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INTRODUCTION 
 

Over the past few decades, epigenetic research has 

opened up vast potential for applications across many 

biomedical fields. One of these is the ability to infer a 

person’s age from their DNA methylation (DNAm) 

profile at a given time in life [1, 2]. Following the 

original epigenetic clock developed by Horvath [1], 

many fields have adapted such age clocks for their 

particular needs [3–9]. 

 

In forensic genetics, the possibility to predict the age of 

a stain donor from biological material collected at a 

crime scene has received much attention in recent years 

[10, 11]. When traditional approaches like STR 

profiling do not produce a hit in a DNA database, 

phenotype information can help narrow down the pool 

of suspects. Phenotyping includes the prediction of 

externally visible characteristics, such as pigmentation 

traits (eye, hair and skin colour), biogeographic 

ancestry, as well as age estimation which can help to 

determine someone’s appearance. [11, 12]. The analysis 

of DNAm markers is currently the method of choice for 

estimating donor age [13]. 

 

Due to low DNA quality and quantity, which are 

commonly limiting factors in forensic samples [11], 

forensic age estimation tools typically examine only few 

markers and target CpG sites [7, 9, 11, 14–18] compared 

to traditional first- and second- generation epigenetic 

clocks (e.g. Horvath’s clock, Hannum’s clock, 

PhenoAge, GrimAge, etc. [1, 19–24]). Ideally, markers 

for forensic tools should be robust to environmental 

factors, and their methylation patterns highly correlated 

with age. In addition, forensic age estimation tools 

mostly comprise target sites and statistical models that 

are specifically selected and designed for a particular 

forensically relevant body fluid, such as blood or saliva 

[9]. This is due to the cell type and tissue specificity of 

DNAm patterns, which requires the investigation of cell 

type specific target sites to achieve the highest possible 

age estimation accuracy [12]. 
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ABSTRACT 
 

The use of epigenetic clocks for measuring age acceleration in the field of cancer research has been a common 
practice for many years. In forensic genetics, DNA methylation can be used to estimate the age of a stain donor. 
As lifestyle and disease can alter a person’s methylation profile, the accuracy of forensic age estimation tools 
might decrease compared to the chronological age when estimating a person affected by cancer. In our study, 
we applied the VISAGE enhanced age estimation tool on blood samples from cancer patients suffering from a 
variety of cancer entities, including solid and hematologic tumours. A comparison of the age estimation errors 
between the cancer patients (n = 100) and a healthy control cohort (n = 102) revealed small statistically 
significant differences and a tendency towards age acceleration in the blood of these patients. Although this 
study showed that in patients with aggressive cancers (like CLL or AML) estimation accuracy is clearly 
decreased, for most entities the observed differences were subtle and an analysis of individual CpG sites did 
not reveal strikingly different methylation patterns. Conclusively, age estimation on blood stains from cancer 
patients might not result in significantly higher estimation errors, except for very aggressive forms of cancer. 
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DNAm is commonly known to be heavily influenced by 

environmental factors [25, 26]. Other studies have 

shown that e.g. smoking, physical activity or diet as well 

as intrinsic factors like diseases can strongly influence 

the observed DNAm patterns [2, 20, 27–29]. This poses 

a problem for forensic applications as it is crucial that 

the generated age estimation matches the person’s 

chronological age as closely as possible [11]. Therefore, 

influencing factors on DNAm patterns need to be 

addressed as a part of the validation of forensic age 

estimation tools for use in forensic casework. Several 

studies have already investigated different potentially 

influencing factors, such as alcohol consumption or 

smoking, with regard to forensic age estimation tools 

[27, 28, 30]. However, many factors still need to be 

thoroughly elucidated in a forensic context. One of these 

is the influence of cancer. This has been briefly 

addressed in two studies, one showing that the estimated 

age of patients with chronic lymphatic leukaemia (CLL) 

is significantly higher than in healthy controls [30], 

while another study found no differences between 

patients with colorectal cancer aged between 50 and 60 

years [31]. However, a comprehensive investigation of 

different tumours and their potential impact on forensic 

age estimation tools is still missing. 

 

Cancer is the second leading cause of death worldwide 

[32] and is therefore very common in the general 

population. Age is one of the strongest risk factors for 

developing a cancerous disease [33–38]. Thereby, 

molecular mechanisms reflecting the biological aging 

process have been strongly implicated in the 

development and risk of cancer [33]. Among these 

mechanisms, DNAm has long been known to show 

altered patterns in most types of cancer compared to 

healthy tissue [39, 40]. Normally, the majority of CpG 

sites in the human genome are methylated [41] with 

the exception of CpG islands in promotor regions [42–

44]. These patterns are maintained by three 

methyltransferases (DNMT1 for DNAm pattern 

maintenance and DNMT3a and 3b for de novo 

methylation [41]), and ten-eleven translocation (TET) 

proteins, responsible for DNA demethylation [44]. 

However, in cancerous tissue promotor CpG sites of 

tumour suppressor genes tend to be hypermethylated, 

especially when targeted by polycomb protein 

complexes [33, 35, 42, 45], thereby silencing these 

genes. In addition, repetitive elements that are 

normally methylated appear to undergo increasing 

demethylation in cancerous tissue [35, 42, 46]. One of 

the reasons for these aberrant methylation patterns, 

that are actually related to the normal aging process, is 

a decrease in activity of DNMT1 over the course of a 
person’s life. This causes passive demethylation and 

thereby promotes carcinogenesis [42]. In addition, it 

has been proposed that the cumulative number of cell 

divisions over time (another natural event of aging) 

and the resulting alterations in DNAm patterns 

contribute considerably to tumourigenesis [35]. 

 

Due to the increasing body of knowledge about the role 

of DNAm in carcinogenesis as well as its correlation with 

disease progression, numerous studies have investigated 

the possibility of using epigenetic clocks to predict 

disease outcome, treatment success or the development of 

comorbidities [47–52]. For this purpose, first- and 

second- generation epigenetic clocks [1, 19–24] targeting 

100s to 1000s of CpG sites, as well as newly developed 

clocks specifically designed for cancer research [49], 

have been applied to tissue samples (mostly blood) from 

cancer patients. Most of these studies have in common 

that they show an increased biological age compared to 

the chronological age of cancer patients and even reliably 

predict potential secondary conditions (e.g. [52]). In 

addition to the disease itself, therapeutic interventions 

like chemotherapy have been shown to cause lasting 

alterations in DNAm patterns [53]. Even after successful 

treatment and in complete remission, cancer survivors 

might show significant age acceleration. 

 

Although these findings are important advances in the 

field of cancer research, paving the way for new 

potential treatment targets and possibilities for disease 

prediction and intervention [36, 42, 48], alterations in 

the human methylome due to cancer might have 

negative implications for the field of forensic genetics. 

Not only is it crucial that the estimated age corresponds 

as closely to the chronological age as possible, 

independent of any medical condition, but also that the 

inference of health-related information is avoided. As 

forensic age estimation tools use a much smaller 

number of target CpG sites than clinical epigenetic 

clocks [7, 9, 14], cancerous diseases might not at all or 

only occasionally affect exactly these sites. Still, there is 

a possibility to observe higher estimation errors in 

comparison to the respective chronological age caused 

by the influence of cancer and its treatment. 

 

In this study, we apply an existing forensic age 

estimation tool for blood [7] to whole blood samples 

from patients with various tumour types. Our aim is to 

show whether the presence of cancer in different stages 

and the received treatment affect the tested target CpG 

sites and thus the accuracy of this age estimation tool. 

As the latter includes some of the most common 

markers (ELOVL2 [54], KLF14 [55], etc.) and target 

CpG sites used in many forensic age estimation tools, 

our findings will be applicable to the field of 

methylation-based forensic age estimation in general. 
Cancer is an important condition to investigate in this 

context due to its high prevalence in the general 

population and therefore there is an increased likeliness 
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to encounter stain donors affected by some form of 

cancer in forensic casework. Our study is among the 

first to show whether it might be necessary to account 

for the influence of cancer on forensic age estimation 

tools in order to enhance estimation accuracy as much 

as possible. 

 

RESULTS 
 

Study cohort 

 

For the cancer cohort, blood samples were collected from 

100 patients (age range [y] = 25.46 - 93.15, mean = 

65.88) with a variety of malignancies. For each patient, 

the following meta data were enquired: chronological 

age, sex, cancer entity, current cancer stage, current 

treatment and previous treatment (more than 3 months 

ago). Table 1 and Supplementary Table 1 show 

detailed summaries of the cancer cohort meta data. The 

control cohort of this study comprised blood samples 

from 102 individuals collected at the Blood Donation 

Centre Zurich (age range [y] = 20.87 - 73.16, mean = 

46.12) with an even age distribution between the ages of 

20 and 70 years. Each decade included between 18 and 

23 individuals in addition to two individuals over 70 

years of age. The age and sex distribution of the control 

cohort can be found in Supplementary Table 1. 

 

Contrary to the control cohort, the cancer cohort did not 

consist of an even distribution of samples in each age 

category. A statistical comparison of the chronological 

age distribution between the three subgroups showed 

that for both cancer groups, the age distribution was 

statistically significantly different from that of the 

control cohort (Supplementary Table 2). 

 

Age estimation 

 

All blood samples from the entire study cohort were 

estimated with the age estimation tool published by 

Woźniak et al. [7, 11] which requires the methylation 

percentages of six target CpG sites in ELOVL2, 

TRIM59, PDE4C, KLF14, MIR29B2C and FHL2. The 

mean absolute error (MAE), the mean error (ME) and 

root mean square error (RMSE) were used to assess the 

age estimation accuracy within specific subgroups of 

the study cohort. 

 

When the cancer samples were divided into two 

subgroups (hematologic tumours (n = 25) and solid 

tumours (n = 75)), the MAE and RMSE of the solid 

tumours were 4.98 and 6.41 years, whereas the MAE 

and RMSE of the hematologic tumours were 11.14 and 

16.32 years, respectively. In addition, the MAE was 

calculated for all possible subgroups taking into account 

the available meta data (Table 1). The MAE and RMSE 

for all control samples were 2.72 and 3.36 years, 

respectively. A scatterplot depicting the chronological 

vs. the estimated age of all samples (n = 202) was 

generated as well (Supplementary Figure 1). 

 

The absolute errors of the solid tumour group and the 

hematologic tumour groups were statistically 

significantly different from the control cohort (p-value 

solid vs. control = 0.0003; p-value hematologic vs. 

control = 0.00001; Wilcoxon test). 

 

As the control cohort only included individuals up to 

the age of 73 years, and the used age estimation tool 

was developed and tested in individuals below 75 years 

of age [7], all cancer patients in this study over the age 

of 75 years (n = 31) were excluded from most of the 

following analyses. All individuals above 75 years of 

age are discussed individually further below. 

 

Repeating the analysis of MAE and RMSE of the under 

75 (u75) cancer subgroups (n = 69) showed an MAE 

and RMSE of 4.66 and 6.16 years, respectively, for the 

solid cancers (n = 53), and an MAE and RMSE of 7.59 

and 13.54, respectively, for the hematologic cancers (n 

= 16) (Figure 1). 

 

As a result of excluding individuals above 75 years of 

age, the comparison of the absolute errors between the 

cancer subgroups and the control cohort yielded weak 

statistically significant differences (p-value solid vs. 

control = 0.02; p-value hematologic vs. control = 0.03; 

Wilcoxon test). 

 

Because of the lack of age matching between the cancer 

and control groups (u75 cohort), we additionally used 

logistic regression to evaluate whether absolute age 

estimation errors were truly associated with cancer 

status even when controlling for chronological age and 

sex. Disease status (healthy or affected by cancer) was 

used as the dependent variable and absolute estimation 

error, chronological age and sex were used as 

independent variables (Supplementary Table 3). This 

analysis showed that higher age estimation errors were 

not significantly associated with cancer status even after 

adjusting for age and sex, confirming our previous 

results. Chronological age was significantly associated 

with a lower probability of being in the cancer group, 

indicating again the previously reported age-related 

imbalance in the dataset. Additionally, sex was 

observed as a significant predictor which is likely also 

explained by the imbalance of males and females 

present in the study cohort (Supplementary Table 1). 

 
A more detailed analysis of the age estimation errors in 

the different age groups provided additional insight into 

where statistically significant differences between either 
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Table 1. Meta data of the entire study cohort, CT = current treatment, PT = previous treatment. 

Subgroups Subgroups detailed Cancer stage CT PT MAE n 

Controls (n = 102) Healthy Healthy Healthy Healthy 2.72 102 

Hematologic tumours (n = 25) 

Lymphoma Not applicable 

Yes 
Yes 16.00 3 

No 2.86 3 

No 
Yes 4.22 3 

No 8.14 3 

Myeloma Not applicable Yes Yes 7.96 3 

Others Not applicable 

Yes 
Yes 14.36 1 

No 14.74 3 

No 
Yes 20.08 1 

No 16.44 5 

Solid tumours (n = 75) 

Breast 
Stage 1-3 Yes Yes 5.18 7 

Stage 4 Yes Yes 5.43 2 

Gastrointestinal 

Stage 1-3 Yes 
Yes 3.78 16 

No 7.41 10 

Stage 4 Yes 
Yes 4.70 4 

No 3.29 4 

Genitourinary 

Stage 1-3 

Yes 
Yes 3.01 6 

No 4.29 2 

No 
Yes 0.46 1 

No 0.71 1 

Stage 4 
Yes 

Yes 11.54 1 

No 2.30 3 

No Yes 0.02 1 

Lung 

Stage 1-3 Yes 
Yes 3.84 4 

No 7.10 1 

Stage 4 No 
Yes 7.59 1 

No 2.55 1 

Prostate Stage 1-3 Yes 
Yes 7.63 9 

No 11.92 1 

 

of the two case groups (solid tumours and hematologic 

tumours) and the control cohort could be found (Table 2). 

In short, when comparing the control group and the solid 

tumour group, statistical differences in age estimation 

errors (p-value = 0.0352, Wilcoxon test) were found only 

in the 30 - 39 years age category. When comparing the 

hematologic tumour group with the control group, only 

the age category 50 - 59 years showed statistically 

significant differences in age estimation errors (p-value = 

0.007, Wilcoxon test). A summary of the percentage of 

samples in the solid or hematologic tumour subgroups 

with age estimation errors above the MAE or RMSE 

value of the control cohort in the respective age category 

can be found in Supplementary Table 4. 

 

Two outliers (more than 15 years age estimation error) 

in the hematologic tumour subgroup were visually 

identified (chronological age = 50.95 years and 72.70 

years, Figure 1). When excluding these samples from 

the hematologic tumour group, an overall MAE of 3.86 

was obtained. A comparison between the control cohort 

and the hematologic tumour group without these two 

outliers revealed a p-value of 0.13 (Wilcoxon test). In 

the analysis of the individual age decades, excluding the 

outliers resulted in a change of p-values in the groups 

50 – 59 years (p-value = 0.047) and 70 – 75 years  

(p-value = 0.67). 

 

Mean errors were calculated in addition to the MAE per 

age decade in order to evaluate whether chronological 

age was predominantly over- or underestimated in the 

two cancer subgroups (Supplementary Table 5). While 

most of the solid tumour patients’ age was slightly 

underestimated, age of the hematologic patients was 

mostly overestimated. 

 

Methylation pattern analysis of target CpG sites 

 

The methylation patterns of the six target CpG sites of 

the used age estimation tool were investigated to 
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identify biological differences between the control and 

cancer groups at a CpG site-specific level. 

 

First, principal components (PCs) generated on beta 

values normalized for chronological age and their 

association with available meta data variables were 

assessed for both the entire cohort and the reduced u75 

cohort (Figure 2). In the entire cohort, it is clearly 

visible that PC1 was the most affected of the first six 

PCs and that chronological age had the strongest 

influence (p-value = 2.29 × 10-79, R2 = 0.83). Still, all 

other variables except sex also had at least a moderate 

effect on PC1. When looking at the u75 cohort, the strong 

influence of chronological age on PC1 persisted (p-value 

= 2.64 × 10-70, R2 = 0.84), while all other variables 

showed weaker associations with this and all other PCs. 

 

In addition, principal component analysis (PCA) plots 

were generated to investigate whether normalized beta 

values clustered according to any available meta data. 

No clear clustering was found between controls and 

cancer cases, treatment or cancer stage (Supplementary 

Figure 2). 

 

Further evidence for only weak differences between 

methylation beta values of the control and cancer 

subgroups, independent of cancer, stage or treatment 

was obtained by a heat map (Figure 3). Methylation 

beta values were statistically adjusted for the 

respective chronological age via linear regression. 

Only two cancer patients (one solid cancer and one 

hematologic cancer) were identified to have 

considerably different beta values in the MIR29B2C 

target site. One of them even clustered apart from all 

other samples. 

 

Outliers 

 

As can be seen from both the age estimation scatterplot 

(Figure 1) and the beta value heat map (Figure 3), three 

 

 
 

Figure 1. Age estimates of the u75 study cohort and control samples. Solid tumours are depicted in magenta (n = 53), hematologic 

tumours in blue (n = 16) and the control cohort in grey (n = 102). R2 of each subgroup are depicted in the upper left corner. Two outliers were 
identified visually. The grey dotted line is the line of identity. MAE in years: 4.66 (solid tumours), 7.59 (hematologic tumours), 2.72 (control 
cohort). 
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Table 2. MAEs/RMSEs per age category in each sample subgroup (SvsC = solid tumours vs control group; HvsC = 
hematologic tumours vs. control group). 

Age categories [y] Control cohort Solid tumours Hematologic tumours p-value SvsC p-value HvsC 

20.0 – 29.9 2.49 / 2.91 (n = 18) 1.56 / 1.56 (n = 1) - 0.632 - 

30.0 – 39.9 2.21 / 2.77 (n = 20) 0.68 / 0.80 (n = 5) 2.05 / 2.06 (n = 2) 0.035* 1.000 

40.0 – 49.9 2.13 / 2.73 (n = 23) 1.07 / 1.10 (n = 2)  4.65 / 5.34 (n = 3) 0.540 0.134 

50.0 – 59.9 3.07 / 3.76 (n = 21) 3.34 / 4.33 (n = 13) 20.50 / 27.90 (n = 3)  0.917 0.007* 

60.0 – 69.9 3.90 / 4.47 (n = 18) 5.87 / 7.07 (n = 21) 2.40 / 2.78 (n = 5)  0.213 0.257  

70.0 – 74.9 2.49 / 2.47 (n = 2) 6.67 / 8.03 (n = 11)  9.95 / 12.40 (n = 3)  0.410 0.400 

> 75 - 5.73 / 6.99 (n = 22)  17.40 / 20.40 (n = 9) - - 

* p-value < 0.05. 

 

cases in the u75 cohort behaved differently from all 

other samples and had age estimation errors greater than 

15 years. Firstly, Cancer033, a solid gastrointestinal 

tumour, and Cancer042, a CLL, displayed observable 

differences in the beta value of the MIR29B2C  

target site. This was also reflected in the respective  

age estimates, with Cancer042 in particular being 

overestimated by almost 50 years (chronological age 

[y]: 51.0, estimated age [y]: 98.2) and Cancer033 being 

overestimated by almost 20 years (chronological age 

[y]: 65.7, estimated age [y]: 83.1). Cancer111, another 

CLL, did not show noticeable differences in beta values 

in the heat map, but its age estimate exceeded the 

chronological age by 20 years (chronological age [y]: 

72.7, estimated age [y]: 92.8). 

Cancer patients above 75 years of age 

 

All cancer patients older than 75 years of age (n = 31), 

who had been excluded from the previous analyses, 

were reinvestigated separately for significantly different 

methylation beta values in the six investigated target 

CpG sites. 

 

For this purpose, another heat map was generated using 

the age-corrected beta values of these 31 patients 

(Figure 4). Although no clear clustering was observed, 

it is noteworthy that the hematologic tumours seem to 

be slightly more similar in their beta values than the 

solid tumours. Interestingly, two hematologic cases 

(Cancer022 and Cancer041), both suffering from an 

 

 
 

Figure 2. Variable association of stage, sex, previous treatment, current treatment, control vs. all cancer patients, control vs. 
two subgroups (solid and hematologic tumours) and chronological age with principal components (PC) 1 to 6. * p-value ≤ 0.05, 
** p-value ≤ 0.01, *** p-value ≤ 0.001. 
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acute myeloid leukaemia (AML), clustered apart from 

all other samples. 

 

Methylation pattern analysis of all sequenced CpG 

sites 

 

To get a comprehensive picture of the methylation 

patterns at all CpG sites (n = 44) within the amplicons 

sequenced with this age estimation tool, the variable 

association and heat map was repeated on this extended 

data in the u75 cohort. The variable association with the 

different PCs (Supplementary Figure 3) again revealed 

that chronological age is most associated with the first 

six PCs. 

 

The heat map revealed one case that clustered apart 

from all other cancer cases and controls, namely 

Cancer042, which already clustered separately in the 

previous analysis of only the six target CpG sites 

(Supplementary Figure 4). 

 

 
 

Figure 3. Heat map of the six target CpG sites used in the age estimation tool in the u75 cohort and controls. Methylation beta 

values are adjusted for chronological age. The labels on the x-axis refer to the respective target CpG site in each marker. The two cancer 
patients Cancer033 and Cancer042 in the two top rows showed a differential methylation in the MIR29B2C target CpG site. Red colouring 
indicates higher beta values and blue colouring indicates lower beta values. Rows indicating samples from the three subgroups are indicated 
in grey (control cohort), blue (solid tumours) or magenta (hematologic tumours). 
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In addition, volcano plots were generated for the  

u75 cohort on the data of all 44 sequenced CpG  

sites, normalized for chronological age (Figure 5).  

The cancer cohort was again divided into solid  

and hematologic tumours for a more discriminative 

analysis of differentially methylated sites in the  

two different subgroups of malignancies. For neither 

of the two comparisons (solid vs. controls and 

hematologic vs. controls) differentially methylated 

sites were found. 

 

 
 

Figure 4. Heat map of the six target CpG sites used in the age estimation tool in all cancer patients older than 75 years. 
Methylation beta values are adjusted for chronological age. The labels of the x-axis refer to the respective target CpG site in each marker. 
Cancer022 (called Hematologic_4) and Cancer041 (called Hematologic_12) are the two bottom rows, clustering apart from all other samples. 
Red colouring indicates higher beta values and blue colouring indicates lower beta values. 
 

 
 

Figure 5. Volcano plots of differentially methylated sites in the u75 cohort. Hypomethylation is defined as delta beta values below -
0.1 and p-values below 0.05 and hypermethylation as delta beta values above 0.1 and p-values below 0.05. (A) shows no differentially 
methylated sites between the control cohort and the solid tumours. (B) shows no differentially methylated sites between the control cohort 
and the hematologic tumours. 
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DISCUSSION 
 

In this study, we aimed to show whether a typical 

DNAm-based forensic age estimation tool (few target 

CpG sites in strong age-associated markers) is affected 

by various cancer entities, their stage or treatment. 

Although numerous clinical studies have already 

investigated the effect of different types of malignant 

tumours on epigenetic clock measurements and how 

this can be exploited for clinical purposes, this study  

is, to the best of our knowledge, the first to 

comprehensively investigate whether forensic age 

estimation tools are affected by a range of tumour types. 

 

As the aim of age estimation of a stain donor in a forensic 

context is always to estimate the chronological age of the 

person in question as accurately as possible [11], it is 

crucial to know which factors influence age estimation 

accuracy and to what extent [27, 28]. In the field of 

forensic genetics, it is often not possible or even 

forbidden to obtain knowledge about potential health 

problems of a given stain donor. For forensic age 

estimation tools, the only important characteristic is a 

high accuracy of the obtained age estimates. Due to the 

extensive amount of research done in the field of cancer 

and epigenetics, there is already a lot of evidence that 

cancerous diseases cause larger discrepancies between 

chronological and estimated age in epigenetic clocks  

like Horvath’s original clock [1, 2] or other second- 

generation clocks (GrimAge, PhenoAge, etc. [19–21]). 

Consequently, it can be assumed that the DNAm patterns 

investigated with forensic age estimation tools should 

also be influenced by cancerous diseases. This has indeed 

already been shown in a study investigating the DNAm 

signature of patients with hematologic malignancies [30]. 

 

For this study, we compared the age estimates of 100 

patients with different cancer entities with a control 

group of 102 healthy individuals. It is noteworthy that the 

healthy control cohort was collected at a blood donation 

center, indicating that this cohort might have been 

slightly fitter and healthier than an average snapshot of 

the general population (no diseases, no sickness, good 

general condition). Within the cancer cohort, we 

excluded 31 patients with a chronological age above 75 

years, not only because of the statistical model developed 

for u75 individuals [7], but also because this age group (> 

75 years) is not considered the primary target age  

group in a forensic context. A distinction within the u75 

cancer patients between solid tumours (comprising 

breast, gastrointestinal, genitourinary, lung and prostate 

tumours) and hematologic tumours (including lympho-

mas, myelomas and all other hematologic malignancies) 

revealed a slight statistically significant difference 

between the estimation errors of these two groups (solid 

tumours MAE [y]: 4.66, p-value = 0.02; hematologic 

tumours MAE [y]: 7.59, p-value = 0.03) and the control 

cohort (MAE [y]: 2.72). To better understand where the 

small statistically significant differences occur, an 

analysis of the age estimation errors in different age 

categories was performed. This showed that in each of 

the two comparisons (solid tumours vs. controls, 

hematologic tumours vs. controls) statistically significant 

differences were only observed in one particular age 

decade. Specifically, in the age decade of 30 - 39 years, 

age estimation errors were significantly lower in the solid 

tumour group than in the control group. In the age decade 

of 50 - 59 years, age estimation errors were significantly 

higher in the hematologic tumour group than in the 

control group. These statistically significant differences 

in the 50 - 59 age decade persisted even when the two 

previously identified outliers were excluded. However, it 

is noteworthy that the number of samples differed 

considerably between the control group and the solid or 

hematologic tumour groups in both age decades, where 

statistically significant differences in the age estimation 

error were observed. It is therefore possible that these 

differences are a stochastic observation. Larger sample 

sizes would be needed to get a fully accurate and reliable 

picture of how different the age estimates in these two 

age decades really are. 

 

Interestingly, an analysis of the ME instead of the MAE 

showed that the age of solid tumour patients was 

predominantly underestimated, while the age of 

hematologic tumour patients was mostly overestimated. 

For solid tumour patients, these findings are 

counterintuitive and more samples, especially in 

younger patients, would be needed to evaluate whether 

this trend persists. For hematologic tumour patients, a 

slight age acceleration seems logical and is in line with 

previous research [30]. 

 

Within the solid tumour group, the variance in age 

estimates was relatively small with an R2 of 0.80, while 

the hematologic group had a much smaller R2 (0.39). 

This was likely caused by the two outliers identified in 

the hematologic subgroup. Their ages were overestimated 

by approximately 20 and 50 years, respectively. This is 

considerably higher than the other estimation errors, 

which ranged from 0.40 to 8.27 years in the u75 

hematologic subgroup. Both patients suffer from CLL. In 

this form of leukaemia, B lymphocytes accumulate in the 

peripheral blood, bone marrow and secondary lymphoid 

tissues [56, 57]. It is the most prevalent form of 

leukaemia in adults in the western world [56]. As 

methylation patterns have previously been shown to 

contribute to CLL disease outcome [57], this could 

explain the observed high age estimation errors, which 
may be caused by underlying differential methylation 

patterns in both patients. Interestingly, an exclusion of 

these two outliers resulted in a non-statistically 
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significant p-value (0.13) for the comparison of age 

estimation errors between the hematologic tumour group 

and controls. Notably, these two individuals were the 

only CLL patients in our u75 cancer cohort. However, 

given the prevalence of this entity it was considered 

important to include these samples in the overall analysis 

of the u75 hematologic tumour subgroup. The inclusion 

of more CLL cases might have strengthened the observed 

tendency towards age overestimation especially in this 

entity, as previously reported in [30], and should be 

considered in future studies. 

 

Given the large body of clinical literature identifying age 

overestimation (often referred to as age acceleration) in 

cancer patients [20, 21, 47, 50, 51, 58], it is not surprising 

that our study also found at least weak evidence of age 

acceleration in cancer patients. To get a better 

understanding of the effects of cancer on the here used 

age estimation tool, several analyses were performed on 

the raw methylation beta values in order to see whether 

changes at a CpG site level could be identified. 

Interestingly, such changes in response to either 

environmental factors or disease-related interventions 

have been occasionally observed before in some of the 

here investigated markers. For instance, MIR29B2C was 

shown to be hypermethylated in recipients of allogeneic 

hematopoietic stem cell transplantation [59], while 

methylation in PDE4C was reduced through a low-fat 

diet [60]. TRIM59 and KLF14, on the other hand, appear 

to be hypermethylated in elite athletes [61]. In our study, 

methylation of the six target CpG sites did not seem to 

differ in the u75 cohort between the two cancer subgroups 

or the control cohort, regardless of cancer entity, stage or 

treatment. There were again two exceptions, one cancer 

case that had already been previously identified due to its 

50-year absolute estimation error and another case, a 

gastrointestinal tumour, whose methylation pattern 

differed slightly at one of the six target CpG sites 

compared to all other samples. Generally, it is most likely 

that too few target CpG sites were examined with this age 

estimation tool to capture highly altered methylation 

patterns and a broader analysis of a large number of CpG 

sites would be required to observe significant alterations. 

 

The age estimation tool used for this study does not 

allow an exhaustive analysis of the human methylome 

due to the limited number of sequenced genomic 

regions (eight amplified regions in the genes ELOVL2, 

TRIM59, FHL2, PDE4C, MIR29B2C, EDARADD, 

KLF14 and ASPA [7]). Still, all available sequenced 

CpG sites (n = 44, including the six target CpG sites of 

the age estimation model) were also examined to see 

whether an extended analysis might provide further 
insights into the effect of cancer, its stage or its 

treatment. Considering that all eight genes or their 

associated proteins [62–69] have been reported to be 

involved in tumourigenesis, it was assumed that at least 

some of these markers might show differential 

methylation at several of their CpG sites. However, 

similar to the investigation of the six target CpG sites, 

all 44 available sites showed only minor differences in 

methylation patterns in a heat map between controls and 

cancer patients. Interestingly, these results were 

supported by a volcano plot analysis of beta values 

normalized for chronological age. No hyper- or 

hypomethylated CpG sites were identified in the solid 

tumour or the hematologic tumour subgroup when 

comparing them to the control cohort. It is possible that 

the standard definition of differential methylation used 

here (delta beta values above 0.1/below -0.1 and p-

values below 0.05) was too stringent for this cohort. In 

addition, the individual CpG sites might have only been 

slightly affected by cancer, resulting in significant 

differences in the estimation accuracy between  

the groups while still not observing significantly 

differentially methylated CpG sites. 

 

In the analysis of all 44 available CpG sites, only one 

cancer case stood out in the heat map analysis. This 

case was already identified as being an outlier due to its 

absolute age estimation error of 50 years. As described 

above, this patient suffers from CLL. Considering that 

the influence of CLL on methylation has been suggested 

to be rather heterogeneous between patients [57], this 

might be the reason why this observed difference in 

methylation pattern was only present in one CLL case 

in our study cohort and not in both. 

 

The initial cohort of this study also included samples 

from 31 cancer patients aged between 75 and 95 years. 

These samples were excluded from most of the analyses 

for several reasons. Firstly, the control cohort did not 

include individuals above the age of 75, therefore, a 

direct comparison between the control and cancer 

cohorts would not have been possible. Secondly, the 

training cohort of the used statistical age estimation 

model did not include individuals older than 75 years 

[7], therefore the model is not calibrated for accurately 

estimating age in older individuals. Lastly, methylation 

patterns are known to become increasingly variable in 

the elderly due to the accumulation of environmental and 

genetic factors [11, 13]. Therefore, in a cohort of 

individuals above 75 years of age, it becomes very 

difficult to distinguish between an increased variability 

in estimation accuracy due to old age or other factors 

such as cancer burden. Still, a preliminary analysis of 

these 31 cancer patients revealed two patients in 

particular whose methylation patterns were considerably 

different at some of the six target CpG sites compared to 
the remaining 29 cases. Both patients suffer from AML, 

which is caused by uncontrolled proliferation of clonal 

hematopoietic cells. With a very rapid progression and a 
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5-year overall survival prognosis of only around 30 % 

[70, 71], we speculate that such an aggressive tumour 

might be able to affect many more CpG sites in the 

genome than other tumours, including those analysed 

with the here used age estimation tool. 

 

Although this study provides a more comprehensive 

analysis of the influence of cancer on forensic age 

estimation tools than previous studies, there are some 

noteworthy limitations. It was difficult to obtain 

samples for the cancer cohort from individuals under 

the age of 40 years. Although our cancer cohort 

included individuals from the age of 25 years onwards, 

more samples from older individuals were available 

which skewed even the u75 cohort towards older ages 

compared to the control cohort (mean chronological age 

u75 cancer cohort = 59.37 years, mean chronological 

age control cohort = 46.12 years). In addition, this study 

aimed at investigating as many different cancer entities 

as possible. Consequently, the hematologic tumour 

subgroup was considerably smaller than the solid 

tumour subgroup. More samples in this group as well as 

in the solid tumour group might have led to more 

pronounced statistically significant differences in age 

estimates between the cancer groups and the controls. 

 

In conclusion, this study has shown that forensic age 

estimation tools, when including the same markers and 

target sites as those investigated here, will likely reflect 

age acceleration caused by cancer. If an age estimation 

tool is unknowingly used on a stain from a cancer 

patient, the estimation accuracy might be slightly 

reduced compared to healthy individuals. However, our 

study only reports a small increase in estimation error in 

all entities except for highly aggressive cancers 

(represented by CLLs and AMLs in this study). 

Therefore, it might be an option to mention extreme 

medical conditions like aggressive hematologic tumours 

as potential limitations in a case report without 

requiring any further adaptations. This study is in line 

with previous studies that investigated environmental 

influences on the accuracy of forensic age estimation 

tools and have shown that the here targeted markers are 

relatively robust against such influences. Conclusively, 

this study contributes to the growing body of knowledge 

on factors influencing forensic age estimation and may 

provide guidance for casework applications. 

 

MATERIALS AND METHODS 
 

Study cohort and sample collection 

 

The cancer cohort of this study consisted of venous 

blood samples from 100 participants with various 

cancerous diseases, collected during routine check-ups 

at the Onkozentrum Zurich, Switzerland (age range [y] 

= 25.46 - 93.15, mean = 65.88; n male = 56, n female = 

44). For the control cohort, venous blood was collected 

from 102 healthy participants during blood donations at 

the Blood Donation Centre Zurich, Switzerland (age 

range [y] = 20.87 - 73.16, mean = 46.12; n male = 78, n 

female = 24). In order to be considered for blood 

donation, blood donors must not have a current 

malignancy and, in case of past occurrences of a 

malignancy, must have been declared cured for at least 

five years. Individuals with a hematologic tumour (past 

or present) are excluded from donating blood. All blood 

samples were stored at -20° C until DNA extraction. 

 

Ethical approval 

 

This study was approved by the Ethics Committee of 

the University of Zurich (BASEC-No. 2023-00196) and 

all participants from the Onkozentrum Zurich provided 

an informed consent. Participants in the healthy control 

cohort had provided a general consent at the time of 

blood donation to the general use of their samples for 

research. All samples were anonymized. For the cancer 

cohort, information on the cancer entity, current 

treatment, previous treatment, chronological age and 

sex was collected. For the control cohort, only 

chronological age and sex were known. 

 

DNA extraction, DNA quantification and bisulfite 

conversion 

 

300 µl of blood per individual were extracted with the 

Promega Maxwell® RSC48 instrument (Promega, 

Madison, WI, USA) according to the Maxwell RSC 

Whole Blood DNA protocol. DNA quantity was 

measured with the Quantus Fluorometer (Promega) and 

then bisulfite conversion was performed on 100 ng of 

extracted DNA with the MethylEdge® Bisulfite 

Conversion System (Promega). 

 

Library preparation and sequencing 

 

Sequencing of all samples was performed as published 

by Woźniak et al. [7]. 8 µl of bisulfite converted DNA 

was used in the multiplex PCR reaction. Paired-end 

sequencing of 201 cycles was performed for all samples 

with a MiSeq FGx Reagent Micro or MiSeq FGx 

Reagent kit (Qiagen, Hilden, Germany) on a MiSeq FGx 

instrument (Illumina, San Diego, CA, USA). Sequence 

alignment from the fastq files was done with a custom 

Python script using the bwa aligner for bisulfite-treated 

sequences [72]. Bam files were created and indexed with 

Samtools [73, 74]. Read counts were extracted from the 

bam files based on unmerged reads. For the calculation 
of the age estimates, the dongle containing the VISAGE 

software, that is available on request from the VISAGE 

consortium, was used [11]. Run quality was assessed 
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with custom R scripts checking for: 1) bisulfite 

conversion efficiency ≥ 90 %, 2) base misincorporation 

rate ≤ 2 %, 3) read depth of at least 1000 reads at each 

target site, and 4) a visual inspection of the alignment in 

the Integrative Genomics Viewer (IGV) [75]. 

 

Data analysis 

 

Data analysis was performed in R. Beta values at the 

target sites were calculated by dividing the reads 

corresponding to the methylated cytosines by the sum of 

the methylated and unmethylated reads. Age estimates 

were generated with the statistical model for blood [7]. 

PCA plots on the beta values of the target sites, 

normalized for chronological age with the lm function 

from the package stats [76], were generated with the R 

function prcomp [76] and heat maps were generated with 

the package pheatmap [77]. Statistical comparisons and 

graphical representations were performed with the R 

packages stats, ggplot2 and tidyverse [76, 78, 79]. 
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leukaemia; CpG: 5’-cytosine-phosphate-guanine-3’; CT: 

current treatment; DNAm: DNA methylation; PT: 

previous treatment; y: years. 

 

AUTHOR CONTRIBUTIONS 
 

C.H., J.N. and C.S. conceived this study. D.H. helped 

recruiting cancer patients for this study. C.S. performed 

all laboratory work and data analysis with contributions 

from D.H. C.S. prepared the original draft of the 

manuscript. C.H., J.N. and D.H. shaped the final version 

of the manuscript. All authors approved the final 

manuscript. 

 

ACKNOWLEDGMENTS 
 

We thank Christoph Renner, Laura Alvarez, Daniela 

Egli, Saskia Hendrich, Ursula Bisang, Panagiotis 

Samaras, Urs Huber, Jonas Kloepper and Ulf Petrausch 

at the Onkozentrum Zurich for their help in collecting 

samples. We further thank all sample donors for their 

participation in this study. 

 

CONFLICTS OF INTEREST 
 

The authors declare no conflicts of interest. 

 

ETHICAL STATEMENT AND CONSENT 
 

This study was approved by the Ethics Committee of 

the University of Zurich (BASEC-No. 2023-00196) and 

all participants from the Onkozentrum Zurich provided 

an informed consent. Participants in the healthy control 

cohort had provided a general consent at the time of 

blood donation to the general use of their samples for 

research. All samples were anonymized. 

 

FUNDING 
 

The authors express their gratitude to the Emma Louise 

Kessler Foundation that supported this study. 

 

REFERENCES 
 
1. Horvath S. DNA methylation age of human tissues and 

cell types. Genome Biol. 2013; 14:R115. 
 https://doi.org/10.1186/gb-2013-14-10-r115 

PMID:24138928 

2. Horvath S, Raj K. DNA methylation-based biomarkers 
and the epigenetic clock theory of ageing. Nat Rev 
Genet. 2018; 19:371–84. 

 https://doi.org/10.1038/s41576-018-0004-3 
PMID:29643443 

3. Duan R, Fu Q, Sun Y, Li Q. Epigenetic clock: A promising 
biomarker and practical tool in aging. Ageing Res Rev. 
2022; 81:101743. 

 https://doi.org/10.1016/j.arr.2022.101743 
PMID:36206857 

4. Martínez-Magaña JJ, Hurtado-Soriano J, Rivero-Segura 
NA, Montalvo-Ortiz JL, Garcia-delaTorre P, Becerril-
Rojas K, Gomez-Verjan JC. Towards a Novel Frontier in 
the Use of Epigenetic Clocks in Epidemiology. Arch 
Med Res. 2024; 55:103033. 

 https://doi.org/10.1016/j.arcmed.2024.103033 
PMID:38955096 

5. Tomusiak A, Floro A, Tiwari R, Riley R, Matsui H, 
Andrews N, Kasler HG, Verdin E. Development of an 
epigenetic clock resistant to changes in immune cell 
composition. Commun Biol. 2024; 7:934. 

 https://doi.org/10.1038/s42003-024-06609-4 
PMID:39095531 

6. Morales Berstein F, McCartney DL, Lu AT, Tsilidis KK, 
Bouras E, Haycock P, Burrows K, Phipps AI, Buchanan 
DD, Cheng I, Martin RM, Davey Smith G, Relton CL,  
et al, and PRACTICAL consortium. Assessing the causal 
role of epigenetic clocks in the development of 
multiple cancers: a Mendelian randomization study. 
Elife. 2022; 11:e75374. 

 https://doi.org/10.7554/eLife.75374  
PMID:35346416 

7. Woźniak A, Heidegger A, Piniewska-Róg D, Pośpiech E, 
Xavier C, Pisarek A, Kartasińska E, Boroń M, Freire-
Aradas A, Wojtas M, de la Puente M, Niederstätter H, 
Płoski R, et al, and VISAGE Consortium. Development 
of the VISAGE enhanced tool and statistical models for 

https://doi.org/10.1186/gb-2013-14-10-r115
https://pubmed.ncbi.nlm.nih.gov/24138928
https://doi.org/10.1038/s41576-018-0004-3
https://pubmed.ncbi.nlm.nih.gov/29643443
https://doi.org/10.1016/j.arr.2022.101743
https://pubmed.ncbi.nlm.nih.gov/36206857
https://doi.org/10.1016/j.arcmed.2024.103033
https://pubmed.ncbi.nlm.nih.gov/38955096
https://doi.org/10.1038/s42003-024-06609-4
https://pubmed.ncbi.nlm.nih.gov/39095531
https://doi.org/10.7554/eLife.75374
https://pubmed.ncbi.nlm.nih.gov/35346416


www.aging-us.com 13 AGING 

epigenetic age estimation in blood, buccal cells and 
bones. Aging (Albany NY). 2021; 13:6459–84. 

 https://doi.org/10.18632/aging.202783 
PMID:33707346 

8. Naue J, Hoefsloot HC, Mook OR, Rijlaarsdam-Hoekstra 
L, van der Zwalm MC, Henneman P, Kloosterman AD, 
Verschure PJ. Chronological age prediction based on 
DNA methylation: Massive parallel sequencing and 
random forest regression. Forensic Sci Int Genet. 2017; 
31:19–28. 

 https://doi.org/10.1016/j.fsigen.2017.07.015 
PMID:28841467 

9. Jung SE, Lim SM, Hong SR, Lee EH, Shin KJ, Lee HY. DNA 
methylation of the ELOVL2, FHL2, KLF14, C1orf132/ 
MIR29B2C, and TRIM59 genes for age prediction from 
blood, saliva, and buccal swab samples. Forensic Sci Int 
Genet. 2019; 38:1–8. 

 https://doi.org/10.1016/j.fsigen.2018.09.010 
PMID:30300865 

10. Castagnola MJ, Medina-Paz F, Zapico SC. Uncovering 
Forensic Evidence: A Path to Age Estimation through 
DNA Methylation. Int J Mol Sci. 2024; 25:4917. 

 https://doi.org/10.3390/ijms25094917 
PMID:38732129 

11. Kayser M, Branicki W, Parson W, Phillips C. Recent 
advances in Forensic DNA Phenotyping of appearance, 
ancestry and age. Forensic Sci Int Genet. 2023; 
65:102870. 

 https://doi.org/10.1016/j.fsigen.2023.102870 
PMID:37084623 

12. Refn MR, Kampmann ML, Morling N, Tfelt-Hansen J, 
Børsting C, Pereira V. Prediction of chronological age 
and its applications in forensic casework: methods, 
current practices, and future perspectives. Forensic Sci 
Res. 2023; 8:85–97. 

 https://doi.org/10.1093/fsr/owad021 PMID:37621446 

13. Freire-Aradas A, Phillips C, Lareu MV. Forensic 
individual age estimation with DNA: From initial 
approaches to methylation tests. Forensic Sci Rev. 
2017; 29:121–44. 

 PMID:28691915 

14. Aliferi A, Sundaram S, Ballard D, Freire-Aradas A, 
Phillips C, Lareu MV, Court DS. Combining current 
knowledge on DNA methylation-based age estimation 
towards the development of a superior forensic DNA 
intelligence tool. Forensic Sci Int Genet. 2022; 
57:102637. 

 https://doi.org/10.1016/j.fsigen.2021.102637 
PMID:34852982 

15. Freire-Aradas A, Pośpiech E, Aliferi A, Girón-Santamaría 
L, Mosquera-Miguel A, Pisarek A, Ambroa-Conde A, 
Phillips C, Casares de Cal MA, Gómez-Tato A, Spólnicka 
M, Woźniak A, Álvarez-Dios J, et al. A Comparison of 

Forensic Age Prediction Models Using Data From Four 
DNA Methylation Technologies. Front Genet. 2020; 
11:932. 

 https://doi.org/10.3389/fgene.2020.00932 
PMID:32973877 

16. Pisarek A, Pośpiech E, Heidegger A, Xavier C, Papież A, 
Piniewska-Róg D, Kalamara V, Potabattula R, Bochenek 
M, Sikora-Polaczek M, Macur A, Woźniak A, Janeczko J, 
et al. Epigenetic age prediction in semen - marker 
selection and model development. Aging (Albany NY). 
2021; 13:19145–64. 

 https://doi.org/10.18632/aging.203399 
PMID:34375949 

17. Aliferi A, Ballard D, Gallidabino MD, Thurtle H, Barron 
L, Syndercombe Court D. DNA methylation-based age 
prediction using massively parallel sequencing data 
and multiple machine learning models. Forensic Sci Int 
Genet. 2018; 37:215-226. 

 https://doi.org/10.1016/j.fsigen.2018.09.003 
PMID:30243148 

18. Heidegger A, Xavier C, Niederstätter H, de la Puente M, 
Pośpiech E, Pisarek A, Kayser M, Branicki W, Parson W, 
and VISAGE Consortium. Development and 
optimization of the VISAGE basic prototype tool for 
forensic age estimation. Forensic Sci Int Genet. 2020; 
48:102322. 

 https://doi.org/10.1016/j.fsigen.2020.102322 
PMID:32574993 

19. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, 
Sadda S, Klotzle B, Bibikova M, Fan JB, Gao Y, Deconde 
R, Chen M, Rajapakse I, et al. Genome-wide 
methylation profiles reveal quantitative views of 
human aging rates. Mol Cell. 2013; 49:359–67. 

 https://doi.org/10.1016/j.molcel.2012.10.016 
PMID:23177740 

20. Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, 
Bandinelli S, Hou L, Baccarelli AA, Stewart JD, Li Y, 
Whitsel EA, Wilson JG, Reiner AP, et al. An epigenetic 
biomarker of aging for lifespan and healthspan. Aging 
(Albany NY). 2018; 10:573–91. 

 https://doi.org/10.18632/aging.101414 
PMID:29676998 

21. McCrory C, Fiorito G, Hernandez B, Polidoro S, 
O’Halloran AM, Hever A, Ni Cheallaigh C, Lu AT, 
Horvath S, Vineis P, Kenny RA. GrimAge Outperforms 
Other Epigenetic Clocks in the Prediction of Age-
Related Clinical Phenotypes and All-Cause Mortality. J 
Gerontol A Biol Sci Med Sci. 2021; 76:741–9. 

 https://doi.org/10.1093/gerona/glaa286 
PMID:33211845 

22. McGreevy KM, Radak Z, Torma F, Jokai M, Lu AT, 
Belsky DW, Binder A, Marioni RE, Ferrucci L, Pośpiech 
E, Branicki W, Ossowski A, Sitek A, et al. DNAmFitAge: 

https://doi.org/10.18632/aging.202783
https://pubmed.ncbi.nlm.nih.gov/33707346
https://doi.org/10.1016/j.fsigen.2017.07.015
https://pubmed.ncbi.nlm.nih.gov/28841467
https://doi.org/10.1016/j.fsigen.2018.09.010
https://pubmed.ncbi.nlm.nih.gov/30300865
https://doi.org/10.3390/ijms25094917
https://pubmed.ncbi.nlm.nih.gov/38732129
https://doi.org/10.1016/j.fsigen.2023.102870
https://pubmed.ncbi.nlm.nih.gov/37084623
https://doi.org/10.1093/fsr/owad021
https://pubmed.ncbi.nlm.nih.gov/37621446
https://pubmed.ncbi.nlm.nih.gov/28691915
https://doi.org/10.1016/j.fsigen.2021.102637
https://pubmed.ncbi.nlm.nih.gov/34852982
https://doi.org/10.3389/fgene.2020.00932
https://pubmed.ncbi.nlm.nih.gov/32973877
https://doi.org/10.18632/aging.203399
https://pubmed.ncbi.nlm.nih.gov/34375949
https://doi.org/10.1016/j.fsigen.2018.09.003
https://pubmed.ncbi.nlm.nih.gov/30243148
https://doi.org/10.1016/j.fsigen.2020.102322
https://pubmed.ncbi.nlm.nih.gov/32574993
https://doi.org/10.1016/j.molcel.2012.10.016
https://pubmed.ncbi.nlm.nih.gov/23177740
https://doi.org/10.18632/aging.101414
https://pubmed.ncbi.nlm.nih.gov/29676998
https://doi.org/10.1093/gerona/glaa286
https://pubmed.ncbi.nlm.nih.gov/33211845


www.aging-us.com 14 AGING 

biological age indicator incorporating physical fitness. 
Aging (Albany NY). 2023; 15:3904–38. 

 https://doi.org/10.18632/aging.204538 
PMID:36812475 

23. Belsky DW, Caspi A, Corcoran DL, Sugden K, Poulton R, 
Arseneault L, Baccarelli A, Chamarti K, Gao X, Hannon 
E, Harrington HL, Houts R, Kothari M, et al. 
DunedinPACE, a DNA methylation biomarker of the 
pace of aging. Elife. 2022; 11:e73420. 

 https://doi.org/10.7554/eLife.73420  
PMID:35029144 

24. Marioni RE, Shah S, McRae AF, Chen BH, Colicino E, 
Harris SE, Gibson J, Henders AK, Redmond P, Cox SR, 
Pattie A, Corley J, Murphy L, et al. DNA methylation 
age of blood predicts all-cause mortality in later life. 
Genome Biol. 2015; 16:25. 

 https://doi.org/10.1186/s13059-015-0584-6 
PMID:25633388 

25. Ryan J, Wrigglesworth J, Loong J, Fransquet PD, Woods 
RL. A Systematic Review and Meta-analysis of 
Environmental, Lifestyle, and Health Factors Associated 
With DNA Methylation Age. J Gerontol A Biol Sci Med 
Sci. 2020; 75:481–94. 

 https://doi.org/10.1093/gerona/glz099 
PMID:31001624 

26. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, 
Ballestar ML, Heine-Suñer D, Cigudosa JC, Urioste M, 
Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, 
et al. Epigenetic differences arise during the lifetime of 
monozygotic twins. Proc Natl Acad Sci USA. 2005; 
102:10604–9. 

 https://doi.org/10.1073/pnas.0500398102 
PMID:16009939 

27. Vidaki A, Planterose Jiménez B, Poggiali B, Kalamara V, 
van der Gaag KJ, Maas SC, Ghanbari M, Sijen T, Kayser 
M, and B.I.O.S. Consortium. Targeted DNA methylation 
analysis and prediction of smoking habits in blood 
based on massively parallel sequencing. Forensic Sci Int 
Genet. 2023; 65:102878. 

 https://doi.org/10.1016/j.fsigen.2023.102878 
PMID:37116245 

28. Piniewska-Róg D, Heidegger A, Pośpiech E, Xavier C, 
Pisarek A, Jarosz A, Woźniak A, Wojtas M, Phillips C, 
Kayser M, Parson W, Branicki W, and VISAGE 
Consortium. Impact of excessive alcohol abuse on age 
prediction using the VISAGE enhanced tool for 
epigenetic age estimation in blood. Int J Legal Med. 
2021; 135:2209–19. 

 https://doi.org/10.1007/s00414-021-02665-1 
PMID:34405265 

29. Maugeri A, Barchitta M. How Dietary Factors Affect 
DNA Methylation: Lesson from Epidemiological 
Studies. Medicina (Kaunas). 2020; 56:374. 

 https://doi.org/10.3390/medicina56080374 
PMID:32722411 

30. Spólnicka M, Zbieć-Piekarska R, Karp M, Machnicki 
MM, Własiuk P, Makowska Ż, Pięta A, Gambin T, 
Gasperowicz P, Branicki W, Giannopoulos K, Stokłosa T, 
Płoski R. DNA methylation signature in blood does not 
predict calendar age in patients with chronic 
lymphocytic leukemia but may alert to the presence of 
disease. Forensic Sci Int Genet. 2018; 34:e15–e17. 

 https://doi.org/10.1016/j.fsigen.2018.02.004 
PMID:29472117 

31. Lucknuch T, Praihirunkit P. Evaluation of age-
associated DNA methylation markers in colorectal 
cancer of Thai population. Forensic Science 
International: Reports. 2022; 5:100265. 

 https://doi.org/10.1016/j.fsir.2022.100265 

32. American Cancer Society. Global cancer facts and 
figures 5th edition. American Cancer Society. 2024. 

33. Chen L, Ganz PA, Sehl ME. DNA Methylation, Aging, 
and Cancer Risk: A Mini-Review. Front Bioinform. 2022; 
2:847629. 

 https://doi.org/10.3389/fbinf.2022.847629 
PMID:36304336 

34. Chen JQ, Salas LA, Wiencke JK, Koestler DC, Molinaro 
AM, Andrew AS, Seigne JD, Karagas MR, Kelsey KT, 
Christensen BC. Genome-Scale Methylation Analysis 
Identifies Immune Profiles and Age Acceleration 
Associations with Bladder Cancer Outcomes. Cancer 
Epidemiol Biomarkers Prev. 2023; 32:1328–37. 

 https://doi.org/10.1158/1055-9965.EPI-23-0331 
PMID:37527159 

35. Minteer CJ, Thrush K, Gonzalez J, Niimi P, Rozenblit M, 
Rozowsky J, Liu J, Frank M, McCabe T, Higgins-Chen AT, 
Hofstatter E, Pusztai L, Beckman K, et al. More than bad 
luck: Cancer and aging are linked to replication-driven 
changes to the epigenome. Sci Adv. 2023; 9:eadf4163. 

 https://doi.org/10.1126/sciadv.adf4163 
PMID:37467337 

36. Valencia CI, Saunders D, Daw J, Vasquez A. DNA 
methylation accelerated age as captured by epigenetic 
clocks influences breast cancer risk. Front Oncol. 2023; 
13:1150731. 

 https://doi.org/10.3389/fonc.2023.1150731 
PMID:37007096 

37. Jung SY, Bhatti P, Pellegrini M. DNA methylation in 
peripheral blood leukocytes for the association with 
glucose metabolism and invasive breast cancer. Clin 
Epigenetics. 2023; 15:23. 

 https://doi.org/10.1186/s13148-023-01435-7 
PMID:36782224 

38. Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus 
SJ, Weisenberger DJ, Shen H, Campan M, Noushmehr 

https://doi.org/10.18632/aging.204538
https://pubmed.ncbi.nlm.nih.gov/36812475
https://doi.org/10.7554/eLife.73420
https://pubmed.ncbi.nlm.nih.gov/35029144
https://doi.org/10.1186/s13059-015-0584-6
https://pubmed.ncbi.nlm.nih.gov/25633388
https://doi.org/10.1093/gerona/glz099
https://pubmed.ncbi.nlm.nih.gov/31001624
https://doi.org/10.1073/pnas.0500398102
https://pubmed.ncbi.nlm.nih.gov/16009939
https://doi.org/10.1016/j.fsigen.2023.102878
https://pubmed.ncbi.nlm.nih.gov/37116245
https://doi.org/10.1007/s00414-021-02665-1
https://pubmed.ncbi.nlm.nih.gov/34405265
https://doi.org/10.3390/medicina56080374
https://pubmed.ncbi.nlm.nih.gov/32722411
https://doi.org/10.1016/j.fsigen.2018.02.004
https://pubmed.ncbi.nlm.nih.gov/29472117
https://doi.org/10.1016/j.fsir.2022.100265
https://doi.org/10.3389/fbinf.2022.847629
https://pubmed.ncbi.nlm.nih.gov/36304336
https://doi.org/10.1158/1055-9965.EPI-23-0331
https://pubmed.ncbi.nlm.nih.gov/37527159
https://doi.org/10.1126/sciadv.adf4163
https://pubmed.ncbi.nlm.nih.gov/37467337
https://doi.org/10.3389/fonc.2023.1150731
https://pubmed.ncbi.nlm.nih.gov/37007096
https://doi.org/10.1186/s13148-023-01435-7
https://pubmed.ncbi.nlm.nih.gov/36782224


www.aging-us.com 15 AGING 

H, Bell CG, Maxwell AP, Savage DA, Mueller-Holzner E, 
Marth C, et al. Age-dependent DNA methylation of 
genes that are suppressed in stem cells is a hallmark of 
cancer. Genome Res. 2010; 20:440–6. 

 https://doi.org/10.1101/gr.103606.109 
PMID:20219944 

39. Yuasa Y. DNA methylation in cancer and ageing. Mech 
Ageing Dev. 2002; 123:1649–54. 

 https://doi.org/10.1016/s0047-6374(02)00100-8 
PMID:12470902 

40. DePinho RA. The age of cancer. Nature. 2000; 
408:248–54. 

 https://doi.org/10.1038/35041694 PMID:11089982 

41. Lyko F. The DNA methyltransferase family: a versatile 
toolkit for epigenetic regulation. Nat Rev Genet. 2018; 
19:81–92. 

 https://doi.org/10.1038/nrg.2017.80 PMID:29033456 

42. Wang X, Dong Y, Zhang H, Zhao Y, Miao T, Mohseni G, 
Du L, Wang C. DNA methylation drives a new path in 
gastric cancer early detection: Current impact and 
prospects. Genes Dis. 2023; 11:847–60. 

 https://doi.org/10.1016/j.gendis.2023.02.038 
PMID:37692483 

43. Deaton AM, Bird A. CpG islands and the regulation of 
transcription. Genes Dev. 2011; 25:1010–22. 

 https://doi.org/10.1101/gad.2037511 PMID:21576262 

44. Farsetti A, Illi B, Gaetano C. How epigenetics  
impacts on human diseases. Eur J Intern Med. 2023; 
114:15–22. 

 https://doi.org/10.1016/j.ejim.2023.05.036 
PMID:37277249 

45. Panjarian S, Madzo J, Keith K, Slater CM, Sapienza C, 
Jelinek J, Issa JJ. Accelerated aging in normal breast 
tissue of women with breast cancer. Breast Cancer Res. 
2021; 23:58. 

 https://doi.org/10.1186/s13058-021-01434-7 
PMID:34022936 

46. Klutstein M, Nejman D, Greenfield R, Cedar H. DNA 
Methylation in Cancer and Aging. Cancer Res. 2016; 
76:3446–50. 

 https://doi.org/10.1158/0008-5472.CAN-15-3278 
PMID:27256564 

47. Kresovich JK, Xu Z, O‘Brien KM, Weinberg CR, Sandler 
DP, Taylor JA. Methylation-Based Biological Age and 
Breast Cancer Risk. J Natl Cancer Inst. 2019; 
111:1051–8. 

 https://doi.org/10.1093/jnci/djz020 PMID:30794318 

48. Levine ME, Hosgood HD, Chen B, Absher D, Assimes T, 
Horvath S. DNA methylation age of blood predicts 
future onset of lung cancer in the women’s health 
initiative. Aging (Albany NY). 2015; 7:690–700. 

 https://doi.org/10.18632/aging.100809 
PMID:26411804 

49. Zhu T, Gao Y, Wang J, Li X, Shang S, Wang Y, Guo S, 
Zhou H, Liu H, Sun D, Chen H, Wang L, Ning S. 
CancerClock: A DNA Methylation Age Predictor to 
Identify and Characterize Aging Clock in Pan-Cancer. 
Front Bioeng Biotechnol. 2019; 7:388. 

 https://doi.org/10.3389/fbioe.2019.00388 
PMID:31867319 

50. Dugué PA, Bassett JK, Joo JE, Jung CH, Ming Wong E, 
Moreno-Betancur M, Schmidt D, Makalic E, Li S, Severi 
G, Hodge AM, Buchanan DD, English DR, et al. DNA 
methylation-based biological aging and cancer risk and 
survival: Pooled analysis of seven prospective studies. 
Int J Cancer. 2018; 142:1611–19. 

 https://doi.org/10.1002/ijc.31189 PMID:29197076 

51. Gehle SC, Kleissler D, Heiling H, Deal A, Xu Z, Ayer 
Miller VL, Taylor JA, Smitherman AB. Accelerated 
epigenetic aging and myopenia in young adult cancer 
survivors. Cancer Med. 2023; 12:12149–60. 

 https://doi.org/10.1002/cam4.5908 PMID:37031460 

52. Verschoor CP, Santi SA, Singh R, Tharmalingam S, 
Thome C, Saunders DP. Salivary DNA methylation 
derived estimates of biological aging, cellular 
frequency and protein expression as predictors of oral 
mucositis severity and survival in head and neck cancer 
patients. Oral Oncol. 2024; 159:107030. 

 https://doi.org/10.1016/j.oraloncology.2024.107030 
PMID:39270498 

53. Sayer M, Ng DQ, Chan R, Kober K, Chan A. Current 
evidence supporting associations of DNA methylation 
measurements with survivorship burdens in cancer 
survivors: A scoping review. Cancer Med. 2024; 
13:e7470. 

 https://doi.org/10.1002/cam4.7470 PMID:38963018 

54. Paparazzo E, Lagani V, Geracitano S, Citrigno L, Aceto 
MA, Malvaso A, Bruno F, Passarino G, Montesanto A. 
An ELOVL2-Based Epigenetic Clock for Forensic Age 
Prediction: A Systematic Review. Int J Mol Sci. 2023; 
24:2254. 

 https://doi.org/10.3390/ijms24032254 
PMID:36768576 

55. Wu S, Hsu LA, Teng MS, Chou HH, Ko YL. Differential 
Genetic and Epigenetic Effects of the KLF14 Gene on 
Body Shape Indices and Metabolic Traits. Int J Mol Sci. 
2022; 23:4165. 

 https://doi.org/10.3390/ijms23084165 
PMID:35456983 

56. Mansouri L, Wierzbinska JA, Plass C, Rosenquist R. 
Epigenetic deregulation in chronic lymphocytic 
leukemia: Clinical and biological impact. Semin Cancer 
Biol. 2018; 51:1–11. 

https://doi.org/10.1101/gr.103606.109
https://pubmed.ncbi.nlm.nih.gov/20219944
https://doi.org/10.1016/s0047-6374(02)00100-8
https://pubmed.ncbi.nlm.nih.gov/12470902
https://doi.org/10.1038/35041694
https://pubmed.ncbi.nlm.nih.gov/11089982
https://doi.org/10.1038/nrg.2017.80
https://pubmed.ncbi.nlm.nih.gov/29033456
https://doi.org/10.1016/j.gendis.2023.02.038
https://pubmed.ncbi.nlm.nih.gov/37692483
https://doi.org/10.1101/gad.2037511
https://pubmed.ncbi.nlm.nih.gov/21576262
https://doi.org/10.1016/j.ejim.2023.05.036
https://pubmed.ncbi.nlm.nih.gov/37277249
https://doi.org/10.1186/s13058-021-01434-7
https://pubmed.ncbi.nlm.nih.gov/34022936
https://doi.org/10.1158/0008-5472.CAN-15-3278
https://pubmed.ncbi.nlm.nih.gov/27256564
https://doi.org/10.1093/jnci/djz020
https://pubmed.ncbi.nlm.nih.gov/30794318
https://doi.org/10.18632/aging.100809
https://pubmed.ncbi.nlm.nih.gov/26411804
https://doi.org/10.3389/fbioe.2019.00388
https://pubmed.ncbi.nlm.nih.gov/31867319
https://doi.org/10.1002/ijc.31189
https://pubmed.ncbi.nlm.nih.gov/29197076
https://doi.org/10.1002/cam4.5908
https://pubmed.ncbi.nlm.nih.gov/37031460
https://doi.org/10.1016/j.oraloncology.2024.107030
https://pubmed.ncbi.nlm.nih.gov/39270498
https://doi.org/10.1002/cam4.7470
https://pubmed.ncbi.nlm.nih.gov/38963018
https://doi.org/10.3390/ijms24032254
https://pubmed.ncbi.nlm.nih.gov/36768576
https://doi.org/10.3390/ijms23084165
https://pubmed.ncbi.nlm.nih.gov/35456983


www.aging-us.com 16 AGING 

 https://doi.org/10.1016/j.semcancer.2018.02.001 
PMID:29427646 

57. Zhang Q, Gao Y, Lin S, Goldin LR, Wang Y, Stevenson H, 
Edelman DC, Killian K, Marti G, Meltzer PS, Xiang S, 
Caporaso NE. Genome-wide DNA methylation profiling 
in chronic lymphocytic leukaemia. Front Genet. 2023; 
13:1056043. 

 https://doi.org/10.3389/fgene.2022.1056043 
PMID:36712882 

58. Lau CE, Robinson O. DNA methylation age as a 
biomarker for cancer. Int J Cancer. 2021; 148:2652–63. 

 https://doi.org/10.1002/ijc.33451  
PMID:33394520 

59. Spólnicka M, Piekarska RZ, Jaskuła E, Basak GW, 
Jacewicz R, Pięta A, Makowska Ż, Jedrzejczyk M, 
Wierzbowska A, Pluta A, Robak T, Berent J, Branicki W, 
et al. Donor age and C1orf132/MIR29B2C determine 
age-related methylation signature of blood after 
allogeneic hematopoietic stem cell transplantation. 
Clin Epigenetics. 2016; 8:93. 

 https://doi.org/10.1186/s13148-016-0257-7 
PMID:27602173 

60. Zhong X, Liu K, Zhao L, Lei X, Xu M, Yang L. Low-Fat Di 
et Alleviates Perimenopausal Symptoms by Reducing 
Methylation Levels of PDE4C and NPAS2 Genes: A 
Randomized Controlled Trial. Clin. Exp. Obstet. 
Gynecol. 2024. 

 https://doi.org/10.31083/j.ceog5109212 

61. Spólnicka M, Pośpiech E, Adamczyk JG, Freire-Aradas 
A, Pepłońska B, Zbieć-Piekarska R, Makowska Ż, Pięta 
A, Lareu MV, Phillips C, Płoski R, Żekanowski C, Branicki 
W. Modified aging of elite athletes revealed by analysis 
of epigenetic age markers. Aging (Albany NY). 2018; 
10:241–52. 

 https://doi.org/10.18632/aging.101385 
PMID:29466246 

62. Yang J, Liao Y, Wang B, Cui L, Yu X, Wu F, Zhang Y, Liu R, 
Yao Y. EDARADD promotes colon cancer progression 
by suppressing E3 ligase Trim21-mediated 
ubiquitination and degradation of Snail. Cancer Lett. 
2023; 577:216427. 

 https://doi.org/10.1016/j.canlet.2023.216427 
PMID:37838280 

63. Wang Y, Zhang Y, Li Y, Huang J. Elevated PDE4C level 
serves as a candidate diagnostic biomarker and 
correlates with poor survival in thyroid carcinoma. Sci 
Rep. 2024; 14:6813. 

 https://doi.org/10.1038/s41598-024-57533-w 
PMID:38514754 

64. Jin Z, Liu L, Yu Y, Li D, Zhu X, Yan D, Zhu Z. TRIM59: A 
potential diagnostic and prognostic biomarker in 
human tumors. PLoS One. 2021; 16:e0257445. 

 https://doi.org/10.1371/journal.pone.0257445 
PMID:34534244 

65. Tanaka K, Kandori S, Sakka S, Nitta S, Tanuma K, Shiga 
M, Nagumo Y, Negoro H, Kojima T, Mathis BJ, Shimazui 
T, Watanabe M, Sato TA, et al. ELOVL2 promotes 
cancer progression by inhibiting cell apoptosis in renal 
cell carcinoma. Oncol Rep. 2022; 47:23. 

 https://doi.org/10.3892/or.2021.8234 PMID:34841437 

66. Zhang J, Zeng Q, She M. The roles of FHL2 in cancer. 
Clin Exp Med. 2023; 23:3113–24. 

 https://doi.org/10.1007/s10238-023-01076-3 
PMID:37103649 

67. Ye H, Ding X, Lv X, Du Y, Guo R, Qiu J, Li R, Cao L. KLF14 
directly downregulates the expression of GPX4 to exert 
antitumor effects by promoting ferroptosis in cervical 
cancer. J Transl Med. 2024; 22:923. 

 https://doi.org/10.1186/s12967-024-05714-6 
PMID:39390559 

68. Shafaroudi AM, Sharifi-Zarchi A, Rahmani S, Nafissi N, 
Mowla SJ, Lauria A, Oliviero S, Matin MM. Expression 
and Function of C1orf132 Long-Noncoding RNA in 
Breast Cancer Cell Lines and Tissues. Int J Mol Sci. 
2021; 22:6768. 

 https://doi.org/10.3390/ijms22136768 
PMID:34201896 

69. Han Y, Wang X, Xu M, Teng Z, Qin R, Tan G, Li P, Sun P, 
Liu H, Chen L, Jia B. Aspartoacylase promotes the 
process of tumour development and is associated with 
immune infiltrates in gastric cancer. BMC Cancer. 
2023; 23:604. 

 https://doi.org/10.1186/s12885-023-11088-7 
PMID:37391709 

70. Shimony S, Stahl M, Stone RM. Acute myeloid 
leukemia: 2023 update on diagnosis, risk-stratification, 
and management. Am J Hematol. 2023; 98:502–26. 

 https://doi.org/10.1002/ajh.26822 PMID:36594187 

71. Verma S, Dhanda H, Singh A, Rishi B, Tanwar P, 
Chaudhry S, Siraj F, Misra A. Systematic review of 
epigenetic targets in acute myeloid leukemia. Am J 
Blood Res. 2021; 11:458–71. 

 PMID:34824880 

72. Pedersen BS, Eyring K, Subhajyoti, Yang IV, Schwartz 
DA. Fast and accurate alignment of long bisulfite-seq 
reads. 

73. Li H, Durbin R. Fast and accurate short read alignment 
with Burrows-Wheeler transform. Bioinformatics. 
2009; 25:1754–60. 

 https://doi.org/10.1093/bioinformatics/btp324 
PMID:19451168 

74. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer 
N, Marth G, Abecasis G, Durbin R, and 1000 Genome 

https://doi.org/10.1016/j.semcancer.2018.02.001
https://pubmed.ncbi.nlm.nih.gov/29427646
https://doi.org/10.3389/fgene.2022.1056043
https://pubmed.ncbi.nlm.nih.gov/36712882
https://doi.org/10.1002/ijc.33451
https://pubmed.ncbi.nlm.nih.gov/33394520
https://doi.org/10.1186/s13148-016-0257-7
https://pubmed.ncbi.nlm.nih.gov/27602173
https://doi.org/10.31083/j.ceog5109212
https://doi.org/10.18632/aging.101385
https://pubmed.ncbi.nlm.nih.gov/29466246
https://doi.org/10.1016/j.canlet.2023.216427
https://pubmed.ncbi.nlm.nih.gov/37838280
https://doi.org/10.1038/s41598-024-57533-w
https://pubmed.ncbi.nlm.nih.gov/38514754
https://doi.org/10.1371/journal.pone.0257445
https://pubmed.ncbi.nlm.nih.gov/34534244
https://doi.org/10.3892/or.2021.8234
https://pubmed.ncbi.nlm.nih.gov/34841437
https://doi.org/10.1007/s10238-023-01076-3
https://pubmed.ncbi.nlm.nih.gov/37103649
https://doi.org/10.1186/s12967-024-05714-6
https://pubmed.ncbi.nlm.nih.gov/39390559
https://doi.org/10.3390/ijms22136768
https://pubmed.ncbi.nlm.nih.gov/34201896
https://doi.org/10.1186/s12885-023-11088-7
https://pubmed.ncbi.nlm.nih.gov/37391709
https://doi.org/10.1002/ajh.26822
https://pubmed.ncbi.nlm.nih.gov/36594187
https://pubmed.ncbi.nlm.nih.gov/34824880
https://doi.org/10.1093/bioinformatics/btp324
https://pubmed.ncbi.nlm.nih.gov/19451168


www.aging-us.com 17 AGING 

Project Data Processing Subgroup. The Sequence 
Alignment/Map format and SAMtools. Bioinformatics. 
2009; 25:2078–9. 

 https://doi.org/10.1093/bioinformatics/btp352 
PMID:19505943 

75. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman 
M, Lander ES, Getz G, Mesirov JP. Integrative genomics 
viewer. Nat Biotechnol. 2011; 29:24–6. 

 https://doi.org/10.1038/nbt.1754 PMID:21221095 

76. R Core Team. R: A language and environment for 
statistical computing 2023. Vienna, Austria. 

77. Kolde R. pheatmap: pretty heatmaps. R package 
version 1.0.12 2018. 

78. Wickham H, Averick M, Bryan J, Chang W, McGowan 
LD, François R. Welcome to the tidyverse. Journal of 
Open Source Software. 2019;4:1686. 

 https://doi.org/10.21105/joss.01686 

79. Wickham H. ggplot2: elegant graphics for data analysis: 
Springer-Verlag New York; 2016. 

 https://doi.org/10.1007/978-3-319-24277-4_9 

  

https://doi.org/10.1093/bioinformatics/btp352
https://pubmed.ncbi.nlm.nih.gov/19505943
https://doi.org/10.1038/nbt.1754
https://pubmed.ncbi.nlm.nih.gov/21221095
https://doi.org/10.21105/joss.01686
https://doi.org/10.1007/978-3-319-24277-4_9


www.aging-us.com 18 AGING 

SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Age estimates of the study cohort (n = 202). Solid tumours are depicted in magenta (n = 75), hematologic 
tumours in blue (n = 25) and the control cohort in grey (n = 102). R2 of each subgroup are depicted in the upper left corner. The grey dotted 
line is the line of identity. MAE in years: 4.98 (solid tumours), 11.14 (hematologic tumours), 2.72 (control cohort). 
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Supplementary Figure 2. PCA plots on the six target CpG sites of all samples. The beta values are normalized with linear regression 
to the respective chronological age of each individual. Each plot is colored according to a different meta data: grouping (A), stage (B), current 
treatment (C) and prior treatment (D). PC2 was log10 transformed for easier visual representation. 
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Supplementary Figure 3. Variable association of methylation beta values of all 44 sequenced CpG sites with available meta 
data. * p-value ≤ 0.05, ** p-value ≤ 0.01, *** p-value ≤ 0.001. 
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Supplementary Figure 4. Heatmap of methylation beta values of all 44 sequenced CpG sites. One sample clustered separately 

from all other samples (Cancer042). 

 

  



www.aging-us.com 22 AGING 

Supplementary Tables 
 

 

Supplementary Table 1. Age and sex distribution of control and cancer cohorts. 

 Control cohort Cancer cohort 

Age category [y] Male (n) Female (n) Total (n) Male (n) Female (n) Total (n) 

20.0 - 29.9 10 8 18 1 0 1 

30.0 - 39.9 14 6 20 6 1 7 

40.0 - 49.9 19 4 23 3 2 5 

50.0 - 59.9 16 5 21 8 8 16 

60.0 - 69.9 17 1 18 13 13 26 

> 70 2 0 2 25 20 45 

 

Supplementary Table 2. Statistical comparisons of the 
chronological age distributions of the three study 
cohorts. 

Sample group comparison p-value 

Control vs. hematologic 7.753*10−7 

Control vs. solid 3.659*10−14 

Solid vs. hematologic 1.000 

Dunn test with bonferroni correction. 

 

Supplementary Table 3. Logistic regression analysis on 
the u75 study cohort and control samples. 

Tested variables p-value 

(Intercept) 3.53*10−8 

Absolute age estimation error 0.06772 

Chronological age 5.93*10−9 

Sex 0.00503 

Dependent variable: disease status (healthy/cancer), 
independent variables: absolute estimation error, chronological 
age, sex. 

 

  



www.aging-us.com 23 AGING 

Supplementary Table 4. Percentage of cancer samples above the MAE/RMSE of the control 
cohort per age category. 

Age category Cancer subgroup % of samples above MAE % of samples above RMSE 

20.0 - 29.9 Solid - - 

30.0 - 39.9 Solid 60 40 

40.0 - 49.9 Solid 50 50 

50.0 - 59.9 Solid 46 31 

60.0 - 69.9 Solid 48 38 

70.0 - 74.9 Solid 55 55 

> 75.0 Solid 45 32 

20.0 - 29.9 Hematologic - - 

30.0 - 39.9 Hematologic 50 50 

40.0 - 49.9 Hematologic 33 33 

50.0 - 59.9 Hematologic 33 33 

60.0 - 69.9 Hematologic 40 40 

70.0 - 74.9 Hematologic 33 33 

> 75.0 Hematologic 33 33 

 

Supplementary Table 5. Mean errors (ME) per age category in all three subgroups. 

Age category [y] Control Solid Hematologic p-value SvsC p-value HvsC 

20.0 - 29.9 -0.397 -1.56 - 0.842 - 

30.0 - 39.9 -0.178 0.676 2.05 0.575 0.312 

40.0 - 49.9 -1.35 -0.280 4.65 0.427 0.003* 

50.0 - 59.9 -1.55 -1.94 16.0 0.780 0.271 

60.0 - 69.9 -0.361 -0.111 -2.40 0.813 0.403 

70.0 - 74.9 1.15 -1.09 3.44 0.641 0.800 

> 75.0 - -1.67 -1.63 - - 

* p-value < 0.05. 
Control = control group, Solid = Solid tumours, Hematologic = Hematologic tumours. SvsC = 
Solid vs. Controls, HvsC = Hematologic vs. Controls. 


