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INTRODUCTION 
 

The diploid human genome is endowed with several 

hundred ribosomal DNA (rDNA) transcription units 

(TU), which are arranged in tandem arrays in the short 

arms of the acrocentric chromosomes [1–3]. The 

encoded rRNA is essential for ribosome biogenesis in 

the nucleolus. Each cell must be fitted with an 

appropriate amount of ribosomes for messenger RNA 

translation and protein synthesis [4]. There is a complex 

interplay between rDNA methylation and epigenetic 
silencing [5–7]. Changes in rDNA methylation and 

transcription have been associated with development, 

aging and various age-related complex diseases [8, 9]. 

Previously, we have combined droplet digital PCR 

(ddPCR) and deep bisulfite sequencing (DBS) to count 

not only the absolute rDNA CN but also the CN with a 

given methylation value (i.e. 0%, 1-10%, etc.) [3, 10]. 

Consistent with the literature [1, 2], we found that the 

absolute CN was highly variable both in somatic tissue 

(blood) (mean ± SD 469 ± 107; median 469, range 243-

895) and in haploid male germ cells (219 ± 47; median 

214, range 98-404). Promoter hypomethylation is a 

prerequisite for rDNA transcription. In this light, we 

considered rDNA TU with 0-10% promoter methylation 
as likely active and TU with > 10% methylation as 

inactive. Using this classification system, the number of 

active rDNA TU was much smaller (182 ± 35; median 
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ABSTRACT 
 

Ribosomal DNA transcription is essential for ribosome biogenesis and the production of proteins. Using a 
combination of droplet digital PCR and deep bisulfite sequencing, we have quantified both the absolute 
number as well as the methylation level of individual rDNA transcription units (TU) in blood samples of 139 
young healthy individuals and 141 sex- and age-matched individuals with unsolved syndromal developmental 
delay (DD), ranging from 0.02 to 18.4 years in age. There were no between-group differences in average 
promoter methylation, absolute copy number (CN), extreme CN, and hypomethylated (0-10%) presumably 
active CN. This largely excludes rDNA CN as a modulating factor in DD. The absolute CN in all 280 samples was 
423.7 ± 108.4 (median 410, range 153 to 1,000) and the active CN was 175.0 ± 36.4 (median 174, range 70 to 
376). Similar to adults, the absolute CN did not change from birth to sexual maturity but was strongly (Pearson 
ρ = 0.64, P < 0.001) correlated with promoter methylation. In contrast to adults, there was no significant 
correlation between age and promoter methylation and no age-related loss of active copies from birth to < 20 
years. The number of completely unmethylated copies even significantly (Pearson ρ = 0.15; P = 0.01) increased 
during childhood and adolescence. Our results suggest that rDNA promoter methylation and the age-related 
loss of active rDNA TU, which are a hallmark of the aging process, start only after reaching sexual maturity. 
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180, range 94-277 in blood and 108.7 ± 28.3, median 

108, range 43-191 in sperm) than absolute CN [3, 10]. 

Notably, active CN did not depend on absolute CN, 

whereas the number of inactive copies increased  

with absolute CN. In both blood (donor age 15-71 

years) and sperm (29-72 years), active rDNA CN 

decreased with age. 

 

Although in the field of geroscience, the onset of the 

aging process is controversially discussed [11], it seems 

plausible to assume that aging begins after reaching 

sexual maturity [12, 13]. Numerous studies [3, 10, 14–

18] using different techniques, species and tissues 

(including male and female germ cells) have shown a 

positive correlation between rDNA methylation and 

age. However, so far it is not known when the rDNA 

TU start to accumulate age-related CpG methylation 

errors. Most studies are based on linear regression 

models derived from data sets, representing adult  

and old age and extrapolating what happens before 

sexual maturity. Here we have analyzed absolute  

and active CN variation in two cohorts representing 

healthy controls and individuals with developmental 

delay (DD), respectively, in the age range from birth to 

< 20 years. 

 

RESULTS 
 

Using DBS, we have analyzed mean methylation of the 

upstream control element and core promoter (UCE/CP) 

region in 139 samples from healthy individuals  

(control cohort) and 141 individuals with syndromal 

developmental delay (DD cohort). Age ranged from 0.07 

to 18.4 (6.5 ± 4.4) years in the control and from 0.02 to 

18.4 (6.4 ± 4.4) years in the DD cohort. There were no 

differences in UCE/CP methylation between the control 

(25.2 ± 9.1%, median 24.3%, range 3.6-47.8%) and the 

DD cohort (25.8 ± 8.6%, median 24.8%, range 8.2-

50.2%) (Supplementary Figure 1). The absolute rDNA 

CN was determined by ddPCR. Consistent with our 

previous studies [3, 10], rDNA TU with 0-10% promoter 

methylation were classified as hypomethylated and 

presumably active. Both absolute CN (controls: 436.4 ± 

125.2, median 424, range 153-1000; DD: 411.1 ± 87.4, 

median 406, range 248-877) and active CN (controls: 

180.9 ± 41.8, median 174, range 86-376; DD: 169.1 ± 

29.1, median 172, range 70-278) did not differ 

significantly between groups (Supplementary Figure 1). 

Moreover, the DD cohort was not enriched with extreme 

absolute or active CN. Neither the control (Pearson ρ = 

0.06, P = 0.52) nor the DD cohort (ρ = -0.17, P = 0.05) 

showed a significant correlation between promoter 

methylation and age. 

 

Because there were no between-group differences in 

CN variation and methylation both cohorts were 

combined for further analyses. In contrast to the well-

known age effect in adults, there was no significant 

correlation (Pearson ρ = -0.06, P = 0.36) of UCE/CP 

methylation with age in the 280 young (< 20 years) 

individuals (Figure 1A). Similar to adults, promoter 

methylation showed a strong positive correlation 

(Pearson ρ = 0.64, P < 0.001) with the absolute CN 

(Figure 1B). 

 

Next we classified rDNA copies into different 

methylation bins: 0%, 1-10%, 11-20%, 21-30%, 31-

40%, 41-50%, and 51-100%. In both patients and 

controls 75-80 copies were completely unmethylated 

(controls: 79.8 ± 20.6, median 78; DD: 75.5 ± 15.7, 

median 76) and 90-100 (controls: 100.1 ± 23.5, median 

95; DD: 93.7 ± 15.0, median 94) were lowly (1-10%) 

methylated (Supplementary Figure 2). When correlating 

the number of rDNA CN in a given methylation bin 

with age, the number of completely unmethylated TU in 

the 280 young individuals was significantly (Pearson ρ 

= 0.15; P = 0.01) increasing with age (from birth to < 

20 years) (Figure 2). In all other methylation bins, 1-

10% (ρ = -0.04; P = 0.49), 11-20% (ρ = -0.16; P < 

0.01), 21-30% (ρ = -0.15; P = 0.01), 31-40% (ρ = -0.11; 

P = 0.06), 41-50% (ρ = -0.10; P = 0.10), and 51-100% 

(ρ = -0.04; P = 0.55) the number of copies were slightly 

decreasing with age. Although not all these correlations 

were significant, there was a clear trend towards gain of 

unmethylated (0%) and loss of hypermethylated (10-

100%) copies from birth to sexual maturity. 

 

The absolute CN in our young (birth to < 20 years) 

cohort ranged from 153 to 1,000 (423.7 ± 108.4; median 

410) and the hypomethylated (0-10%) presumably 

active CN from 70 to 376 (175.0 ± 36.4; median 174). 

Neither absolute CN (Pearson ρ = -0.06; P = 0.30) 

(Figure 1C) nor active CN (ρ = 0.05; P = 0.38) (Figure 

1D) changed from birth to < 20 years. 

 

DISCUSSION 
 

The age-related gain of rDNA methylation starts at 

sexual maturity 

 

Previously we have shown that after sexual maturity 

aging of both the soma (from 15 to 71 years) and the 

male germline (from 29 to 72 years) was associated 

with increasing UCE/CP methylation, due to the loss of 

hypomethylated (0-10%) and gain of hypermethylated 

(11-100%) copies [3, 10]. Here we determined absolute 

CN and hypomethylated presumably active CN in 280 

blood samples from young (birth to < 20 years) 

individuals. In both adult and young blood donors, 

absolute CN remained constant across the years. 

However, the age-related rDNA methylation dynamics 

differed between the two groups. In contrast to adult 

1512



www.aging-us.com 3 AGING 

somatic tissue and sperm, there was no age-related loss 

of hypomethylated (0-10%) rDNA TU or gain of 

promoter methylation during young (< 20 years) age. 

 

Collectively our data suggest that the rDNA 

hypomethylation state is actively maintained in  

somatic tissues of young individuals. The number of 

hypomethylated presumably active rDNA TU is even 

slightly increasing from birth to the beginning of the 

reproductive phase. An age-related gain of rDNA 

methylation in both soma and germline [3, 10] starts 

around 18-20 years of life. This is consistent with the 

idea that aging begins at sexual maturity [12, 13]. 

According to the disposable soma theory of aging [19], 

there is no need to regenerate the body after reproduction. 

Although speculative, we propose that following sexual 

maturity, there is no longer evolutionary pressure to 

prevent the accumulation of single CpG methylation 

errors, resulting in a loss of active rDNA copies. 

rDNA CN in individuals with developmental delay 

 

Although ribosomes and, consequently rDNA CN and 

activity are involved in essentially all cellular processes, 

our knowledge on the role of CN variation in human 

health and disease is still limited. It has been proposed 

that rDNA CN may act as a modifier of multifactorial 

disease [1]. Very low and very high CN appear to be 

underrepresented in individuals older than 72 years and, 

therefore, may be disadvantageous for healthy aging 

[20]. In adult humans, rDNA CN has been associated 

with body mass index [21]. In addition, high CN have 

been associated with an increased schizophrenia risk 

and severity [22]. 

 

Ribosome dysfunction due to germline mutations in 

ribosomal protein-coding genes has been linked to 

various congenital disorders [23]. It is plausible to 

assume that rDNA CN may also be critical for normal 

 

 
 

Figure 1. UCE/CP methylation, absolute, and active CN in young individuals. (A) Mean methylation (Y axis) of the UCE/CP does not 
increase with age (X axis). Red dots represent blood samples of 139 healthy controls and blue dots of 141 individuals with DD. (B) UCE/CP 
methylation (Y axis) is significantly positively correlated with absolute rDNA CN (X axis). (C, D) Both the absolute number of rDNA TU (C) and 
active CN (D) remain stable during the first 20 years of life. There are no significant between-group differences. 
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Figure 2. Age-related methylation changes of the rDNA UCE/CP in young individuals. The 139 healthy controls are indicated by red 

dots and 141 individuals with DD by blue dots. The Y axis shows the number of rDNA TU within a given methylation bin, the X axis indicates 
donor age, ranging from birth to < 20 years. The number of completely unmethylated (0%) promoter regions significantly increases with age, 
whereas the CN in the 1-10%, 11-20%, 21-30%, 31-40%, 41-50%, and 51-100% methylation bins is decreasing. 
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development. Therefore, we have analyzed CN in a 

diverse spectrum of individuals with DD who remained 

unsolved after extensive genetic diagnostics (including 

chromosome banding, array CGH, and exome analysis). 

Individuals with DD showed the same CN and 

methylation variation as controls. In particular, we did 

not observe a higher number of individuals with 

extreme absolute and/or active CN in the DD group. 

Collectively, our results argue against the hypothesis 

that abnormal rDNA CN contributes to or modulates 

developmental delay, although we cannot exclude rare 

effects. 

 

The repetitive nature and tandem arrangement of 

rDNA TU makes them susceptible to homologous 

recombination errors, resulting in enormous CN 

variation [24], which may affect cell functions and 

phenotypic traits. It seems plausible to assume that 

rDNA methylation is a mechanism which can 

compensate for the functional effects of extreme CN 

gains. There is a strong positive correlation between 

the absolute CN and the number of hypermethylated  

(> 10%) copies, which are epigenetically silenced [3, 

10]. This ensures comparable active CN and rRNA 

activity in individuals with low and high absolute CN, 

respectively. 

 

Limitations 

 

Overall, only a proportion (usually 30-60%) of all rDNA 

genes are active and unnecessary copies are 

epigenetically silenced [5–7]. Despite the complex 

interrelation between DNA methylation and gene 

expression, it is generally assumed that the amount of 

methylated CpGs in the promoter region plays an 

important role in the process determining whether a gene 

is active or not [25]. Previously we have shown that in 

both soma and germline the number of rDNA TU with 

no, one or two methylated CpGs (of the 25 analyzed 

CpGs) decreases during aging [3, 10], concluding that 

rDNA TU with 0-10% promoter methylation are active 

and copies with > 10% methylation inactive. However, 

so far functional experiments showing which CpG 

density turns a given TU on or off are missing. Moreover, 

the threshold for epigenetic silencing may vary between 

genes, cell types/tissues, and individuals. 

 

Most studies including ours have analyzed rDNA CN in 

blood tissue, because it is easily accessible. Blood 

consists of different cell types, which can vary in cell 

composition between individuals. Active rDNA CN in 

blood cells may be primarily indicative of rDNA 

activity in the haematopoietic and the immune system, 
but does not necessarily represent the whole organism. 

On the other hand, accumulating evidence suggests that 

the intraindividual CN variation between different 

tissues is relatively small, compared to interindividual 

variation [21, 26]. Although this does not exclude that 

an individual tissue/organ in a particular patient may be 

endowed with extreme CN, compared to the other 

tissues (unpublished results), rDNA CN in blood may at 

least to some extent be representative of the soma. 

 

MATERIALS AND METHODS 
 

Study samples 

 

The 139 healthy control samples were anonymized 

excess materials (blood DNA) from mutation-negative 

individuals in predictive diagnostics. Moreover, 141 

individuals with DD, almost all of them with additional 

clinical symptoms (Supplementary Table 1) were 

included in this study. No underlying cause for DD was 

found by whole exome analysis. For most cases 

pathogenic CNVs and fragile X syndrome (in males) 

were also excluded. Samples of the control and the DD 

cohort were age- and sex-matched. 

 

The DNA concentration and purity were determined 

using the Qubit dsDNA BR Assay system kit 

(Invitrogen, Karlsruhe, Germany). Bisulfite conversion 

was performed with the EpiTect Fast 96 Bisulfite kit 

(Qiagen, Hilden, Germany). 

 

Droplet digital PCR 

 

ddPCR primers (Supplementary Table 2) for 28S rDNA 

and the human TATA-box binding protein (TBP) gene 

(internal reference) were adopted from Xue et al. (2017) 

[27]. ddPCR was performed exactly as described in our 

previous studies on rDNA CN variation [3, 10]. 

 

Deep bisulfite sequencing 

 

DBS was established according to the BisPCR2 protocol 

[28]. DBS primers (Supplementary Table 3) were 

designed for the human UCE/CP region. To reduce PCR 

errors, the first-round PCR primers have overhangs with 

the adapter sequences that are used to amplify the 

barcoded libraries in the second-round PCR. To 

minimize a PCR bias towards methylated or un-

methylated DNA strands, the primers contain as few 

CpG sites as possible. For the single CpG near the 5´end 

of the forward primer we used a degenerate Y (C or T) 

base to ensure unbiased amplification. The target region 

contained 25 contiguous CpGs and an A/G variant 

(GRCh37; chr13: 999,905) [3, 29]. For downstream 

analyses, only reads (> 95%) representing the major 

variant were considered. 

 

First-round and second-round PCR reactions for DBS 

were performed, as described previously [3, 10]. The 
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PCR cycling conditions were optimized by adjusting the 

annealing temperature. Higher annealing temperatures 

have been shown to improve amplification efficiency 

and reduce PCR bias [30]. In addition, we used a hot-

start Taq DNA polymerase, which is known to reduce 

non-specific amplification. The purified and quantified 

PCR pools were combined into a single final pool for 

sequencing on the NextSeq 2000 platform (Illumina, 

CA, USA), as described previously [3, 10]. Since low-

diversity libraries have a significant number of reads 

with identical sequence, which can shift the base 

composition, the rDNA sequencing library was spiked 

in with 20% PhiX, following the recommendations of 

Illumina. Adding such a high percentage of PhiX 

provided a good base diversity, cluster generation, and 

overall optimal run performance. 

 

Sequencing with the Reagent Kit P1 (300 cycles) 

cartridge (Illumina) yielded 150 bp paired-end reads, 

which were processed using the Illumina BCL Convert 

software version 4.2.7 and analyzed further with 

Amplikyzer2 software [31]. The generated alignment 

files were thoroughly checked to ensure that reads 

containing poly-G sequences (resulting from the lower 

nucleotide diversity of the NextSeq2000) were filtered 

out. 

 

Statistical analysis 

 

IBM SPSS software version 28 and R version 4.4.2. 

were used for statistical analyses. To determine the 

number of rDNA copies with a given methylation value 

the absolute CN (measured by ddPCR) was multiplied 

with the percentage of reads (measured by DBS) in the 

corresponding methylation bin. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. UCE/CP methylation, absolute, and active CN in the control and the DD cohort. The left diagram 

shows the UCE/CP methylation in blood samples of 139 healthy controls (red boxes) and 141 individuals with DD (blue boxes). The middle 
diagram shows the absolute rDNA CN in control and DD individuals. The right diagram compares the number of hypomethylated (0-10%) 
active rDNA TU in both cohorts. The median is presented by a horizontal line. The bottom of the box indicates the 25th and the top the 75th 
percentile. Outliers are indicated by open circles and extreme outliers by stars. The Mann-Whitnex U test did not reveal significant between-
group differences. 
 

 
 

Supplementary Figure 2. Number and methylation distribution of rDNA (UCE/CP) copies in blood samples of 139 healthy 
controls and 141 individuals with DD. Box plots showing the number of rDNA copies (on the Y axis) within a given methylation range. 
Methylation bins representing 0%, 1-10%, 11-20%, 21-30%, 31-40%, 41-50%, and 51-100% are indicated on the X axis. The median is 
presented by a horizontal line. The bottom of the box indicates the 25th and the top the 75th percentile. Outliers are indicated by open circles, 
extreme outliers by stars. In controls 79.8 ± 20.6 (median 78) copies were completely (0%) and 100.1 ± 23.5 (median 95) lowly (1-10%) 
methylated. In individuals with syndromal DD 75.5 ± 15.7 (median 76) copies were completed and 93.7 ± 15.0 (median 94) lowly methylated. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Key clinical findings of DD probands. 

 

Supplementary Table 2. Primers for ddPCR of human rDNA. 

Assay Primer Sequence (5’-3’)a 

28S rDNA 

Forward 5’-AACGTGAGCTGGGTTTAG-3’ 

Reverse 5’-CTCGTACTGAGCAGGATTAC-3’ 

Probe 5’-/5HEX/TGGCAACAA/ZEN/CACATCATCAGT/3IABkFQ/-3’ 

TBP 

Forward 5’-GATATGAGACTGTGGGTAAGT-3’ 

Reverse 5’-GATCCTTTGAACACCCTAATG-3’ 

Probe 5’-/56-FAM/ACAGAGATC/ZEN/ACTGCAGTTGC/3IABkFQ/-3’ 

 

Supplementary Table 3. Primers for deep bisulfite sequencing of the human rDNA promoter (UCE/CP) region. 

Primer Sequence (5’-3’)a Amplicon length Variant Annealing Temp. (° C) No. of CpGs 

Forward TATTYGGAGGTTTAATTTTTTTAG 
239 bp A/G* 56oC 25 

Reverse TATATCCTAAAATTAACCAAAAAACCCC 

* indicates the major allele. 
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