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ABSTRACT 
 

Background: The relationship between cognitive function, measured by digital Clock Drawing Test (dCDT), and 
biological aging is lacking. 
Methods: We used linear mixed regression to evaluate the associations between epigenetic aging metrics 
(Horvath, Hannum, GrimAge, PhenoAge, DunedinPACE) and dCDT scores in the Framingham Heart Study (FHS), 
adjusting for covariates. Significance was set at a false discovery rate (FDR) <0.05. 
Results: Among the 1,789 FHS participants (mean age 65 ± 13, 53% women), higher epigenetic age acceleration 
metrics at baseline predicted lower dCDT scores approximately seven years later. The magnitude of these 
associations was greater in older participants (≥65 years, n = 985). The strongest association was observed 
between the dCDT total score and DunedinPACE in the full sample (beta = −2.1, FDR = 0.0004), the younger (<65 
years; beta = −1.9, FDR = 0.02), and older (beta = −2.2, FDR = 0.01) age groups. Additionally, the dCDT total 
score was associated with age acceleration estimated by Horvath (beta = −1.9, FDR = 0.01) and PhenoAge (beta 
= −2.5, FDR = 0.01) in older participants, while not in the full sample or younger participants. Furthermore, 
higher levels of DNAm-based PAI1 (beta = −0.9, FDR = 0.005) and ADM (beta = −2.9, FDR = 0.01), components of 
GrimAge, were significantly associated with lower dCDT total scores. In analyses of cognitive subdomains, 
simple motor function was significantly associated with DunedinPACE (FDR = 0.005) in both age groups, and 
with GrimAge (FDR = 0.05) in the older age group, suggesting that deterioration in various organ systems may 
particularly impact this domain. 
Conclusion: Our findings suggest that advanced biological aging, particularly as captured by DunedinPACE and 
GrimAge components, is significantly associated with poorer cognitive performance measured by dCDT, 
especially in older adults, highlighting a potential link between systemic aging processes and cognitive decline. 
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INTRODUCTION 
 

Cognitive function, representing a crucial aspect of 

overall brain health, encompasses various domains such 

as memory, reasoning, and attention [1]. Neuro-

psychological (NP) tests are typically used to measure 

cognitive functions for individuals, focusing on one or 

several specific cognitive domains. For example, the 

long−used Clock Drawing Test (CDT) evaluates 

executive functioning and spatial skills [2], and has 

been typically conducted with pen on paper and 

assessed with one overall score and visual inspection  

by the clinician. However, the interpretation of NP  

tests often relies on clinical expertise such as a 

neuropsychologist or neurologist, who are not readily 

available in non−urban centers in the U.S. or many 

countries globally. Further clinical interpretation is open 

to subjective bias and is not uniformly consistent. The 

use of digital devices in NP tests is gaining recognition 

for their efficiency, precision, automation, and 

reproducibility [3]. The digital Clock Drawing Test 

(dCDT), a digital version of the standardized CDT done 

with pen and paper, provides a much more robust 

assessment of cognitive functioning, with an overall 

score but also quantitative markers of sub−domains 

including motor function, drawing efficiency, spatial 

reasoning, and information processing [4]. Previous 

research shows comparable performance between 

dCDT and other NP tests, which can identify mild 

cognitive impairment [5], and is associated with 

markers of neurodegeneration, such as brain volumes 

[6]. Compared to CDT, dCDT appears to capture more 

subtle cognitive changes [7]. 

 

Aging is an inevitable process for humans, resulting  

in a decline in physiological capacity and an increasing 

risk of various disease conditions [8], including 

neurodegenerative diseases [9]. Biological aging, the 

changes at the molecular level [10, 11], is essential to 

understand the heterogeneity in healthy aging [12]. 

Epigenetic modifications, such as DNA methylation 

(DNAm), measure biological aging at the epigenetic 

level [13–15]. DNAm age [16] has been associated with 

general health [17, 18] and neurodegenerative diseases 

[19]. These aging metrics have also shown predictive 

value for the development of diabetes [20], mortality 

[21], cognitive dysfunction [22, 23], and physical aging 

[23]. The first generation of epigenetic clocks (i.e., 

Horvath and Hannum clocks) was developed to estimate 

chronological age using DNAm levels at specific 

5′−C−phosphate−G−3′ (CpG) sites [16, 24]. The second 

generation of epigenetic clocks (e.g., GrimAge and 

PhenoAge) was designed to predict mortality using 

CpG sites associated with clinical markers, such as 

plasma protein levels [25–27]. Subsequently, third− 

generation epigenetic clocks, like DunedinPACE, 

measure how fast a person is biologically aging rather 

than estimating their age. They use long−term health 

data to better predict future health and lifespan [28]. 

Among them, GrimAge estimates biological age by 

using DNAm markers to infer levels of aging−related 

plasma proteins and smoking history [27]. To improve 

reliability, PC−based versions of first− and 

second−generation clocks have been developed, 

reducing technical noise by summarizing methylation 

signals into principal components [29]. DNAm age 

acceleration is assessed by regressing the estimated 

DNAm age on chronological age [30]. 

 

Studies have established correlations between 

traditional cognitive assessments and DNAm age 

acceleration [22, 23, 31–35], showing the possibility 

that DNAm age acceleration is a risk factor or marker 

for cognitive decline. However, research on the 

relationship between cognitive function measured by 

digital devices and DNAm age acceleration is currently 

lacking. Our study aimed to fill this gap. We 

hypothesize that DNAm aging at baseline predicts 

cognitive status measured at a later time point. To test 

our hypothesis, in the primary analysis, we investigated 

the associations of overall cognitive function, measured 

by dCDT with five DNAm−based age acceleration 

metrics in the Framingham Heart Study (FHS). In the 

secondary analysis, we investigated the associations of 

sub−domain functions measured by dCDT with five 

DNAm−based age acceleration metrics. We further 

investigated the associations between dCDT and 

DNAm−based plasma protein surrogates incorporated 

into GrimAge. All analyses were conducted on the full 

sample, the younger (<65 years) and the older (≥ 65 

years) age groups. We seek to gain additional insights 

into the underlying molecular mechanism of cognitive 

function measured by digital devices and investigate 

how different aging metrics are related to cognitive 

functions. 

 

RESULTS 
 

Participant characteristics 

 

This study included 1,789 participants in FHS (mean 

age 65 ± 13 at dCDT, 53% women) (Table 1). On 

average, DNAm was measured seven years before the 

dCDT measurement (Supplementary Figure 1). 

Education levels were significantly higher in the 

younger age group (<65 years) compared to the older 

age group (≥65 years). On average, participants in the 

younger age group exhibited higher dCDT total score 

and sub−domain scores compared to those in the older 

age group (all p < 0.001). The average estimated 

DNAm ages differed between DNAm metrics 

(Supplementary Table 1). For instance, the mean 
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Table 1. Demographic and clinical characteristics of study participants. 

 
Total Age <65 Age ≥65 

P−value 
(n = 1789) (n = 804) (n = 985) 

Female, n (%) 955 (53%) 407 (51%) 548 (56%) 0.208 

Age at dCDT (years) 65 (± 13) 54 (± 8) 75 (± 7)  

Age at DNAm (years) 58 (± 12) 48 (± 7) 67 (± 7)  

Education levels, n (%) 

Incomplete high school 30 (2%) 6 (1%) 24 (2%) <0.001 

High school graduate 332 (19%) 108 (13%) 224 (23%)  

Some college 556 (31%) 231 (29%) 325 (33%)  

College graduate or above 871 (49%) 459 (57%) 412 (42%)  

Dementia 51 (3%) 0 51 (5%) <0.001 

In this study, we used age at DNAm for age group stratification. Mean with standard deviation (SD) was provided for a 
continuous variable, while count and proportion were provided for categorical variables. 

 

Hannum age was estimated as 62, while the mean 

Horvath age was estimated as 53 in the full samples. 

Compared to the mean chronological age, the mean 

DNAm ages calculated by Hannum, GrimAge, and 

DunedinPACE showed acceleration (with DNAm age 

higher than chronological age) in the full sample, 

whereas PhenoAge and Horvath showed lower mean 

DNAm ages than the mean chronological age. We 

further observed that, except for DunedinPACE, males 

tended to have advanced DNAm ages compared to 

females (Supplementary Table 2). 

 

Association between dCDT total score and DNA 

methylation age acceleration 

 

The primary association analysis examined the 

associations between dCDT total score and several 

DNAm age acceleration metrics, including PC−based 

versions of first− and second−generation clocks [29], as 

well as DunedinPACE [28]. Significance was assessed 

at False Discovery Rate (FDR) <0.05. In the full 

sample, a higher dCDT total score was associated with 

lower DNAm age acceleration estimated by all DNAm 

aging metrics (Figure 1). For example, a one−SD higher 

level in the pace of aging (DunedinPACE) was 

associated with a 2.1−unit lower level in the dCDT total 

score (FDR = 0.0004) (Figure 1). Although lower total 

scores were associated with higher DNAm age 

acceleration across the other metrics, these associations 

were not statistically significant in the full sample 

(Figure 1). Age showed a significant effect modification 

of the association (p = 0.004) with DunedinPACE but 

not for other epigenetic age metrics (Supplementary 

Table 3). Thus, we conducted stratified analyses by age 

groups for all DNAm age metrics. In the younger age 

group, DunedinPACE was the only DNAm metric 

associated with the dCDT total score (beta = −1.9, FDR 

= 0.02). In contrast, in the older age group, three DNAm 

aging metrics were significantly associated with the 

dCDT total score: DunedinPACE (beta = −2.2, FDR = 

0.01), DNAm age acceleration estimated by Horvath 

(beta = −1.9, FDR = 0.01) and PhenoAge (beta = −2.5, 

FDR = 0.01). Although the association between dCDT 

total score and other DNAm aging metrics was not 

significant, the directionality of the associations was 

consistent in both older and younger age groups (Figure 

2 and Supplementary Figures 2, 3). 

 

We conducted multiple secondary analyses to examine 

the robustness of our primary results. We first tested the 

association between DNAm age acceleration estimated 

by GrimAge version 2 and dCDT total score. Similar 

effect sizes and association direction were observed 

with DNAm age acceleration estimated by PC−based 

GrimAge version 1 (Supplementary Figure 4). 

Additionally, GrimAge version 2 showed a stronger 

association with dCDT total score in the older age 

group (beta = −2.0, FDR = 0.02) compared to PC−based 

GrimAge version 1 (beta = −1.6, FDR = 0.07) 

(Supplementary Figures 4–6). We further assessed if 

associations between dCDT total score and DNAm 

aging metrics differed by self−reported sex. No 

significant sex differences were observed in the 

association between dCDT total score and DNAm aging 

metrics (Supplementary Table 4). However, given its 

relevance as a biological variable, we conducted a 

sex−stratified analysis to explore potential variations. 

We observed similar effect sizes and directions of 
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association between dCDT scores and all DNAm age 

acceleration measures in men and women. One minor 

difference was that DunedinPACE showed a stronger 

association with dCDT total score in males (beta = −2.3, 

FDR = 0.01) compared to females (beta = −1.7, FDR = 

0.06) (Supplementary Figures 7 and 8). 

 

Association between dCDT sub−domain scores and 

DNA methylation age acceleration 

 

In additional secondary analyses, we investigated the 

association between dCDT sub−domain scores and 

several DNAm age acceleration metrics, including 

PC−based versions of first− and second−generation 

clocks [29], as well as DunedinPACE [28]. In the full 

sample, we observed a significant association between 

DunedinPACE and both the dCDT simple motor 

function score in the command task (FDR = 0.01) and 

the spatial reasoning score from the copy task (FDR = 

0.01). A one−SD higher level in the pace of aging was 

associated with a 0.7−unit decrease in the dCDT simple 

motor function score and a 1.6−unit decrease in the 

spatial reasoning score. DNAm age acceleration 

estimated by GrimAge was also found to be 

significantly associated with the dCDT simple motor 

function score in both the copy task (beta = −0.7, FDR 

= 0.005) and command task (beta = −0.9, FDR = 0.005) 

in the full sample. No other significant association was 

found between the other epigenetic age acceleration 

metrics and the dCDT sub−domain score in the full 

sample (Figure 1). 

 

Different from the result in the full sample, we only 

observed similar results for DNAm age acceleration 

estimated by GrimAge in the older age group, where 

a one−SD increase in GrimAge acceleration was 

significantly associated with a 1.1−unit decrease in 

dCDT simple motor function score in the command task 

(FDR = 0.04) (Supplementary Figure 2). In addition, 

DNAm age acceleration estimated by PhenoAge was

 

 
 

Figure 1. Association between dCDT scores and DNAm age acceleration in 1789 participants of the FHS. The dCDT total score 

includes command task composite scores and copy task composite scores. DNA methylation age acceleration was obtained by regressing 
DNAm age metrics on chronological age. We conducted association analysis between standardized DNAm age acceleration and the dCDT 
total score, adjusted for age, self−reported sex, education and cell counts. The numbers inside each cell represent the P−values of the 
associations. The color represents the change in dCDT scores corresponding to a one SD increase in DNAm age acceleration. 
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significantly associated with the dCDT simple motor 

function score in the command task (beta = −1.0, FDR 

= 0.04). While no significant association was found 

between dCDT sub−domain scores and DNAm aging 

metrics in the younger age group, the directionality was 

consistent for most associations in both younger and 

older age groups (Supplementary Figures 2, 3). 

 

Association between dCDT scores and plasma 

protein levels 

 

To gain insight into biological mechanisms underlying 

the cognitive functions, we examined the association 

between dCDT scores and the seven DNAm−based 

plasma protein levels incorporated into GrimAge version 

1 [25], including Cystatin C, B2M, GDF15, TIMP1, 

Leptin, PAI1, and ADM. In the full sample, dCDT total 

score was significantly associated with DNAm−based 

PAI1 (beta = −0.9, FDR = 0.005) and ADM (beta = −2.9, 

FDR = 0.01). Although no significant associations were 

observed between dCDT total score and other 

DNAm−based plasma protein levels, all associations 

showed a negative direction, indicating that higher 

DNAm−based protein levels corresponded to lower 

dCDT total score (Supplementary Figure 9). 

 

Among sub−domain scores, several DNAm−based 

proteins showed significant associations (Supplementary 

Figure 9). Cystatin C was associated with simple motor 

function in the command task (beta = −0.7, FDR = 0.03). 

GDF15 was associated with simple motor function in 

both the command (beta = −0.8, FDR = 0.01) and copy 

task (beta = −0.6, FDR = 0.01). Leptin was associated 

with spatial reasoning in the copy task (beta = −5.8, FDR 

= 0.01). PAI1 was significantly associated with spatial 

reasoning in the copy task (beta = −1.7, FDR = 0.02), 

simple motor function in the command task (beta = −0.8, 

FDR = 0.01) and copy task (beta = −0.7, FDR = 0.01). 

ADM was also associated with spatial reasoning in the 

copy task (beta = −3.0, FDR = 0.01), simple

 

 
 

Figure 2. Comparison of effect size in the association between DNAm age acceleration and the dCDT total score. DNAm age 
acceleration was obtained by regressing DNAm metrics on chronological aging, followed by standardization with a mean of zero and SD of 
one. We conducted an association analysis between the dCDT total score and standardized DNAm age acceleration. CI, confidence interval. 
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motor function in the command task (beta = −1.0, FDR 

= 0.05) and copy task (beta = −1.0, FDR = 0.01) 

(Supplementary Table 5). In the age−stratified sample, 

no significant associations were observed in the 

younger group. In the older age group, dCDT total score 

remained significantly associated with PAI1 (beta = 

−2.1, FDR = 0.03), TIMP1 (beta = −2.8, FDR = 0.05), 

and ADM (beta = −2.8, FDR = 0.05) (Supplementary 

Figures 10 and 11). 

 

DISCUSSION 
 

In this study, we investigated the association between 

cognitive function, measured by the dCDT, and DNAm 

aging metrics in 1,789 middle−aged and older 

participants in the FHS. 

 

We found that lower dCDT total scores were 

consistently associated with advanced biological age 

quantified by DNAm aging metrics. Among these, 

DunedinPACE showed significant association with the 

dCDT total score across the full sample, younger (<65 

years), and older (≥65 years) age groups. In contrast, 

several other DNAm aging metrics showed significant 

associations with the dCDT total score only in the older 

participant group. To explore potential mechanisms 

underlying the relationship between cognitive decline 

and biological aging, we investigated the associations 

between dCDT scores and DNAm−based estimators of 

plasma proteins captured by GrimAge version 1. We 

found that the dCDT total score was consistently 

associated with PAI1 and ADM in the full sample and 

the older age group. 

 

As the need for early diagnosis in the preclinical stage of 

AD grows, advanced screening tools for cognition are 

desired to capture subtle cognitive changes [36]. The 

dCDT has drawn attention for its efficiency, precision, 

automation, and reproducibility [3]. It has been 

demonstrated to be effective in distinguishing cognitive 

impairment from normal function [4, 7]. Additionally, it 

is comparable to established NP tests, such as the 

Wechsler Memory Scale and Boston Naming Test, in 

discriminating between participants with mild cognitive 

impairment (MCI) [6] and those with normal function. 

Unlike traditional paper and pen tests, the dCDT captures 

more granular data, including visuospatial, time−base, 

and kinematic details, offering a more detailed 

assessment. Its automated scoring system provides 

clinicians with objective and interpretable results [4]. 

 

DNAm is a crucial epigenetic modification that 

influences gene expression without altering the 

underlying DNA sequence [37]. By incorporating 

different sets of CpG sites, the three generations of 

epigenetic age metrics offer varied perspectives on 

biological aging. First−generation clocks were 

designed to predict chronological age based on CpG 

sites [16, 24], while the second−generation clocks 

aimed to predict time to death using clinical markers 

such as plasma protein levels [25–27]. These models 

primarily estimate DNAm aging based on a 

combination of chronological age, clinical markers, 

and mortality risk [16, 24–27]. The third−generation 

clock, DunedinPACE, focuses on a set of different 

clinical markers (representing the progressive decline 

across multiple organ systems captured by multiple 

CpG sites) [28]. In our study, DunedinPACE was 

negatively associated with overall cognitive function in 

both younger and older age groups, while other age 

clocks only showed significant results in the older age 

group. These findings indicate that the dCDT test, 

which is an indicator of brain health, may reflect the 

aging rates of multiple organ systems. 

 

The analysis of dCDT sub−domain scores with DNAm 

age provides additional insights into how epigenetic 

aging may influence specific cognitive domains. For 

instance, the simple motor function and spatial 

reasoning sub−domain scores showed significant 

associations with DunedinPACE, indicating that these 

domains may be particularly impacted by the 

deterioration in various organ systems that are relevant 

across the lifespan. GrimAge is based on seven plasma 

protein levels related to various diseases and conditions, 

including cardiovascular disease (Plasma B2M) and 

cognitive functions (Plasma B2M, ADM, Cystatin C, 

and leptin) [25]. In this study, simple motor function 

was associated with advanced GrimAge acceleration. 

This indicates that the decline of simple motor functions 

might be related to abnormal levels of these plasma 

protein markers and is particularly relevant with older 

chronological age. Future studies are necessary to 

investigate the associations of these plasma proteins 

with cognitive decline. In addition to DNAm age 

acceleration, examining DNAm−based plasma protein 

levels in relation to dCDT scores may help elucidate 

potential biological links between specific proteins and 

cognitive functions. In both the full sample and the 

older age group, we observed consistent associations 

between dCDT total score and PAI1 and ADM. Our 

findings are consistent with several previous studies. 

PAI1 has been used as a potential diagnostic marker for 

AD and cognitive function decline [38], showing that 

PAI1 was significantly different between the healthy 

control group, MCI group, and AD group within 

participants with a mean age of seventy−five [38]. A 

more recent study suggests that increased PAI1 

contributes to brain cell senescence in late−onset AD 
patients, and overexpression of PAI1 secreted from 

senescent astrocytes can further induce neuroapoptosis 

[39]. The effect of PAI1 inhibitor in age−related muscle 
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fiber atrophy may also explain its association with 

motor function in the full sample [40, 41]. These studies 

suggest a potential biological link between PAI1 and 

cognitive function, though the underlying mechanisms 

remain to be fully elucidated. ADM, on the other hand, 

has also been associated with cognitive function and 

age−related memory loss [42]. A previous study showed 

that normal aging was accompanied by an increase of 

ADM protein expression [43]. A comparison of ADM 

levels between individuals with AD and cognitively 

intact participants showed higher ADM expression in 

the brains of those with AD compared to age−matched 

healthy controls [43]. This finding aligns with our 

results, indicating that elevated plasma ADM protein 

levels are associated with lower dCDT performance.  

A previous study showed that midregional pro− 

adrenomedullin peptide (MR−proADM) may have the 

predictive power of conversion from MCI to AD [44]. 

The association between ADM and simple motor 

function may be potentially explained by its association 

with vascular function [45]. Further study is needed to 

fully understand the biological pathways between these 

proteins and cognitive functions. 

 

Digital cognitive measures displayed stronger 

associations with most DNAm aging metrics among 

older compared to younger participants, likely to reflect 

the cumulative and nonlinear age influences on both 

brain health and DNAm. This is consistent with our 

earlier findings of stronger associations between alcohol 

consumption and epigenetic age metrics [46]. For 

instance, overall cognitive function exhibited significant 

associations with PhenoAge in the older age group 

while not in the younger age group. In contrast, the 

global dCDT score was associated with DunedinPACE 

in both age groups, indicating that DunedinPACE might 

be more sensitive to capturing the subtle influence of 

variations in the pace of aging on cognitive changes 

across the lifespan. 

 

Several similar studies have investigated the association 

of cognitive function measured by traditional methods 

with DNAm aging metrics [22, 31–34]. Marioni et al. 

reported that general cognitive ability was associated 

with Horvath age in participants over the age of seventy 

[32]. Our findings, using the dCDT, are consistent with 

this, showing similar associations with total score in 

older participants. Another study assessed how various 

cognitive tests (e.g., MMSE, ADAS−Cog−13, MoCA) 

were associated with DNAm age acceleration in 

participants with a mean age of seventy−five [31]. They 

found that the faster pace of aging measured by 

DunedinPACE correlated with more severe cognitive 

decline. Our results align with this, showing that worse 

cognitive function was associated with DunedinPACE, 

with a larger magnitude in older participants. 

Furthermore, our findings that higher PhenoAge 

acceleration and DunedinPACE were associated with 

poorer performance scores in older participants were 

also consistent with the previous findings, where they 

found that higher PhenoAge acceleration and 

DunedinPACE were associated with worse cognitive 

performance [31]. One additional study investigated the 

relationship between biological aging and cognitive 

function. It found that PhenoAge, GrimAge, and 

DunedinPACE were significant predictors of cross− 

sectional cognitive dysfunction in 3581 participants 

with a mean age of 68. Their study setting was similar 

to our study, which had a time gap between DNAm 

sample collection and cognitive testing [22].  

Our findings in the PhenoAge, GrimAge, and 

DunedinPACE align with their results, where higher 

estimated biological aging was associated with poorer 

performance in the future dCDT. 

 

Our study has limitation, including a lack of diversity 

(all participants were non−Hispanic Whites) in our 

study sample. Further research with diverse groups is 

needed. Our study has several strengths. We employed 

the dCDT to measure cognitive function, which is a 

novel measure for assessing cognitive function. In 

addition, we employed PC−based clocks, which use 

principal components to reduce noise and enhance 

accuracy [29]. To mitigate multiple testing, we applied 

FDR adjustment, which is more appropriate than 

Bonferroni correction for the presence of correlated 

outcome and predictor variables. Our study design 

included an approximate seven−year gap between 

DNAm measurement at baseline and dCDT assessment 

at the later time point. This design provided an 

opportunity to explore the potential predictive value of 

DNAm−based biological aging measures for later 

cognitive function. Several prior studies have 

demonstrated that baseline DNAm−based biological 

aging can predict future risks of mortality [21], 

cognitive dysfunction [22, 23] and physical aging [23], 

suggesting that earlier measures of biological aging 

might serve as a predictor of age−related morbidity and 

mortality later in life. Although one longitudinal study 

has reported that accelerated biological aging remains 

relatively stable over time among individuals with 

cognitive decline [47], other research has highlighted 

that DNAm patterns may change with aging [48] and in 

response to environmental factors [49]. Further 

longitudinal studies that incorporate comorbidities, 

lifestyle, and environmental factors are needed to clarify 

how temporal changes in DNAm patterns influence 

biological aging and its relationship with later−life 

cognitive outcomes. 
 

In conclusion, our study investigated how digital 

cognitive function assessed by dCDT relates to 
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biological aging, measured by DNAm. These findings 

highlight the potential role of DNAm in cognitive 

function. Further research is needed to uncover the 

underlying biological pathways behind this association, 

particularly in more diverse populations. 

 

METHODS 
 

Study populations 

 

FHS, initiated in 1948, is a community−based 

longitudinal cohort study that has followed three 

generations of participants over time [50]. All 

participants underwent routine health assessments every 

two to six years [51, 52]. Our study included 1,264 

participants from the Offspring cohort (Gen2) at exam 8 

(2005−2008) and 688 participants from the 

Third−generation cohort (Gen3) at exam 2 (2008–

2011), based on available DNAm measurements. We 

excluded participants whose blood samples were not 

collected at exam or who were not administered the 

dCDT (2011–2018). After excluding participants with 

covariates (e.g., age, self−reported sex, education, cell 

counts) missing, we included 1,789 participants (Figure 

3) in our statistical analyses. For participants with 

multiple dCDT tests, we selected dCDT data closest to 

DNAm measurement dates for inclusion in our study. 

DCTclock 

 

DCTclock serves as an FDA−approved automated 

screening tool for detecting cognitive changes [4]. Data 

collection for dCDT using DCTclock involved using a 

digital pen and specialized paper with a dot matrix grip, 

which has been previously described in detail [4]. 

Following the standard protocol, participants were 

instructed to draw a clock with all the numbers to 

indicate the time ‘10 after 11’ (command task) and then 

replicate another clock by copying a provided model 

(copy task) [53, 54]. Both the drawing process and the 

final drawing results were recorded, capturing spatial 

and temporal data, and analyzed through the DCTclock 

pipeline. These data were treated as input to a trained 

convolutional neural network to recognize individual 

symbols with classification probability (e.g., clock face, 

digits, and small noise stocks). After classifying the 

individual symbols in drawing, these symbols were used 

to derive various measurements, such as the correct 

placement of clock components and pen speed. These 

measurements were organized into four groups 

representing different cognitive aspects: Drawing 

Efficiency, Simple and Complex Motor, Information 

Processing, and Spatial Reasoning. Drawing efficiency, 

for instance, evaluated the efficiency in terms of the 

time spent on drawing and the size of the drawing. 

 

 
 

Figure 3. Flow chart of study design. The participation of dCDT was solely based on consent. In the FHS, we identified participants with 
dCDT measurements and DNAm. Five DNAm age metrics were calculated. Epigenetic (DNAm) age acceleration (EAA) was calculated by 
regression of the DNAm age metrics on chronological age. Primary analysis focused on the association between dCDT total scores and 
EAAs, whereas secondary analysis focused on the association between dCDT sub−domain scores and EAAs. 
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Similarly, Simple and Complex Motor measurements 

represent motor functions, including maximum 

movement speed. Information Processing focuses on 

functions like thinking time and latencies, while Spatial 

Reasoning focuses on spatial abilities through geometric 

property measurements. A composite score was 

calculated for each cognitive aspect mentioned above 

using a Lasso regularized logistic regression model [4], 

incorporating all the measurements as parameters. 

Given the performance of two tasks (command and 

copy), eight sub−domain scores were generated. 

Additionally, a dCDT total score was computed using a 

Lasso logistic regression model [4]. Both sub−domain 

and total scores range from 0 to 100, where a higher 

score indicates better performance. 

 

DNAm measurements 

 

DNAm adds a methyl group onto the 5th carbon of 

cytosine to form 5−methylcytosine [37]. DNAm 

measurements were conducted using whole blood 

samples collected during exam 8 for Gen2 and exam 2 

for Gen3. DNAm profiling was carried out through a 

series of procedures, including bisulfite conversion, 

whole genome amplification, fragmentation, array 

hybridization, and single−base pair extension [46]. The 

Illumina Human Methylation 450K Bead chips 

(Illumina Inc., San Diego, CA, USA) were employed to 

analyze the DNAm levels across three different 

laboratories. Detailed information regarding DNAm 

quantification and quality control procedures in FHS 

had been previously documented [55]. 

 

DNAm aging metrics 

 

DNAm age is an estimator of aging based on DNAm 

patterns. Three generations of epigenetic clocks were 

calculated. The first generation, Horvath’s age [16] and 

Hannum’s age [24], utilize a set of CpG sites to 

estimate DNAm age. Horvath’s age calculated a 

weighted average of 353 clock CpGs with a calibration 

function to estimate aging from multiple tissues. 

Hannum’s age considered 71 CpG sites along with a 

few clinical parameters (self−reported sex, body mass 

index, etc.) to predict aging in whole blood samples. 

GrimAge [25], GrimAge version 2 [27] and PhenoAge 

[26] are the second−generation DNAm aging metrics. 

Both methods calculated the DNAm age by integrating 

methylation levels with clinical markers. GrimAge, in 

the first step, utilized DNAm level, chronological age, 

and sex to estimate 88 plasma protein levels and 

smoking pack years with elastic net regression. Then, 

seven DNAm−based plasma proteins (Cystatin C, B2M, 
GDF15, TIMP1, Leptin, PAI1, and ADM), age, sex and 

DNAm−based smoking pack years were selected by 

elastic net Cox regression model on the prediction of 

all−cause mortality. Each of the seven DNAm−based 

plasma protein and smoking pack years was estimated 

based on fewer than 200 CpG sites. In total, 1,030 

unique CpG sites were selected to estimate GrimAge 

[25, 27]. PhenoAge selected 513 CpGs to predict a 

linear combination of chronological age and nine 

clinical markers (e.g., Albumin, White blood cell 

count), which predicted the time to death [26]. We 

employed the principal component version of epigenetic 

clocks (PC−based clocks) to minimize unobserved 

technical confounders [29]. The DNAm age 

acceleration for the first− and second−generation aging 

metrics were residuals calculated by regressing each 

DNAm age on chronological age. Residuals larger than 

zero will be considered as accelerated aging. The third 

generation, DunedinPACE, differed from the previous 

generations by predicting the pace of aging per year 

rather than age in years [28]. The pace of aging was 

calculated from 173 CpGs based on longitudinal change 

of 19 clinical markers (e.g., blood pressure, total 

cholesterol, blood urea nitrogen), representing an 

average rate of biological aging per year of 1−year 

chronological age [28]. This pace of aging was used as 

DNAm age acceleration for the following analysis. 

 

Covariates 

 

Covariates included the age at the dCDT, the time 

interval between the dCDT and blood sample collection, 

self−reported sex, educational level, cell count 

information, and family relationship. The time interval 

was computed as the age at the dCDT minus the age at 

blood sample collection. Educational levels were 

categorized into four groups: less than high school 

completion, high school graduate, some college, and 

college graduate. Cell count information was derived 

from DNAm data. We included the count number of 

Cytotoxic T cells (CD8+T), B lymphocytes (CD19+ B), 

granulocytes (Gran), monocytes (Mono), Natural killer 

cells (NK), and Helper T Cells (CD4+T) as covariates. 

Family relationships were included as random effects in 

the model. 

 

Statistical analysis 

 

The primary analysis explored the relationship between 

the dCDT total score as the outcome variable and 

standardized DNAm age accelerations as the predictor 

variables. The residuals were computed by regressing 

the DNAm age metrics on chronological age to obtain 

DNAm age acceleration. The residuals were used as 

DNAm age acceleration in the following analysis. To 

facilitate interpretation, we standardized the DNAm age 
residuals to have a mean of 0 with a standard deviation 

(SD) of 1. Linear mixed models were employed to 

assess the association between the dCDT total score and 
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DNAm aging metrics. We adjusted for age at the dCDT, 

self−reported sex, and educational level and used family 

as a random effect. We also conducted an age−stratified 

analysis, dividing participants into two groups based on 

age at blood sample collection: those younger than 65 

years and those aged 65 years or older. 

 

To investigate the association between dCDT 

sub−domain scores and DNAm aging metrics, linear 

mixed models were employed with the same set of 

covariates. The FDR method [56] was applied to adjust 

for multiple testing [57]. 

 

We further investigated the association between dCDT 

total and sub−domain scores and DNAm−based plasma 

protein levels estimated using GrimAge version 1. 

Linear mixed models were employed with the same set 

of covariates. The FDR method [56] was applied to 

adjust for multiple testing [57]. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Distribution of delta age between DCTclock and DNAm. The x−axis shows the delta age between 

participants’ ages at the digital clock drawing test and when the whole blood sample is collected. Specifically, the delta age is calculated as 
the difference between the age at DCTclock and the age at DNAm. The y−axis shows the frequency of different delta age values. The red 
dashed line represents the mean delta age, which is 7.1 years. 
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Supplementary Figure 2. Association between dCDT scores and DNAm age acceleration in elder age group (age ≥65). The 

dCDT total score includes command task composite scores and copy task composite scores. DNA methylation age acceleration was 
obtained by regressing DNAm age metrics on chronological age. We conducted association analysis between standardized DNAm age 
acceleration and the dCDT total score, adjusted for age, self−reported sex, education and cell counts. The numbers inside each cell 
represent the P−values of the associations. The color represents the change in dCDT scores corresponding to a one SD increase in DNAm 
age acceleration. 

 

  



www.aging-us.com 17 AGING 

 
 

Supplementary Figure 3. Association between dCDT scores and DNAm age acceleration in younger age group (age <65). The 

dCDT total score includes command task composite scores and copy task composite scores. DNA methylation age acceleration was 
obtained by regressing DNAm age metrics on chronological age. We conducted association analysis between standardized DNAm age 
acceleration and the dCDT total score, adjusted for age, self−reported sex, education and cell counts. The numbers inside each cell 
represent the P−values of the associations. The color represents the change in dCDT scores corresponding to a one SD increase in DNAm 
age acceleration. 

 

  



www.aging-us.com 18 AGING 

 
 

Supplementary Figure 4. Association between dCDT scores and DNAm age acceleration in the overall sample with GrimAge 
version two. The dCDT total score includes command task composite scores and copy task composite scores. DNA methylation age 

acceleration was obtained by regressing DNAm age metrics on chronological age. We conducted association analysis between standardized 
DNAm age acceleration and the dCDT total score, adjusted for age, self−reported sex, education and cell counts. The numbers inside each 
cell represent the P−values of the associations. The color represents the change in dCDT scores corresponding to a one SD increase in 
DNAm age acceleration. 

 

 
 

Supplementary Figure 5. Association between dCDT scores and DNAm age acceleration in the younger age group (age <65) 
with GrimAge version two. The dCDT total score includes command task composite scores and copy task composite scores. DNA 

methylation age acceleration was obtained by regressing DNAm age metrics on chronological age. We conducted association analysis 
between standardized DNAm age acceleration and the dCDT total score, adjusted for age, self−reported sex, education and cell counts. The 
numbers inside each cell represent the P−values of the associations. The color represents the change in dCDT scores corresponding to a 
one SD increase in DNAm age acceleration. 
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Supplementary Figure 6. Association between dCDT scores and DNAm age acceleration in the elder age group (age ≥65) 
with GrimAge version two. The dCDT total score includes command task composite scores and copy task composite scores. DNA 
methylation age acceleration was obtained by regressing DNAm age metrics on chronological age. We conducted association analysis 
between standardized DNAm age acceleration and the dCDT total score, adjusted for age, self−reported sex, education and cell counts. The 
numbers inside each cell represent the P−values of the associations. The color represents the change in dCDT scores corresponding to a 
one SD increase in DNAm age acceleration. The simple motor function from Copy task was significantly associated with GrimAge (FDR = 
0.047). 

 

 
 

Supplementary Figure 7. Association between dCDT scores and DNAm age acceleration in the females. The dCDT total score 
includes command task composite scores and copy task composite scores. DNA methylation age acceleration was obtained by regressing 
DNAm age metrics on chronological age. We conducted association analysis between standardized DNAm age acceleration and the dCDT 
total score, adjusted for age, education and cell counts. The numbers inside each cell represent the P−values of the associations. The color 
represents the change in dCDT scores corresponding to a one SD increase in DNAm age acceleration. 

 



www.aging-us.com 20 AGING 

 
 

Supplementary Figure 8. Association between dCDT scores and DNAm age acceleration in the male participants. The dCDT 

total score includes command task composite scores and copy task composite scores. DNA methylation age acceleration was obtained by 
regressing DNAm age metrics on chronological age. We conducted association analysis between standardized DNAm age acceleration and 
the dCDT total score, adjusted for age, education and cell counts. The numbers inside each cell represent the P−values of the associations. 
The color represents the change in dCDT scores corresponding to a one SD increase in DNAm age acceleration. 

 

 
 

Supplementary Figure 9. Association between dCDT scores and DNA methylation−based plasma protein levels in the 
overall sample. The dCDT total score includes command task composite scores and copy task composite scores. Details about DNA 

methylation−based plasma protein levels can be found in a previous study [1]. We conducted association analysis between standardized 
DNAm plasma protein levels and the dCDT total score, adjusted for age, self−reported sex, and education. The numbers inside each cell 
represent the P−values of the associations. The color represents the change in dCDT scores corresponding to a one SD increase in DNAm 
plasma protein levels. ADM was significantly associated with simple motor function in the command task (beta = −1.0, FDR = 0.046). 
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Supplementary Figure 10. Association between dCDT scores and DNA methylation−based plasma protein levels in the 
younger age group (age <65). The dCDT total score includes command task composite scores and copy task composite scores. Details 

about DNA methylation−based plasma protein levels can be found in a previous study [1]. We conducted association analysis between 
standardized DNAm plasma protein levels and the dCDT total score, adjusted for age, self−reported sex, and education. The numbers inside 
each cell represent the P−values of the associations. The color represents the change in dCDT scores corresponding to a one SD increase in 
DNAm plasma protein levels. 
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Supplementary Figure 11. Association between dCDT scores and DNAm −based plasma protein levels in the elder age 
group (age ≥65). The dCDT total score includes command task composite scores and copy task composite scores. Details about DNA 

methylation−based plasma protein levels can be found in a previous study [1]. We conducted association analysis between standardized 
DNAm plasma protein levels and the dCDT total score, adjusted for age, self−reported sex, and education. The numbers inside each cell 
represent the P−values of the associations. The color represents the change in dCDT scores corresponding to a one SD increase in DNAm 
plasma protein levels. dCDT total score significantly associated with PAI1 (beta = −2.1, FDR = 0.033), TIMP1 (beta = −2.8, FDR = 0.047), and 
ADM (beta = −2.8, FDR = 0.047). 
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Supplementary Tables 
 

Supplementary Table 1. Descriptive data of the three generations DNA methylation. 

 Total Age <65 Age ≥65 

(n = 1789) (n = 804) (n = 985) 

Chronological age(years) 58 (± 12) 48 (± 7.3) 67 (± 6.5) 

First generation 

Hannum 62 (± 9.0) 55 (± 6.3) 68 (± 5.8) 

Horvath2 53 (± 7.9) 47 (± 5.6) 58 (± 5.7) 

Second generation 

PhenoAge 52 (± 9.7) 45 (± 7.1) 59 (± 6.7) 

GrimAge 69 (± 9.5) 61 (± 6.6) 75 (± 6.0) 

Third generation 

DunedinPACE 1.1 (± 0.12) 1.0 (± 0.11) 1.1 (± 0.11) 

The chronological age, first−generation and second−generation epigenetic clock measure age in years. The third−generation 
epigenetic clock measure aging in pace of aging. Mean with standard deviation is reported for each cell. 

 

 

Supplementary Table 2. Descriptive data of advance aging in different sex groups. 

 Total Male Female 

(n = 1789) (n = 834) (n = 955) 

First Generation 

    Hannum 49.6 66.2 35.1 

    Horvath 49.1 56.2 42.8 

Second Generation 

    PhenoAge 47.6 53.7 42.3 

    GrimAge 40.4 57.4 25.4 

Third Generation 

    DunedinPACE 65.0 67.6 62.7 

This table shows the percentage of participants with advanced aging. 
 

 

Supplementary Table 3. Interaction analysis between epigenetic age residual and age at dDCT age. 

 Coefficient of interaction 
term  

Coefficient of DNAm 
age residual 

Coefficient of age 
at dCDT  

P−Value of 
interaction term 

DunedinPACE −0.9 41.6 0.42 0.004* 

Hannum −0.002 −0.06 −0.50 0.880 

Horvath −0.009 0.40 −0.50 0.302 

PhenoAge −0.0007 −0.23 −0.50 0.931 

GrimAge 0.001 −0.40 −0.50 0.928 

 

 

Supplementary Table 4. Interaction analysis between epigenetic age residual and sex. 

 Coefficient of interaction 
term  

Coefficient of DNAm 
age residual 

Coefficient of sex  
P−Value of 

interaction term 

DunedinPACE −0.3 −17.0 4.00 0.967 

Hannum −0.004 −0.16 4.04 0.989 

Horvath 0.04 −0.30 4.20 0.844 
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PhenoAge −0.04 −0.20 4.04 0.835 

GrimAge 0.13 −0.50 3.65 0.629 

 

 

Supplementary Table 5. Association analysis between dCDT scores and DNA methylation−based plasma protein 
levels in GrimAge estimation. 

 Total Age < 65 Age ≥65 

(n = 1789) (n = 804) (n = 985) 

dCDTScore 

   ADM −2.86 (−4.69, −1.04) −2.93 (−5.38, −0.49) −3.11 (−5.63, −0.59) 

   B2M −0.87 (−1.95, 0.21) −1.13 (−2.55, 0.28) −1.37 (−2.88, 0.14) 

   CystatinC −0.58 (−1.67, 0.50) −0.12 (−1.41, 1.16) −1.94 (−3.69, −0.20) 

   GDF15 −1.02 (−2.10, 0.06) −0.86 (−2.24, 0.52) −1.73 (−3.33, −0.13) 

   Leptin −2.25 (−5.80, 1.29) −0.88 (−6.63, 4.84) −2.33 (−6.86, 2.20) 

   PAI1 −2.33 (−3.53, −1.13) −1.91 (−3.49, −0.34) −2.54 (−4.20, −0.88) 

   TIMP1 −1.47 (−3.00, 0.05) −1.22 (−3.29, 0.85) −2.82 (−4.96, −0.68) 

COPDrawingEfficiency 

   ADM −0.49 (−1.30, 0.31) −0.36 (−1.60, −0.87) −0.81(−1.85, 0.23) 

   B2M 0.01 (−0.47, 0.49) 0.36 (−0.35, 1.08) −0.42 (−1.04, 0.21) 

   CystatinC −0.16 (−0.64, 0.32) −0.28 (−0.94, 0.37) −0.35 (−1.07, 0.37) 

   GDF15 −0.03 (−0.51, 0.44) −0.34 (−1.04, 0.36) −0.11 (−0.78, 0.55) 

   Leptin −0.26 (−1.83, 1.30) −0.81 (−3.69, 2.05) −0.25 (−2.13, 1.63) 

   PAI1 −0.56 (−1.09, −0.03) −0.37 (−1.17, 0.43) −0.64 (−1.32, 0.05) 

  TIMP1 −0.25 (−0.92, 0.42) −0.17 (−1.21, 0.87) −0.51 (−1.40, 0.38) 

COPSimpleMotor 

   ADM −0.99 (−1.57, −0.40) −1.30 (−2.18, −0.43) −0.94 (−1.73, −0.15) 

   B2M −0.39 (−0.74, −0.04) −0.43 (−0.94, 0.07) −0.46 (−0.94, 0.01) 

   CystatinC −0.29 (−0.64, 0.06) −0.46 (−0.93, 0.01) −0.25 (−0.80, 0.29) 

   GDF15 −0.60 (−0.95, −0.25) −0.78 (−1.28, −0.28) −0.61 (−1.12, −0.11) 

   Leptin 0.12 (−1.03, 1.26) −0.39 (−2.43, 1.65) 0.08 (−1.34, 1.50) 

   PAI1 −0.74 (−1.13, −0.35) −0.82 (−1.38, −0.25) −0.66 (−1.18, −0.14) 

   TIMP1 −0.42 (−0.91, 0.07) −0.70 (−1.45, 0.04) −0.37 (−1.04, 0.31) 

COPInformationProcessing 

   ADM −0.02 (−1.00, 0.97) 1.16 (−0.29, −2.61) −0.80 (−2.12, 0.52) 

   B2M 0.11 (−0.49, 0.69) 0.80 (−0.04, 1.64) −0.50 (−1.30, 0.29) 

   CystatinC 0.12 (−0.47, 0.69) 0.07 (−0.70, 0.85) −0.37 (−1.28, 0.55) 

   GDF15 0.17 (−0.41, 0.76) 0.09 (−0.73, 0.91) −0.11 (−0.95, 0.73) 

   Leptin −0.53 (−2.45, 1.38) −0.28 (−3.66, 3.10) −0.77 (−3.14, 1.60) 

   PAI1 −0.60 (−1.25, 0.05) −0.004 (−0.93, 0.94) −0.94 (−1.81, −0.07) 

   TIMP1 −0.38 (−1.20, 0.44) 0.04 (−1.19, 1.27) −1.15 (−2.27, −0.03) 

COPSpatialReasoning 

   ADM −3.02 (−4.65, −1.39) −2.86 (−5.29, −0.44) −3.23 (−5.41, −1.06) 

   B2M −1.04 (−2.01, −0.08) −1.44 (−2.85, −0.04) −1.14 (−2.45, 0.17) 

   CystatinC −0.58 (−1.55, 0.39) −0.74 (−0.54, 2.03) −1.59 (−3.10, −0.07) 

   GDF15 −0.70 (−1.68, 0.27) 0.13 (−1.24, 1.51) −1.07 (−2.47, 0.32) 

   Leptin −5.79 (−8.95, −2.63) −6.21 (−11.87, −0.58) −5.09 (−9.01, −1.17) 

   PAI1 −1.71 (−2.78, −0.63) −2.10 (−3.67, −0.54) −1.42 (−2.86, 0.02) 

   TIMP1 −1.57 (−2.93, −0.21) −0.99 (−3.05, 1.06) −2.05 (−3.91, −0.19) 
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COMDrawingEfficiency 

   ADM −0.05 (−1.04, 0.93) −0.42 (−1.91, 1.07) −0.04 (−1.33, 1.25) 

   B2M 0.33 (−0.25, 0.91) 0.15 (−0.72, 1.01) 0.12 (−0.65, 0.89) 

   CystatinC 0.16 (−0.42, 0.75) −0.11 (−0.90, 0.67) −0.08 (−0.97, 0.82) 

   GDF15 0.10 (−0.49, 0.68) −0.13 (−0.97, 0.72) −0.11 (−0.93, 0.71) 

   Leptin 1.27 (−0.65, 3.18) 3.09 (−0.39, 6.56) 0.54 (−1.77, 2.85) 

   PAI1 0.08 (−0.57, 0.72) 0.25 (−0.71, 1.22) 0.04 (−0.81, 0.89) 

   TIMP1 0.29 (−0.54, 1.11) 0.19 (−1.07, 1.45) −0.07 (−1.17, 1.02) 

COMInformationProcessing 

   ADM −1.00 (−1.74, −0.25) −0.38 (−1.48, 0.71) −1.58 (−2.58, −0.58) 

   B2M −0.45 (−0.89, −0.01) −0.35 (−0.98, 0.28) −0.64 (−1.24, −0.04) 

   CystatinC −0.65 (−1.09, −0.21) −0.75 (−1.33, −0.16) −0.79 (−1.49, −0.10) 

   GDF15 −0.78 (−1.22, −0.34) −0.89 (−1.51, −0.27) −0.89 (−1.53, −0.25) 

   Leptin −0.22 (−1.67, 1.22) 0.50 (−2.04, 3.04) −0.52 (−2.32, 1.29) 

   PAI1 −0.83 (−1.32, −0.34) −0.38 (−1.09, 0.33) −1.07 (−1.74, −0.41) 

   TIMP1 −0.83 (−1.45, −0.21) −0.95 (−1.88, −0.02) −0.94 (−1.79, −0.08) 

COMSpatialReasoning 

   ADM −0.33 (−1.20, 0.54) −0.31 (−1.52, 0.90) −0.30 (−1.51, 0.91) 

   B2M 0.19 (−0.32, 0.71) 0.37 (−0.33, 1.08) −0.12 (−0.85, 0.60) 

   CystatinC 0.32 (−0.20, 0.84) 0.17 (−0.47, 0.82) −0.08 (−0.91, 0.76) 

   GDF15 0.20 (−0.32, 0.72) 0.13 (−0.56, 0.81) −0.13 (−0.90, 0.64) 

   Leptin 0.89 (−0.80, 2.57) 1.67 (−1.15, 4.48) 0.46 (−1.72, 2.63) 

   PAI1 −0.20 (−0.77, 0.37) −0.13 (−0.91, 0.65) −0.19 (−0.99, 0.61) 

   TIMP1 0.03 (−0.69, 0.76) −0.01 (−1.03, 1.01) −0.45 (−1.47, 0.58) 

COPSpatialReasoning 

   ADM −0.94 (−2.48, 0.60) −1.86 (−3.85, 0.13) −0.48 (−2.70, 1.72) 

   B2M −0.52 (−1.44, 0.39) −1.04 (−2.19, 0.11) −0.52 (−1.84, 0.80) 

   CystatinC 0.08 (−0.83, 1.00) −0.25 (−1.30, 0.81) −0.72 (−2.25, 0.81) 

   GDF15 −0.25 (−1.17, 0.66) −0.61 (−1.73, 0.52) −0.67 (−2.07, 0.74) 

   Leptin 0.62 (−2.37, 3.61) 0.13 (−4.53, 4.77) 1.14 (−2.82, 5.10) 

   PAI1 −1.18 (−2.20, −0.17) −0.83 (−2.12, 0.45) −1.46 (−2.92, −0.01) 

   TIMP1 −0.38 (−1.67, 0.91) −0.87 (−2.55, 0.81) −1.44 (−3.31, 0.44) 

Note: Effect size with 95% confidence intervals is provided for each plasma protein level. Subdomain scores of dCDT copy task 
start with COP; subdomain scores dCDT command task start with COM. Detailed information about how each plasma protein 
level was used in GrimAge estimation can be found in a previous study [1]. 
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