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INTRODUCTION 
 

Sestrins were identified two decades ago as stress-

responsive proteins that play an important role in 

regulating cellular homeostasis. Vertebrate genomes 

showcase three Sestrin genes (SESN1-3), while 

invertebrates feature just one [1–3]. Numerous 

stressors, ranging from hypoxia and oxidative stress to 

DNA damage and nutrient deprivation, induce Sestrin 

expression in mammalian cells. The orchestration 

behind this expression involves several transcription 

factors, notably p53, FOXO, ATF4 and NRF2 [4–6]. 

Highlighting evolutionary conservation [7], the same 

signalling pathways trigger the activation of dSesn in 
D. melanogaster [8]. Consequently, Sestrins play 

pivotal roles in the regulation of cellular viability 

under various stress conditions, such as hypoxia, 

oxidative stress, DNA damage and glucose deprivation 

[2, 9–13]. 

 

Earlier research from our team established Sestrins as 

antioxidant proteins that play a critical role in inhibiting 

the mechanistic target of rapamycin complex 1 

(mTORC1) kinase [9, 14–16]. mTORC1 is an intricate 

environmental sensor that integrates signals from 

nutrients, growth factors and stresses to regulate cell 

fate decisions. mTORC1 functions as a central regulator 

of biosynthesis and cell growth, while also suppressing 

macroautophagy (herein in the text – autophagy) [17]. 

Autophagy is the process of encapsulating intracellular 

components into autophagosomal vesicles, followed by 

the degradation of their contents in lysosomes. 

Autophagy is essential for nutrient supply and cell 

repair under stressful conditions. While autophagy 
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typically supports cell survival under stress, it can also 

trigger autophagy-dependent cell death [18]. 

 

Remarkably, mTORC1 plays a key role in lifespan and 

aging regulation across various species. Application of 

specific mTORC1 inhibitors, like rapamycin, has been 

shown to enhance lifespan in different organisms from 

yeast to mice [19–23]. Similarly, caloric restriction (CR), 

a well-documented longevity enhancer across many 

species, also represses mTORC1 activity, further 

cementing the role of this kinase in aging control [24–

26]. Nutrient and energy availability signals are 

transmitted to mTORC1 through the evolutionarily 

conserved insulin/IGF1 signaling pathway in metazoans 

[27]. In addition to mTORC1, the insulin/IGF1 signalling 

pathway inhibits the forkhead box O (FoxO) transcription 

factors via Akt-mediated phosphorylation and nuclear 

exclusion [28], and FoxOs regulate adaptation to 

starvation conditions in metazoans [29, 30]. In contrast, 

mTORC1 is activated by Akt in response to insulin/IGF-

1 signaling and promotes anabolic processes while 

inhibiting catabolic pathways [31]. 

 

Branched-chain amino acids (BCAA), especially 

leucine, play a critical role in the regulation of 

mTORC1, primarily via activation of the GATOR2 

protein complex. GATOR2 is an inhibitor of the 

GATOR1 protein complex, which suppresses the 

activity of RagA/B GTPases, thereby preventing 

mTORC1 translocation to lysosomes and its activation 

[17]. Sestrins inhibit mTORC1 through the interaction 

with GATOR2. Leucine binding to Sestrins induces 

conformational changes that weaken the interaction 

between Sestrins and GATOR2, leading to mTORC1 

activation [32, 33]. 

 

Being regulators of stress response and metabolism, 

broader implications of Sestrins in aging control cannot 

be understated. In C. elegans, variations in sesn-1 

expression levels have measurable effects on lifespan 

and physiological functions [34, 35]. Similarly, in D. 

melanogaster, alterations in dSesn levels contribute to 

the development of age-associated disorders such as 

muscle degeneration and cardiac arrhythmia [8]. Many 

of Sestrin’s effects might be attributed to its role in 

activating autophagy through the mTORC1-mediated 

mechanism. Recent findings indicate that dSesn plays a 

key role in extending lifespan in flies subjected to 

BCAA restriction [36]. Stem cell functionality is 

maintained through autophagy [37] and the impact of 

Sestrins on various facets of stem cell biology, 

encompassing both stemness and differentiation, is also 

being recognized [38]. 
 

In an effort to elucidate overarching role of Sestrins in 

lifespan modulation during caloric deprivation (CD), 

we utilized a C. elegans model in which sesn-1 was 

inactivated via gene deletion [35]. Existing research 

has underscored the remarkable lifespan extension in 

nematodes upon CD [39, 40]. Our studies aimed to 

elucidate Sestrin’s role in lifespan regulation under CD 

and to examine how sesn-1 deficient worms respond to 

stress. Based on our studies in C. elegans, we 

demonstrate that the relationship between sesn-1  

and the GATOR–TORC1–autophagy axis is highly 

conserved across eukaryotes [7]. We investigated the 

involvement of sesn-1 in signalling pathways that link 

mTORC1 activity, autophagy and increased lifespan 

during CD in C. elegans, such as those regulated by 

let-363 (an ortholog of the mammalian mTOR gene) 

[41], daf-2 (an ortholog of the mammalian IGFR1 

gene) [42] and daf-16 (an ortholog of the mammalian 

FOXO genes) [42]. We also evaluated the potential 

involvement of sesn-1 in lifespan extension in 

nematodes carrying a deletion in the eat-2 gene [43] 

that is required for proper pharyngeal function. 

Animals carrying this mutation experience 

continuous, moderate caloric restriction throughout 

development and adulthood. Our findings confirm the 

critical role of sesn-1 in lifespan extension mediated 

by mTORC1 inhibition and autophagy activation in 

response to CD. 

 

RESULTS 
 

Sesn-1 modulates lifespan extension in C. elegans 

 

To understand the role of sesn-1, the nematode ortholog 

of the Sestrin genes, in the control of aging and lifespan, 

we determined its impact on lifespan regulation under 

CD conditions. Using established protocols [40], 

nematodes were cultured on agar plates with (control) 

or without bacteria to assess lifespan. As previously 

reported [34], sesn1-deletion mutant strain, sesn-

1(ok3157), exhibited a marginally reduced lifespan 

compared to their wild-type (WT) counterparts under 

normal conditions. This suggests that sesn-1 facilitates 

nematode homeostasis in food-abundant conditions. 

However, in our observations, the lifespan of the sesn-

1(ok3157) animals did not differ from that of the WT 

counterparts under ad libitum conditions (Figure 1 and 

Table 1). Therefore, we decided to examine the role of 

sesn-1 in the regulation of lifespan in response to CD. 

According to our data, CD augmented the lifespan of 

WT animals by 40.2%. In contrast, the sesn-1(ok3157) 
worms experienced a mere 6.2% increase in lifespan, 

underscoring the pivotal role of sesn-1 in lifespan 

extension following CD exposure (Figure 1 and Table 

1). The same data were observed in another sesn-1 

deficient strain, sesn-1(ie24589) (IE24589 strain with 

MOS-1 transposon insertion in 3 exon) (Supplementary 

Figure 1). 
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Table 1. Lifespan extension means analysis for control WT and sesn-1(ok3157) nematodes under caloric 
deprivation, with RNAi expression against npp-18 and Y32H12A.8. 

Strain RNAi 
Control mean lifespan 

± SEM, days 
n 

Starvation mean 
lifespan ± SEM, days 

n 
Effect vs. 
control % 

p-value vs. 
control 

WT EV 18,1 ± 0,50 46 24,5 ± 0,61 57 + 40,2% <0,0001 

sesn-1(ok3157) EV 17,6 ± 0,52 49 18,8 ± 0,6 57 + 6,19% 0,8242 

WT npp-18 17,5 ± 0,47 52 18,3 ± 0,58 49 + 4,38% >0,9999 

sesn-1(ok3157) npp-18 16,7 ± 0,44 51 17,3 ± 0,54 52 + 3,95% >0,9999 

WT Y32H12A.8 17,1 ± 0,59 50 17,8 ± 0,71 46 + 3,5% >0,9999 

sesn-1(ok3157) Y32H12A.8 16,5 ± 0,53 50 16,5 ± 0,45 44 + 0,12% >0,9999 

 

Sesn-1 protects nematodes from multiple stresses 

 

Given the link between stress response and lifespan 

modulation, where proteins responsive to stress curb 

accumulation of age-linked damage, we investigated 

how sesn-1 influences stress tolerance. Exposing 

nematodes to various stressors like oxidizing agents 

(paraquat and hydrogen peroxide) and axenic culture 

medium (M9) revealed stark differences between WT 

and sesn-1(ok3157) or sesn-1(ie24589) animals. When 

WT first larval stage (L1) nematodes were placed in M9 

medium, they outlived their sesn-1(ok3157) or sesn-

1(ie24589) congeners, showing reduced resistance of 

sesn-1 mutants to nutrient restriction (Figure 2A). 

Furthermore, oxidative stress induced by paraquat and 

H2O2 dramatically accelerated the death of sesn-

1(ok3157) and sesn-1(ie24589) worms compared to 

their WT counterparts (Figure 2B, 2C). These collective 

findings emphasize the role of sesn-1 in bolstering 

stress resilience in nematodes, likely through 

mechanisms analogous to those that promote lifespan 

extension during CD. 

 

Sesn-1: an essential component for autophagy 

activation 

 

Autophagy, a mechanism that promotes lifespan 

extension during nutrient scarcity and augments stress 

resistance [44, 45], may be activated by sesn-1. To test 

this hypothesis, we utilized a C. elegans strain adls2122 
that expresses a GFP-tagged LGG-1 fusion protein 

(LGG-1::GFP), where LGG-1 is the nematode ortholog 

of the mammalian autophagy marker LC3. 

Autophagosomes incorporating LGG-1::GFP form

 

 
 

Figure 1. C. elegans lifespan extension under CD is modulated by sesn-1. The lifespan of WT and sesn-1(ok3157) nematodes was 

assessed after plating on control or axenic media. 
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discrete GFP-positive vesicles, which can be readily 

visualized by fluorescence microscopy. [46]. In WT 

third larval stage (L3) nematodes subjected to CD, we 

observed a pronounced accumulation of LGG-1::GFP-

labeled autophagosomes within the seam cells. In 

contrast, nematodes with sesn-1 silenced by RNAi 

(sesn-1(RNAi)) exhibited only a modest increase in 

LGG-1::GFP-labeled autophagosomes, emphasizing 

sesn-1’s crucial role in autophagy initiation during 

starvation. Under control conditions, WT animals 

exhibited an average of 0.38 autophagosomes per cell 

compared to just 0.14 autophagosomes per cell in sesn-
1 mutants—a difference of more than two-fold, which 

was statistically significant (p = 0.02194) (Figure 3A). 

In mammals, Sestrin-dependent autophagy activation is 

mediated by mTORC1 inhibition [6]. To ascertain sesn-

1’s role in autophagy during nematode starvation, we 

subjected both WT and sesn-1(RNAi) worms to CD and 

evaluated mTORC1 activity and autophagy levels using 

immunoblotting. While the control group exhibited 

reduced ribosomal protein S6 phosphorylation post-CD 

exposure — an mTORC1-inhibiting event — this 

 

 
 

Figure 2. Role of Sesn-1 in stress resistance. The viability of WT and sesn-1(ok3157) C. elegans was studied under various stress 

conditions. (A) In axenic M9 medium (n = 783 for WT, n = 437 for sesn-1(ok3157), n = 511 for sesn-1(ie24589), the mean survival rates for 
sesn-1(ok3157) and sesn-1(ie24589) were 6.13 ± 0.4 and 6.16 ± 0.3 days, respectively, compared to 7.9 ± 0.5 days for WT. The difference 
between sesn-1(ok3157) and sesn-1(ie24589) was not significant (P > 0.05), while both mutants showed significantly lower survival than WT 
(P < 0.001). (B) In the presence of 300 µM paraquat (n = 1103 for WT, n = 876 for sesn-1(ok3157), n = 882 for sesn-1(ie24589)), the mean 
survival rates were 4.1 ± 1.2 and 4.0 ± 0.9 hours for sesn-1(ok3157) and sesn-1(ie24589), respectively, compared to 5.8 ± 1.2 hours for WT. 
Again, the difference between the two sesn-1 mutants was not significant (P > 0.05), while both were significantly more sensitive than WT 
(P < 0.001). (C) In the presence of 4 mM H₂O₂ (n = 1301 for WT, n = 930 for sesn-1(ok3157), n = 827 for sesn-1(ie24589)), the mean survival 
rates were 3.3 ± 0.5 and 3.8 ± 0.6 hours for sesn-1(ok3157) and sesn-1(ie24589), respectively, compared to 6.4 ± 0.8 hours for WT. The 
difference between sesn-1(ok3157) and sesn-1(ie24589) was not statistically significant (P > 0.05), while both mutants showed significantly 
reduced survival compared to WT (P < 0.001). Data are presented as mean ± S.E.M. 
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reduction was not observed in sesn-1(RNAi) animals 

(Figure 3B). Evaluation of autophagy by comparing 

LGG-1::GFP with its pro-autophagic, phosphatidyl-

ethanolamine-conjugated form (LGG-1::GFP-PE) 

revealed that CD prompted substantial accumulation of 

LGG-1::GFP-PE in WT worms. Yet, sesn-1(RNAi) 
worms exhibited only a minor increase in this auto-

phagosome marker post-starvation, again highlighting 

sesn-1’s indispensable role in autophagy modulation 

under CD in C. elegans (Figure 3B). In a bid to elucidate 

sesn-1 contribution to autophagosome formation, we 

evaluated LGG-1::GFP-PE formation intensity in worms 

pre-treated with 200 mM chloroquine for 24 hours [47, 

48]. Under acute starvation, WT worms manifested 

pronounced LGG-1::GFP-PE accumulation, but this was 

notably suppressed in sesn-1(RNAi) worms, signifying 

sesn-1’s necessity for appropriate autophagy activation 

(Supplementary Figure 2). 

 

Role of Sesn-1 role in sustaining muscle integrity 

 

Previous studies in D. melanogaster and mice have 

linked Sestrins to preservation of muscle function, 

primarily through their role in mitigating oxidative 

stress-induced damage [8, 38, 49]. To investigate sesn-

1’s potential role in preserving muscle density in 

C. elegans, we utilized a nematode strain (ccIs4251 I, 

e1282 IV) expressing myo-3p::GFP NLS-tagged fusion 

protein, which labels myocyte nuclei. Assessment of 

muscle density across various developmental stages, 

particularly the fourth larval stage (L4) and 5-day-old 

adult stage, in WT and sesn-1(RNAi) animals revealed 

that muscle density was consistent in the L4 animals 

across the groups. However, a pronounced reduction in 

myocyte count was observed in 5-day-old sesn-1(RNAi) 

adult worms, highlighting the essential role of sesn-1 in 

maintaining adult muscle function (Figure 3C). 

 

Sesn-1 facilitates lifespan extension through 

GATOR2 

 

Previous studies in mammalian cells have shown  

that Sestrins suppress mTORC1 activity by inhibiting 

GATOR2 [32, 50]. The Sestrin-GATOR-mTORC1 

signalling pathway is known to be conserved in 

eukaryotes [7], so we analysed the potential involve- 

 

 
 

Figure 3. Autophagy activation by sesn-1 under CD correlates with reduced muscle degeneration. (A) Autophagosome 

accumulation in seam cells. Both control adIs2122 (DA2123 strain) and adIs2122; sesn-1(RNAi) nematodes, expressing a GFP-tagged LGG-1 
fusion protein during L3, were exposed to axenic medium. Autophagosome counts per seam cell were analyzed under control conditions (n 
= 137 for adIs2122, n = 56 for adIs2122; sesn-1(RNAi)) and starvation conditions (n = 117 for adIs2122, n = 80 for adIs2122; sesn-1(RNAi)). 
“ns” and “***” indicate P-values > 0.05 and < 0.001, respectively. All bar graphs are presented as mean ± S.E.M. (B) Immunoblot and 
densitometric analyses showing relative levels of GFP::LGG-1, its phosphatidylethanolamine-conjugated form (LGG-1::GFP-PE), and the 
phosphorylated form of ribosomal protein S6 (phospho-rpS6) in adIs2122 (DA2123 strain) and adIs2122; sesn-1(RNAi) worms. All bar 
graphs represent blot intensity normalized to actin. (C) Whole-body images of nematodes expressing a myo-3p::GFP NLS-tagged fusion 
protein in body wall muscle nuclei in the ccIs4251 (PD4251 strain). Nuclear counts were performed at L4 (n = 24 for ccIs4251 and n = 23 for 
ccIs4251; sesn-1(RNAi)) and at 5 days of adulthood (n = 20 for both groups). “ns” and “***” indicate P-values > 0.05 and < 0.001, 
respectively. All bar graphs are presented as mean ± S.E.M. 
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ment of GATOR2 in the sesn-1-modulated lifespan 

extension. We proposed that if sesn-1’s effects on the 

lifespan extension are GATOR2-dependent, sesn-1 

would not significantly influence lifespan in 

GATOR2-deficient worms under CD. To test this, we 

used RNAi to silence the genes encoding the major 

components of GATOR2: npp-18 and Y32H12A.8, the 

orthologs of the mammalian SEH1L and WDR24 

genes, respectively, in WT and sesn-1(ok3157) 
nematodes (Figure 4A, 4B) and measured lifespan 

increase during CD. While sesn-1 facilitated lifespan 

extension during CD in control worms, its effects were 

notably diminished when npp-18 and Y32H12A.8 were 

suppressed (Figure 4A, 4B and Table 1). Further 

studies examining sesn-1’s role in autophagy 

regulation in worms with suppressed GATOR2, using 

immunoblotting, revealed intriguing findings. In the 

absence of sesn-1, worms still exhibited modest 

autophagy; however, simultaneous RNAi-mediated 

suppression of sesn-1 and npp-18 significantly reduced 

autophagy. This suggests that sesn-1 likely operates 

via npp-18 (Figure 5). 

 

Sesn-1 supports lifespan extension via FOXO and in 

eat-2 mutants 

 

Sesn-1 may be involved in the signaling pathways known 

to be controlled by CD in C. elegans, such as those 

regulated by let-363(TOR) [41, 51], daf-2(IGF1R) [42] 

and daf-16(FOXO) [42]. We also tested the possible 

involvement of sesn-1 in lifespan extension in nematodes 

with a deletion in the eat-2 (ad1116) gene [43]. We used 

nematode strains with knockouts of eat-2(ad1116),  

daf-2(e1370) and daf-16(mu86) either with or without 

sesn-1 silencing by RNAi. The contribution of sesn-1 to 

the FOXO pathway and lifespan extension in eat-
2(ad1116) nematodes was appreciable but did not reach 

statistical significance (Figure 6A–6D and Table 2). 

Without daf-16 and sesn-1, the lifespan of starved worms 

is reduced by 9.5% (Figure 6C), whereas the presence of 

sesn-1 increases lifespan of daf-16(mu86) worms by 

7.5% under CD conditions. Survival of the eat-2 worms 

under CD requires sufficient autophagic activity. In 

starved nematodes lacking both eat-2 and sesn-1, lifespan 

increased by 3.6%, whereas the presence of sesn-1 

extended the lifespan of eat-2(ad1116) mutants by 11% 

(Figure 6D and Table 2). 
 

DISCUSSION 
 

Aging is one of humanity’s most pressing challenges, 

exacerbated by the global rise in life expectancy and  

the parallel increase in age-related diseases such as 

cancer, diabetes and neurodegenerative disorders. 

Understanding the complexities of aging is crucial for 

mitigating its adverse effects on human well-being and 

ensuring healthy aging. Notably, the key signaling 

pathways that govern aging are evolutionary conserved. 

Model organisms like C. elegans serve as indispensable 

tools for unravelling the molecular mechanisms 

underlying aging. CR has emerged as a key 

physiological intervention that extends both lifespan 

and healthspan across a wide range of eukaryotic 

species. In nematodes, CR as well as CD mimic the 

lifespan-extending effects observed in worms with the 

eat-2(ad1116) mutation, which significantly restricts 

 

 
 

Figure 4. Sesn-1 modulates longevity under CD via GATOR2. (A) Lifespan of WT and sesn-1(ok3157) worms subjected to npp-18 
RNAi knockdown in ad libitum and axenic media. (B) Lifespan of WT and sesn-1(ok3157) nematodes subjected to Y32H12A.8 RNAi 
knockdown in ad libitum and axenic media. 
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food intake [43]. Interestingly, overlaying CD and CR 

on eat-2 mutants does not further enhance this lifespan 

extension (Figure 6D and Table 2), suggesting that the 

eat-2 mutation, CD and CR may share common 

mechanisms of lifespan regulation. 

 

The central role of mTORC1, a critical nutrient sensor 

that is deactivated by glucose and amino acid scarcity, 

is evident in the aging regulation across diverse species 

from yeast to mice [25]. Both CR and inhibition of 

mTORC1 similarly extend lifespan, implying a 

common underlying mechanism [24]. Autophagy 

activation is a critical mechanism of lifespan extension, 

as evidenced by the abatement of lifespan extension in 

animals with inhibited autophagy during CR [41]. In C. 

elegans, this lifespan enhancement coincides with 

increased stress tolerance, a benefit attributed to 

activated autophagy, particularly during food scarcity 

[52, 53]. Adequate activation of autophagy by Sestrins 

may underlie the phenomenon of hormesis, the adaptive 

response to severe stress following exposure to low-

level stress, which could also promote lifespan and 

healthspan extension [53]. 

 

Various sensors activated by different nutrients and 

stress factors likely modulate autophagy, stress response 

and longevity. Essential proteins, including Sestrins, 

may integrate these signals and direct them to 

mTORC1-regulated autophagy, enabling an adaptive 

response to changing environments. In mammals, 

glucose shortage and amino acid deprivation increase 

SESN2 expression via a mechanism mediated by ATF4 

[4, 54]. Meanwhile, oxidative stress, DNA damage and 

hypoxia stimulate Sestrins’ expression through p53, 

NRF2 and some other transcription factors [37, 55, 56]. 

Interestingly, in our studies, sesn-1 mRNA levels 

peaked at 10 hours post-CD initiation but declined by 

16 hours, suggesting potential post-transcriptional 

regulation (data not shown). This could be explained by 

a decoupling of SESN-1 protein and mRNA expression, 

 

 
 

Figure 5. Autophagy intensity in C. elegans is influenced by sesn-1 and npp-18, a component of the GATOR2 complex. 
Control adIs2122 and adIs2122; sesn-1(RNAi) nematodes expressing GFP::LGG-1, with or without simultaneous npp-18 knockdown by RNAi, 
were subjected to starvation. The relative levels of GFP::LGG-1 conjugation to autophagosomes were measured by immunoblot 
densitometry. All bar graphs represent blot intensity normalized to actin. 
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Table 2. Lifespan extension means analysis under CD for daf-2 (e1370), eat-2 (ad1116), daf-16 (mu86) 
nematodes with sesn-1 RNAi expression and WT. 

Strain 
Sesn-1 gene 

status 
Ortholog 

Control mean 
lifespan ± 
SEM, days 

n 
Starvation 

mean lifespan 
± SEM, days 

n 
Effect vs. 

control, % 
p-value vs. 

control 

WT WT  18,2 ± 0,64 55 22,8 ± 0,39 52 +25,3 <0,0001 

sesn-1(ok3157) deletion  17,3 ± 0,56 51 18,6 ± 0,48 55 +8,7 0,4054 

daf-2 (e1370) WT IGF1r 31,8 ± 0,84 53 29,9 ± 0,62 66 −6,1 0,0252 

daf-2 (e1370) RNAi  IGF1r 23,4 ± 0,56 52 21,4 ± 0,52 56 −8,7 0,0219 

eat-2 (ad1116) WT  20,8 ± 0,58 59 23,1 ± 0,5 49 +11,0 0,0057 

eat-2 (ad1116) RNAi   15,8 ± 0,41 59 16,3 ± 0,46 64 +3,6 <0,0001 

daf-16 (mu86) WT 
FOXO 
family 

12,4 ± 0,41 54 13,3 ± 0,34 53 +7,5 >0,9999 

daf-16 (mu86) RNAi  
FOXO 
family 

12,2 ± 0,25 69 11,0 ± 0,22 55 −9,5 0,7069 

 

 

 
 

Figure 6. Lifespan regulation by sesn-1 through the daf-16 pathway and in eat-2 mutant under starvation. Analysis of the 

lifespan of different C. elegans strains: (A) WT and sesn-1(ok3157), (B) daf-2(e1370), (C) daf-16(mu86) and (D) eat-2(ad1116), with and 
without sesn-1(RNAi), incubated under control or caloric deprivation (CD) conditions. 
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with the protein potentially remaining stable despite the 

reduction in mRNA levels – similar to the dynamics 

observed for the mammalian SESN2 protein after 24 

hours of H₂O₂ exposure [9]. Such protein stabilization, 

coupled with its mRNA downregulation during 

continuous stress, may serve an adaptive function, 

conserving energy and optimizing recovery when 

conditions improve. Deletion of sesn-1 significantly 

attenuated CD-induced lifespan extension, highlighting 

its critical role in this process (Figure 1) [35, 57]. The 

slight extension observed in sesn-1-null animals 

subjected to CD might arise from Sestrin-independent 

nutrient sensing effects of other unidentified pathways. 

 

Given autophagy’s strong links to longevity and stress 

mitigation [44], we investigated sesn-1’s involvement in 

regulating autophagy and its key effector, mTORC1 

[41, 51], in the context of CD. Our findings demonstrate 

that sesn-1 mediates mTORC1 suppression and 

autophagy activation during food scarcity, potentially 

driving lifespan extension and stress resilience (Figures 

1 and 2A–2C). Failure of sesn-1 (RNAi) worms to 

activate autophagy properly in response to starvation 

(Figure 3B) and activate autophagosome formation at 

the appropriate level in response to chloroquine 

exposure (Supplementary Figure 2) indicates a 

remarkable role of sesn-1 in this process. RNA-

interference experiments (Figure 6B and Table 2) 

further support sesn-1’s upstream role in the TORC1 

pathway. Our studies (Figure 6C and Table 2) also 

suggest a possible interconnection between sesn-1 and 

the daf-16(FOXO) transcription factor, independent of 

the insulin/IGF pathway. However, these studies should 

be interpreted with caution and require further 

evaluation. 

 

Many of Sestrin’s functions appear to be mediated 

through its interactions with GATOR2. Our study 

showed that GATOR2-deficient worms failed to exhibit 

sesn-1-driven lifespan extension during CD, indicating 

GATOR2’s essential role in this pathway (Figure 4A, 

4B and Table 1). Thus, Sestrins may primarily exert 

their lifespan-regulating and stress-protective effects 

through modulation of mTORC1 activity and 

autophagy. This proposition aligns with the studies in 

D. melanogaster, underscoring the interplay between 

BCAAs deprivation, dSesn, mTORC1 and autophagy 

[37]. BCAAs restriction has also been noted to improve 

metabolic health in humans [58]. 

 

Future endeavours targeting sesn-1 deactivation in 

diverse cell types could shed light on its nuanced roles 

in regulating longevity and stress response. Elucidating 
the beneficial role of sesn-1 in nematode lifespan 

extension has important implications for developing 

strategies to enhance lifespan and healthspan in humans, 

given the evolutionary conservation of Sestrins across 

metazoan species. Targeting Sestrins could pave the 

way for therapeutic interventions that mimic CR 

benefits, offering promising strategies for mitigating 

age-associated diseases and delaying aging. 

 

MATERIALS AND METHODS 
 

Strains of C. elegans and their maintenance 

conditions 

 

Strains sourced from the Caenorhabditis Genetics Center 

(CGC) included: C. elegans Bristol N2 WT strain, 

RB2325 sesn-1(ok3157)I with deletion of 535bp in exon 

3 of the sesn-1 gene, DA2126 (adls2122 (lgg-
1p::GFP::LGG-1 + rol-6(su1006)), PD4251(ccIs4251)I, 

e1282 IV (myo-3p::GFP::LacZ::NLS + myo-

3p::mitochondrial GFP + dpy-20(+)), CB1370 daf-
2(e1370)III, DA1116 eat-2(ad1116)II, CF1038 daf-

16(mu86)I, E. coli OP50 and HT115(DE3) strains. 

Additionally, IE24589 sesn-1(ie24589), with an MOS-1 

transposon insertion in exon 3 of the sesn-1 gene, was 

kindly provided by Yohann Duverger, Universite Lyon. 

All strains underwent 8 outcrossing against the Bristol 

N2 WT strain to mitigate off-target mutations as outlined 

previously [59]. The C. elegans strains were maintained, 

synchronous culture was obtained and experiments were 

performed under standard conditions at 20°C [60]. 

 

RNAi-expressing plasmid construction 

 

RNA interference in C. elegans is a method to silence 

genes by introducing double-stranded RNA, which 

triggers degradation of a specific endogenous mRNA, 

effectively inactivating a target gene [61]. Total 

nematode RNA was extracted using Reagent 

ExtractRNA (Eurogen, Moscow, Russia) per 

manufacturer guidelines. Using reverse transcriptase 

Mint (Eurogen, Moscow, Russia), cDNA was 

synthesized and the subsequent cDNA fragments were 

PCR-amplified. The PCR primer pairs are shown in 

Table 3. The L4440 vector (Addgene, Watertown, MA, 

USA) was ligated with the respective cDNA fragments 

at XbaI and BamHI sites to create the RNAi-expressing 

constructs. Empty vector was used as control. 

 

Bacteria-fed RNAi 

 

Briefly, the transformed HT115 strain was grown in LB 

medium containing tetracycline (12.5 µg/ml) and 

ampicillin (100 µg/ml) at 37°C with shaking [62]. The 

bacteria were then plated on ampicillin-containing 

agarose plates supplemented with 1 mM IPTG and 

incubated at room temperature for two days. L1 C. 
elegans were added the following day. For double 

RNAi experiments, plates were prepared in a similar 
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Table 3. Primer sequences for C. elegans candidate genes. 

Gene Type Sequence 

sesn-1 
F 5′-agagagtctagaaccatgcacactac-3′ 

R 5′-agagaggatcctcaatccaaagcctt-3′ 

npp-18 
F 5′-agatctagagccagcgatatgacaatggcg-3′ 

R 5′-attggatcctcgggcatggtagatcgaagac-3′ 

Y32H12A.8 
F 5′-agatctagacgatctcatcgaaggtccatcg-3′ 

R 5′-ataggatccccaccacctgtggcaataagc-3′ 

Abbreviations: F: Forward Prime; R: Reverse Primer. 

 

Table 4. Primer sequences for RNAi qPCR validation. 

Gene Type Sequence 

sesn-1 
F 5′-tccgtgaagcaatttggaac-3′ 

R 5′-tcgctaccatcattaccacg-3′ 

npp-18 
F 5′-ttggcgcgttatttgggctc-3′ 

R 5′-gttcttcggatccattgggattct-3′ 

Y32H12A.8 
F 5′-ccacgacgtcgtcaaacgg-3′ 

R 5′-gttgcatgccaatcgaggc-3′ 

top-1 
F 5′-ggcccagaagaagtacgacagactg-3’ 

R 5′-tcgatggcccaacggaatttc-3′ 

Abbreviations: F: Forward Prime; R: Reverse Primer. 
 

manner except that the 1:1 mixture of both RNAi 

bacterial clones was seeded into the plates. 

 

qPCR analysis of mRNA 

 

Synchronized L1 nematodes were placed on bacteria-

laden NGM plates. L3 worms were rinsed off the plates 

with M9, then cleansed three times with PBS. After 

washing the worms with PBS, they were suspended in the 

0.1% Tween-20–PBS solution for 20 minutes to eliminate 

gut bacteria. The worms were snap-frozen in liquid 

nitrogen and RNA extraction was conducted using 

Reagent ExtractRNA (Eurogen, Moscow, Russia). A 

NanoDrop (Thermo Fisher Scientific Inc, Waltham, MA, 

USA) was used to determine RNA concentrations and the 

reverse transcription Mint Kit (Eurogen, Moscow, Russia) 

was utilized to synthesize cDNA from 3 µg of total RNA. 

mRNA levels were analyzed using the CFX96 (Bio-Rad 

Laboratories, Hercules, CA, USA) with qPCRmix-HS 

SYBR (Eurogen, Moscow, Russia) and assessed using the 

Bio-Rad CFX Manager software (Bio-Rad Laboratories, 

Hercules, CA, USA) (Supplementary Figure 3). 

Topoisomerase I (top-1) mRNA was used as a reference 

mRNA. The qPCR primer pairs listed in Table 4. 

 

Lifespan analysis during CD 

 

Synchronized L1 nematodes were plated on either 

RNAi plates or empty vector control plates. Upon 

reaching L4, worms were transferred to RNAi plates, 

empty vector control plates or plates lacking 

bactopeptone and bacteria. Viability was assessed daily 

according to the established protocols [39, 40]. Worms 

that disappeared or dried on the plate wall were 

excluded from the analysis. 

 

M9 media, paraquat and hydrogen peroxide survival 

analysis 

 

To analyze viability in M9 media, L1 nematodes were 

introduced to 6 cm Petri plates with a thin M9 layer 

and kept in a 20°C incubator with gentle shaking. 

Daily aliquots were plated on NGM to count live 

nematodes. For paraquat and hydrogen peroxide 

treatments, L4 nematodes were added to 24-well 

plates containing thin layers of M9 media enriched 

with either 300 µM paraquat or 4 mM hydrogen 

peroxide. Viability was determined as previously 

described. 

 

Fluorescent microscopy analysis of autophagy and 

muscle degeneration 

 

Autophagosomes in seam cells of the adls2122 strain, 

expressing the LGG-1::GFP fusion protein, were 
quantified in both wild-type and sesn-1(RNAi) L3 

animals using a Leica DMI4000B inverted microscope 

(Leica Microsystems, Wetzlar, Germany) at 640× 
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magnification, as previously described [63, 64]. The 

number of myocyte nuclei labelled with GFP in 

ccIs4251 strain, which expresses a myo-3 promoter 

driving a nuclear-targeted GFP-LacZ fusion and myo-3 

promoter driving mitochondrially targeted GFP, was 

analyzed in the same manner for worms at the L4 stage 

and at the 5-day-old adult stage. 

 

Immunoblotting 

 

Normalized nematode lysates containing 10 mg of 

protein per sample were subjected to 15% PAGE, as 

previously described [63–65]. The primary antibodies 

used for these studies were: anti-GFP (#11814460001, 

Roche Pharma, Penzberg, Germany), anti-phospho-

ribosomal protein S6 (#sc-54279, Santa Cruz 

Biotechnology, Dallas, TX, USA) and anti-actin (#sc-

47778, Santa Cruz Biotechnology, Dallas, TX, USA). 

The specificity of the anti-phospho-ribosomal protein 

S6 antibody was confirmed using a blocking peptide 

(#sc-54279 P, Santa Cruz Biotechnology, Dallas, TX, 

USA), adhering to the provided protocol. Blot images 

were acquired using the ChemiDoc Imaging System 

(Bio-Rad Laboratories, Hercules, CA, USA). 

 

Statistical analysis 

 

Statistical analyses were performed using GraphPad 

Prism 10 software (GraphPad Software, Boston, MA, 

USA). One-way ANOVA with Bonferroni correction (p 

< 0.05) for multiple comparisons was used to assess the 

statistical significance of differences in mean lifespan 

across groups in all survival experiments. Lifespan 

tables show the p-value used to compare the studied 

groups with their controls. For autophagy and muscle 

degeneration analyses, Student’s unpaired two-tailed t-

test was performed to compare the experimental groups 

with their respective controls. ns, *, ** and *** 

correspond to p-values > 0.05, < 0.05, < 0.01 and < 

0.001, respectively. 

 

Abbreviations 
 

C. elegans: Caenorhabditis elegans; D. melanogaster: 

Drosphila melanogaster; CGC: Caenorhabditis 

Genetics Center; CD: caloric deprivation; CR: caloric 

restriction; E. coli: Escherichia coli; EV: empty vector; 

IGFR: Insulin-like growth factor receptor; NGM: 

Nematode growth medium; RNAi: RNA Interference; 

WT: wild-type; L1, L3 and L4: first, third and fourth 

larval stages of C. elegans, respectively. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. C. elegans lifespan extension under CD is modulated by sesn-1. The lifespan of WT and sesn-1(ie24589) 

strain nematodes was assessed after plating animals on control (n = 57 WT, n = 57 sesn-1(ie24589) or axenic media (n = 76 WT, n = 77 sesn-
1(ie24589). The mean life expectancy of WT was 19.9 ± 0.74 days in control conditions and 27.9 ± 0.82 days in starvation conditions, p > 
0.001. The mean lifespan of sesn-1(ie24589) was 17,2 ± 0,59 days in control conditions and 18,1 ± 0,53 days in starvation conditions, p < 0.05. 
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Supplementary Figure 2. Chloroquine treatment leads to increased autophagosome accumulation in C. elegans in a sesn-1-
dependent manner. Control adIs2122 and adIs2122; sesn-1(RNAi) nematodes were initially exposed to chloroquine and then shifted to 

CD conditions. The autophagosomal fraction of GFP::LGG-1 was assessed using immunoblot densitometry. All bar graphs represent blot 
intensity normalized to actin. 
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Supplementary Figure 3. qPCR validation of RNA interference targeting sesn-1, npp-18, and Y32H12A.8 in WT and sesn-
1(ok3157) nematodes. All bar graphs represent relative gene expression normalized to the top-1 mRNA. 

 


