approach 

with “stats.multitest.fdrcorrection” (statsmodels version 

0.14.0). Genes with |r| > 0.35 and FDR < 0.05 were 

considered significantly associated with chronological 

age. 

 

Korean blood transcriptomic clock 

 

The LARS (Least Angle Regression) LASSO (Least 

Absolute Shrinkage and Selection Operator) model was 

trained on 350 healthy samples the genes of significant 

age correlation using “linear_model.LassoLarsIC” 

(scikit-learn version 1.3.2) with default parameters. 

Here, we assume that the combined effect of age-

predictive genes on the sample age is simply a linear 

combination of their expression. Given our sample size, 

we proceeded the feature selection with information 

criterion (asymptomatically equal to Leave-one-out 
cross-validation) to prevent over- or under-fitting [50]. 

For detecting the optimal regularization strength (i.e., 

alpha), we chose a model with the lowest value of 
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Bayesian information criterion (BIC) by iteratively 

minimizing the BIC (Supplementary Table 9). 

 

Peters and ren blood transcriptomic clock 

 

Transcriptomic age by Peters Clock was calculated  

using “TranscriptomicPredictionModel” function from 

BioLearn [51]. Ren Clock was calculated using 

“RNAAgeCalc” function from racpy [13] with following 

options: tissue = “blood”, stype = “Caucasian”, and 

signature = “GTExAge”. 

 

Model validation 

 

Model validation was conducted by testing datasets of 

independent RNA-seq experiments in predicting the 

biological age. Pearson’s correlation (r), Mean Absolute 

Error (MAE), and Coefficient of Determination (R2) 

were calculated as measurements indicating performance 

using “pearsonr”, “np.mean”, and “metrics.r2_score”, 

respectively (scipy.stats version 1.11.4; numpy version 

1.26.2; scikit-learn version 1.3.2). 

 

Functional enrichment of age-predictive genes and 

their co-expressed genes 

 

A gene co-expression matrix was constructed from  

gene expression data of 350 whole blood samples, 

calculating expression-expression correlations using 

“pandas.DataFrame.corr” with “pearsonr” option (pandas 

version 2.1.3). The top five highly co-expressed genes 

with 36 age-predictive genes were selected for down-

stream analysis. All 13,834 genes after the preprocessing 

based on their expression level have been used as the 

background gene set. ShinyGO (version 0.81) [52] was 

used to functionally annotate genes. 

 

Dimension reduction using t-SNE 

 

To visualize the distinct expression patterns across age 

groups and sex, we employed t-distributed Stochastic 

Neighbor Embedding (t-SNE), a dimensionality 

reduction technique that preserves local structure in high-

dimensional data, in this case, gene expression data. The 

analysis was performed on the expression levels of 36 

age-predictive genes across 350 blood samples used in 

training the age prediction model. The pre-processed 

expression counts were transformed into 2D t-SNE 

embeddings using the “TSNE.fit_transform” function 

with “n_components=2” as an option (sklearn.manifold 

version 1.3.2). 

 

Transcriptomic age acceleration (TAA) 

 

Transcriptomic Age Acceleration (TAA) is the 

difference between predicted (transcriptomic) and 

chronological age at which the blood was drawn from 

a sample. Prediction error confidence intervals were 

determined using “sem” (scipy.stats version 1.11.4) 

and tested for significance using two-tailed, one-

sample t-tests using “ttest_1samp” (scipy.stats version 

1.11.4). 

 

Trajectories of TAA across infection stages 

 

The trajectories of transcriptomic age acceleration 

(TAA) were analyzed in Korean COVID-19, Caucasian 

COVID-19 ARDS, and Caucasian HCV cohorts across 

infection stages, as measured by each study. In the 

Korean COVID-19 cohort, patients were stratified by 

C-reactive protein (CRP) levels (High and Low). High 

serum CRP level was defined as CRP > 1mg/dL, and 

low as CRP ≤ 1mg/dL. In the Caucasian COVID-19 

ARDS cohort, patients were classified by mortality: 

survivor and non-survivor. In the Caucasian HCV 

cohort, patients were divided according to patient 

outcome: resolution and chronic disease. Two-sided 

Welch’s t-tests was performed to obtain nominal P-

values distinguishing age acceleration at each stage of 

infection, using “ttest_ind” (scipy.stats version 1.11.4) 

with equal_var = False. In addition to the t-tests,  

a mixed-effects regression model (random intercepts 

and fixed slopes) was employed to account for 

individual variability and fixed effects, using 

“mixedlm” (statsmodels version 0.14.0). We tested the 

significance of interaction effects between infection 

stage and disease outcome on TAA. Wald’s test was 

used to assess the significance of the regression 

coefficients, with a p-value threshold of < 0.05 

considered statistically significant. 

 

Stage-specific differentially expressed genes (DEGs) 

in COVID-19 

 

Raw read counts estimated from RSEM were compared 

between 48 COVID-19 subjects longitudinally collected 

and 350 healthy bloods in the training data at acute 

(N=48), mid (N=45), and late (N=41) phases. DESeq2 

(version 1.42.0; R package) was used to discover 

differentially expressed genes using Wald’s test  

(design: Sample_Trait + Sample_Sex). Those genes 

with baseMean below 10 were removed. COVID-19 

significant gene set (i.e., COVID19) was defined as 

those genes with statistics of |log2FoldChange|≥1  

and FDR < 0.05 while the non-significant gene set  

(i.e., None) as |log2FoldChange| < 1 and FDR > 0.05. 

The 36 age predictor genes belong to AgePred gene  

set. Differences in expression levels were tested  

using Kruskal-Wallis test with post-hoc Dunn’s test  
for pairwise comparisons, correcting p-values with 

“bonferroni” option in “posthoc_dunn” (scikit-posthocs 

version 0.9.0). 
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Clinical correlates of transcriptomic age acceleration 

(TAA) 

 

Clinical lab values of routine blood tests were 

correlated with Transcriptomic Age Acceleration 

(TAA) using “pearsonr” (scipy.stats version 1.11.4). 

Significance was adjusted for multiple comparisons 

using “stats.multitest.fdrcorrection” (statsmodels 

version 0.14.0). 

 

Calculating TAA in GTEx expression data 

 

We obtained raw GTEx (version 8) gene expression 

data from the GTEx Portal [53]. We extracted only 

those samples collected from the whole blood for 

downstream analysis. Then, DESeq2 normalization was 

performed using geometric means of genes calculated 

from the samples of Korean ethnicity, as described 

previously. TAA was calculated by subtracting the 

predicted transcriptomic age and the chronological age 

of the blood donors at the time of enrollment (“AGE”: 

phv00169063.v9.p2.c1). 

 

Data availability 

 

Both normalized and un-normalized read count 

matrices used in the analysis can be found in our 

GitHub page: https://github.com/korean-genomics-

center/transcriptomic_clock. Raw sequencing data  

and materials used in the study are available from  

the corresponding author upon request. Public RNA-

seq data used in this study, GSE134080 [54], 

GSE273149 [55], and GSE119117 [56], can be found 

in Gene Expression Omnibus. Raw expression data 

from the GTEx project are available at the Portal: 

https://www.gtexportal.org/home/downloads/adult-

gtex/bulk_tissue_expression. Donor information from 

the GTEx project can be accessed through the dbGaP 

website (accession number: phs000424.v9.p2). 

 

Code availability 

 

The codes used to generate data and calculate statistics, 

as well as the respective readme files, are openly 

available in the GitHub page: https://github.com/korean-

genomics-center/transcriptomic_clock. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Schematic overview of the Korean blood transcriptomic aging clock study. The flow chart illustrating 

the analytic processes used to derive transcriptomic age from RNA-seq data, which consists of three main steps: pre-processing data, 
training, and testing the mRNA clock. Boxes in white represent the core algorithm for each step. The number of genes filtered at each stage is 
indicated following each step. A total of 901 RNA-seq samples were categorized into six cohorts: Healthy Cohort 1 (training set, N = 350; 
validation set, N = 90), Healthy Cohort 2 (testing set, N = 96), COVID-19 Infection Cohort (N = 146), COVID-19 Recovered Cohort (N = 141), and 
Mental Health Cohort (N = 78). These cohorts were utilized for training, testing, and evaluating the model, with the COVID-19 and Mental 
Health cohorts analyzed for biological age changes in response to disease conditions. 
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Supplementary Figure 2. Correlation and bar plots showing age correlations of 13,834 stably expressed genes. (A–C) Scatter 

plots showing age correlation of 13,834 genes between (A) train and validation, (B) train and test, (C) validation and test data. The x- and y-
axes represent Pearson’s r of each gene with chronological age (i.e., Age Correlations). (D) Bar plots comparing absolute age correlation of 36 
age predictors within healthy cohorts. The x-axis lists gene symbols of the predictors, while the y-axis shows absolute value of Pearson’s r 
with chronological age. 
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Supplementary Figure 3. Comparing the performance of transcriptomic aging clocks. (A–I) Scatter plots illustrating the 

performance of aging clocks: (A-C) Korean Blood Clock (This Study), (D–F) Ren Clock (2020), and (G–I) Peters Clock (2015). The x-axis 
corresponds to chronological age (in years), and the y-axis displays predicted age via the mRNA clock (in years). Each open grey dot 
represents a sample. The dotted line in blue shows perfect correlation, while the solid line in red represents a linear regression line indicating 
the general trend of predicted biological age across chronological age. Pearson’s r = Pearson’s Correlation; MAE = Mean Absolute Error; R2 = 
Coefficient of determination. 
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Supplementary Figure 4. Scatterplots of t-SNE results showing the distribution of samples based on transcriptomic data. Each 
point represents an individual sample, with colors indicating (A) age groups (20s to 70s) and (B) sex (F: Female, M: Male) of the individual. 
The axes, t-SNE1 and t-SNE2, are the first and second dimensions of the t-SNE embedding. 
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Supplementary Figure 5. Age distributions of study cohorts. Histograms depict the proportional distribution of chronological age 

across eight distinct study cohorts. (A) Healthy Cohort 1 (Validation Set), (B) Healthy Cohort 2 (Test Set), (C–E) COVID-19 patients, and  
(F–H) mentally ill patients. The x-axis represents the sample age group in years. The y-axis denotes the sample proportion in percentage. A 
dashed vertical red line and statistics represent the mean age of the study cohorts overall. The sample size for each cohort is indicated in 
parentheses. 
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Supplementary Figure 6. Correlation plots showing the variable prediction accuracies across disease phenotypes. Scatter plots 

illustrate the performance of the age prediction model on (A–D) COVID-19 patients, and (E–G) mentally ill patients. The x-axis corresponds to 
chronological age, and the y-axis displays predicted age via the mRNA clock. Each open grey dot represents a sample. The dotted line shows 
perfect correlation, while the solid line represents a linear regression line indicating the general trend of predicted biological age across 
chronological age. Pearson’s r = Pearson’s Correlation; MAE = Mean Absolute Error; R2 = Coefficient of determination. 
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Supplementary Figure 7. TAA dynamics across infection stages of COVID-19. Line plots illustrating the longitudinal changes of 

transcriptomic age acceleration (in years) for individual COVID-19 patients across infection stages: from acute, mid, to late phase. The green 
solid line represents the TAA trajectory that is on a decreasing trend, while the red solid line indicates that of an increasing trend. Bold solid 
line in black shows the overall trend of TAA and 95% CI (Confidence Interval). Numbers of the top right indicate the regression coefficient (R) 
and P-value (P). 
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Supplementary Figure 8. Gene expression dynamics of 36 age-predictors in COVID-19 patients. (A–C) Scatter plots illustrating the 
relative gene expression in COVID-19 patients at (A) acute (N=48), (B) mid (N=45), and (C) late (N=41) phases, compared to healthy controls. 
The x-axis denotes absolute relative expression (an absolute log2 value of expression in COVID-19 relative to the healthy), while the y-axis is 
statistical significance (a negative log10 value of FDR). Each open dot is a gene with blue, orange, and grey colors showing 47 age-predictors 
(AgePred), COVID-19 significant genes (COVID19; |log2FoldChange| ≥ 1 & FDR < 0.05), and non-significant genes (None; |log2FoldChange| < 
1 & FDR >0.05), respectively. Solid lines with corresponding colors represent the mean values of each gene set. (D) Bar plots comparing the 
relative gene expression of each gene set across different infection phases. A filled dot represents the mean relative expression in each phase 
with solid lines portraying the trend of overall relative expression across time. The statistics represent Bonferroni-corrected p-values of post-
hoc Dunn’s test between AgePred and None groups. The red figure means no statistical significance. 
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Supplementary Figure 9. Clinical correlates of transcriptomic age acceleration (TAA). Scatter plots depicting the relationship 

between transcriptomic age acceleration (TAA) and various routine blood biomarkers among COVID-19 patients (N=188) across different 
stages of infection. Clinical biomarkers are presented in alphabetical order. Significant correlations (FDR < 0.05) are highlighted in red, while 
non-significant associations are shown in gray. Each point represents an individual patient, with Pearson’s correlation coefficient (r) and the 
associated false discovery rate (FDR) displayed for each panel. ALT = Alanine aminotransferase; AST = Aspartate transferase; BUN = Blood 
urea nitrogen; CK-MB = Creatine Kinase-MB; CPK = Creatine phosphokinase; CRP = C-reactive protein; HDL = High-density lipoprotein; Hb = 
Hemoglobin; Hct = Hematocrit; LDH = Lactate dehydrogenase; LDL = Low-density lipoprotein; PLT = Platelet count; PT = Prothrombin time 
test; RBC = Red blood cell; WBC = White blood cell. 
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Supplementary Figure 10. Transcriptomic age predictions in COVID-19 ARDS and HCV cohorts across clinical stages. (A, B) 

Scatter plots showing predicted transcriptomic age versus chronological age in (A) COVID-19 ARDS cohort (GSE273149) and (B) HCV cohort 
(GSE119117). (A) Data points are stratified by infection stages (Day 1, Day 3, Day 7, Day 10) and patient outcome groups (COVID survivors and 
non-survivors). (B) Data points are categorized by infection stages (pre-infection, early acute, late acute, follow-up) and clinical outcomes 
(resolution or chronic infection). The red dashed line in both panels represents the ground truth (chronological age) for reference. 
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Supplementary Figure 11. Scatterplots illustrating prediction performance in the GTEx dataset. (A) Y-axis limited to 200 years, 

and (B) Y-axis extended to 4000 years. Each dot represents a single individual, with predicted transcriptomic age on the y-axis and 
chronological age on the x-axis. The dotted red line represents the line of perfect correlation. Pearson’s correlation coefficient (r), mean 
absolute error (MAE), and coefficient of determination (R²) values are shown in each panel. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 4, 7, 8. 

 

Supplementary Table 1. List of 301 genes significantly correlated with age in the training data (sorted by 
descending order of absolute Pearsons'r value). 

Supplementary Table 2. List of 36 age predictors and their direction and magnitude of effect on aging (negative 
effect = red ; positive effect = blue ; top 10 = bold). 

Index Selected_Features GeneSymbol Regression_Coefficient Direction 

1 ENSG00000174807_CD248 CD248 -2.9794617420466 Negative 

2 ENSG00000101230_ISM1 ISM1 1.7593956953689 Positive 

3 ENSG00000185090_MANEAL MANEAL 1.75079853751065 Positive 

4 ENSG00000186462_NAP1L2 NAP1L2 1.667382320556 Positive 

5 ENSG00000155659_VSIG4 VSIG4 1.63260373130342 Positive 

6 ENSG00000169918_OTUD7A OTUD7A -1.53095066493412 Negative 

7 ENSG00000041880_PARP3 PARP3 1.43266728417743 Positive 

8 ENSG00000170348_TMED10 TMED10 -1.40025976163676 Negative 

9 ENSG00000114631_PODXL2 PODXL2 -1.31898202194977 Negative 

10 ENSG00000113721_PDGFRB PDGFRB 1.00240951548852 Positive 

11 ENSG00000166816_LDHD LDHD 0.791540152775634 Positive 

12 ENSG00000163520_FBLN2 FBLN2 -0.760654210615058 Negative 

13 ENSG00000164530_PI16 PI16 0.755391715101398 Positive 

14 ENSG00000214279_SCART1 SCART1 -0.709242683601702 Negative 

15 ENSG00000260997_ENSG00000260997 ENSG00000260997 0.540382050806283 Positive 

16 ENSG00000112146_FBXO9 FBXO9 0.532348714553848 Positive 

17 ENSG00000235823_OLMALINC OLMALINC -0.525364854338482 Negative 

18 ENSG00000099282_TSPAN15 TSPAN15 -0.512990070746724 Negative 

19 ENSG00000166471_TMEM41B TMEM41B -0.508721506186172 Negative 

20 ENSG00000173114_LRRN3 LRRN3 -0.498213516104573 Negative 

21 ENSG00000007968_E2F2 E2F2 0.449201563367082 Positive 

22 ENSG00000037280_FLT4 FLT4 -0.417806788470162 Negative 

23 ENSG00000132386_SERPINF1 SERPINF1 -0.415065379857274 Negative 

24 ENSG00000180530_NRIP1 NRIP1 -0.338997686240057 Negative 

25 ENSG00000134986_NREP NREP -0.300390072179586 Negative 

26 ENSG00000158292_GPR153 GPR153 0.298266072957938 Positive 

27 ENSG00000196586_MYO6 MYO6 0.230667809902453 Positive 

28 ENSG00000105409_ATP1A3 ATP1A3 0.210675590272463 Positive 

29 ENSG00000256553_TRAV1-2 TRAV1-2 -0.175410166334397 Negative 

30 ENSG00000146674_IGFBP3 IGFBP3 0.174627868762052 Positive 

31 ENSG00000160191_PDE9A PDE9A -0.154861912233233 Negative 

32 ENSG00000150687_PRSS23 PRSS23 0.10418372443051 Positive 

33 ENSG00000106477_CEP41 CEP41 -0.0859433567591932 Negative 

34 ENSG00000076984_MAP2K7 MAP2K7 0.0638521490271622 Positive 

35 ENSG00000197275_RAD54B RAD54B -0.0247572566972331 Negative 

36 ENSG00000085415_SEH1L SEH1L -0.0000827616185103709 Negative 
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Supplementary Table 3. Summary table of overall means and 95% confidence intervals of transcriptomic age 
acceleration, and p-values from one-sample t-tests (two-sided) for study cohorts. 

Group (Cohorts) Mean Acceleration [95% CI] P FDR 

Healthy (Train + Validation + Test) 0.982 [-0.786, 3.584] 0.149702912528978 0.198571192871505 

COVID-19 (Acute + Mid + Late Phase) 11.572 [-0.377, 35.040] 0.000084026887234616 0.000252080661703848 

Mental Illness (MDD + Anxiety + SA) 0.935 [-3.026, 4.497] 0.198571192871505 0.198571192871505 

 

Supplementary Table 4. Summary table of differentially expressed gene (DEG) results of 36 age predictors in 
COVID-19 patients. 

 

Supplementary Table 5. Summary of mixed-effects model analysis of transcriptomic age association (TAA) 
across infection stages in COVID-19 ARDS (GSE273149) and HCV (GSE119117) cohorts. 

GSE273149 Coef. [95% CI] Std.Err. z P>|z| 

Intercept[COVID_nonsurvivor; Day 1] 46.143 [20.494,71.791] 13.086 3.526 0 

disease[COVID_survivor] 29.010 [-9.463,67.482] 19.629 1.478 0.139 

time[Day 3] -8.392 [-39.124,22.341] 15.68 -0.535 0.593 

time[Day 7] 3.188 [-27.544,33.921] 15.68 0.203 0.839 

time[Day 10] 9.300 [-23.753,42.352] 16.864 0.551 0.581 

disease[COVID_survivor]*time[Day 3] -31.677 [-77.776,14.422] 23.52 -1.347 0.178 

disease[COVID_survivor]*time[Day 7] -46.621 [-92.720,-0.522] 23.52 -1.982 0.047 

disease[COVID_survivor]*time[Day 10] -52.610 [-108.389,3.169] 28.459 -1.849 0.065 

Group Var 241.568 10.905     

GSE119117 Coef. [95% CI] Std.Err. z P>|z| 

Intercept[Chronic; Pre-infection] 7.093 [-5.375,19.561] 6.361 1.115 0.265 

hcvgroup[Resolution] -8.576 [-27.621,10.469] 9.717 -0.883 0.377 

Phase[Early acute] 8.697 [-0.789,18.184] 4.84 1.797 0.072 

Phase[Late acute] 2.994 [-5.598,11.586] 4.384 0.683 0.495 

Phase[Follow up] 5.588 [-3.004,14.180] 4.384 1.275 0.202 

hcvgroup[Resolution]*Phase[Early acute] 4.937 [-8.789,18.664] 7.004 0.705 0.481 

hcvgroup[Resolution]*Phase[Late acute] 7.789 [-5.816,21.395] 6.942 1.122 0.262 

hcvgroup[Resolution]*Phase[Follow up] 0.926 [-12.199,14.050] 6.696 0.138 0.89 

Group Var 246.852 14.681     

The table presents the results of the mixed-effects regression analysis evaluating the association between infection stage, 
disease outcome (COVID-19 survival and HCV prognosis), and TAAs. The model incorporates random intercepts to account for 
inter-individual variability. Coefficient estimates (Coef.), standard errors (Std.Err.), z-values, and p-values (P>|z|) are reported 
for each fixed effect. Wald's test was used to assess the significance of each coefficient, with p-values < 0.05 considered 
statistically significant. A statistically significant association is highlighted in red. 
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Supplementary Table 6. CXCL9 is subtly correlated with chronological age in the whole blood of training data. 

Cohort name GeneSymbol Slope R^2 Pearsons'r FDR Test significant ? 

Healthy Train CXCL9 0.104020911 0.022432609 0.149775195 0.035273179 TRUE 

 

Supplementary Table 7. Q30 and %GC of RNA-seq data from 901 samples used in analysis. 

 

Supplementary Table 8. Total Mapping Read Number and Rate of RNA-seq data from 901 samples used in 
analysis. 

 

Supplementary Table 9. List of lowest BIC values of the age prediction 
models across different age-expression correlation coefficient thresholds. 

Threshold alpha lowest BIC 

0.35 1.18598449580599 2633.31648787823 

0.36 1.30415998334888 2635.69114442808 

0.37 1.28330793080647 2613.7386751641 

0.38 1.04188337283776 2634.14497936316 

0.39 0.489147006279859 2651.64102744082 

0.4 0.848873301009751 2672.56668988947 
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