
www.aging-us.com 1 AGING 

INTRODUCTION 
 

The primary function of DNA helicases is to separate 

annealed strands in double-stranded nucleic acids and 

unpack genetic materials within an organism. Coupled 

with ATP hydrolysis, helicases acquire the free energy 

needed for nucleic acid separation. By cooperating with 

other DNA enzymes such as topoisomerases, nucleases, 

and polymerases, DNA helicases play crucial roles in 

facilitating DNA repair, replication, transcription, and 

recombination, thereby ensuring genome integrity and 

stability. 

 

The RecQ helicase family is conserved across a wide 

range of organisms, from bacteria and plants to animal 

kingdoms, indicating its fundamental role in nucleic 

acid metabolism [1, 2]. In this review, we will focus our 

discussions on the molecular functions of the three 

major RecQ helicases, BLM, WRN, and RecQL4, and 

the related diseases due to their pathogenic mutations. 

 

RecQ helicase family and its basic function 
 

RecQ helicase was first discovered in an Escherichia 
coli mutant that showed thymineless death (TLD) 

resistance [3]. This phenotype was caused by the 

mutation on the recQ gene, resulting in high sensitivity 

to UV-induced DNA damage. Further research on 

bacteria has revealed that this helicase family aids in 

DNA replication and recovery following DNA damage 
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ABSTRACT 
 

RecQ helicases are known as “caretakers” of the genome for their conserved helicase activities to resolve 
different complex DNA structures. Aberrant accumulation of unsolved DNA structures could lead to defects in 
DNA replication, gene transcription, and unrepaired DNA lesions. Pathogenic mutations on BLM, WRN, and 
RECQL4 are associated with several pathological conditions, namely Bloom syndrome (BS), Werner syndrome 
(WS), and Rothmund-Thomson syndrome (RTS). These syndromes are characterized by genomic instability and 
cancer predisposition. Additionally, some RecQ helicase diseases are linked to developmental defects and 
premature aging. In this review, we provide an overview of the RecQ helicases, focusing on the molecular 
functions and mechanisms, as well as the consequences of their dysfunction in cellular processes. We also discuss 
the significance of RecQ helicases in preventing various genetic disorders (BS, WS, RTS) and the insights obtained 
from the different animal models developed for studying the pathophysiology of RecQ helicase deficiencies. 

mailto:cheunghh@cuhk.edu.hk
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


www.aging-us.com 2 AGING 

[4–7]. Subsequently, homologs of the helicase are 

characterized as “caretakers of the genome” in different 

species, including sgs1 in Saccharomyces cerevisiae, 

wrn-1 in Caenorhabditis elegans, and ffa1 in Xenopus 

laevis [8–11]. As the RecQ family is highly conserved, 

it suggests a fundamental function of the helicases in 

DNA metabolism. Further investigations have revealed 

additional roles of the RecQ helicases in the 

maintenance of telomere integrity [12]. After the first 

draft of the human genome was released, five members 

of the RecQ helicase family were identified and named 

as RECQL, BLM, WRN, RECQL4, and RECQL5 [13]. 

Besides their direct role in DNA repair and maintenance 

of genome stability, RecQ helicase members are also 

found to regulate aging or aging-associated diseases, 

which may be an indirect outcome of DNA repair 

defects [14, 15]. 

 

A notable feature of this family is the presence of a 

specific RecQ core helicase domain (Figure 1), which 

contains seven conserved motifs (I, Ia, II, III, IV, V, 

VI), with an approximate size ranging from 300 to 450 

amino acids for each of their helicase domains. The 

motifs are conserved in the SF1 and SF2 helicase super 

families, and their common function is to unwind 

nucleic acids. The core helicase domain normally binds 

nucleoside triphosphates (NTP) and acquires free 

energy through NTP hydrolysis, an exergonic process 

coupled with the helicase activity [16–19]. Some 

distinct domains, however, are present in specific 

members only, indicating the unique functions of each 

RecQ helicase in various molecular interactions. One 

such unique structure is the RecQ C-terminal (RQC) 

domain, typically located following the zinc-binding 

subdomain. The RQC domain is present in RECQL, 

BLM, and WRN helicases but absent in RECQL4 and 

RECQL5. Due to its specific folding and sequence, the 

RQC domain can recognize and bind to DNA duplexes, 

facilitating the unwinding of double-helical structures 

[20, 21]. Moreover, the RQC domains in WRN and 

BLM helicases can recognize and resolve specific DNA 

secondary structures, such as guanine quadruplex (G4) 

[22, 23]. Also specific to BLM and WRN helicases, the 

HRDC (helicase and RNaseD C-terminal) domain is 

required for interacting with DNA, including single-

stranded DNA (ssDNA) and specific double-stranded 

DNA (dsDNA). It also facilitates protein-protein 

interactions with different affinities [24–26]. In 

response to physiological conditions, the HRDC domain 

increases the helicase activity upon binding to various 

substrates (e.g., structured nucleic acids) [24, 27]. 

Because BLM, WRN, and RECQL4 have been proven to 

be associated with well-characterized human genetic 

disorders that highlight their clinical and biological 

significance, the following content focuses on these 

three helicases. 

 

 
 

Figure 1. The RecQ helicase family in human. The RecQ helicase family contains five members in humans. The helicase core containing a 

DEAD-/DEXH-/DEAH-like helicase (red box) and a C-terminal helicase domain (pink box) is conserved in all of the family members. The RQC 
domain (yellow box) is present in RECQL, BLM and WRN helicases. The HRDC domain (green box) is found in BLM and WRN only. The zinc-
binding domain (blue box) is conserved in RECQL, BLM, WRN, and RECQL5. The exonuclease domain (purple grey box) is unique to WRN, 
whereas the N-terminal domain (light blue) is unique to BLM, and the mitochondrial localization sequence (brown box) is unique to RECQL4. 
Image is created by Illustrator for Biological Sequences (IBS) 2.0. 
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Molecular function of BLM 
 

BLM helicase (also known as RECQL3) is crucial in 

maintaining genome stability. BLM has a unique N-

terminal domain (NTD) structure that enables it to 

undergo oligomerization and interact with other 

proteins. The NTD permits the formation of a large 

ssDNA loop when resolving duplex DNA. As a result, 

cells lacking the BLM NTD domain are more sensitive 

to DNA damage and defective in DNA repair process 

[58]. This phenomenon could be accounted by the 

ability of the NTD domain to interact with multiple 

DNA repair proteins, including RAD51, RAD54, RPA 

(replication protein A), TP53 (tumor protein p53), 

RMI1 (recQ-mediated genome instability protein 1), 

and TOPIIIα (DNA topoisomerase III alpha) [45, 59]. 

RAD51, RAD54, RPA, RMI1, and TOPIIIα mainly 

operate within homologous recombination, while RPA 

and TP53 also participate more broadly in DNA 

metabolism and damage responses [60–62]. A second 

structural feature is the HRDC domain near the C-

terminus. HRDC is found exclusively in BLM and 

WRN helicases, although with varied affinities and 

distinct functions. Interestingly, the HRDC domain not 

only interacts with proteins but also exhibits a binding 

preference for ssDNA, suggesting the role of BLM in 

connecting DNA with other related proteins in the 

pathway [25]. 

 

As a critical component of the DNA repair machinery, 

BLM helicase plays an important role in choosing 

homologous recombination (HR) as the preferred repair 

pathway over non-homologous end joining (NHEJ) and 

single-strand annealing (SSA) pathways. The HR repair 

mechanism begins with DNA end resection and 

homologous strand invasion to extend the invading 

strand using the homolog as a template [63]. This 

structure of the dsDNA separated by the invading strand 

of DNA is named the D-loop. To promote DNA end 

resection, BLM interacts with DNA2 (DNA replication 

helicase 2) or EXO1 (exonuclease 1) to generate a 3’ 

ssDNA tail. The ssDNA tail then recruits RAD51 and 

forms a presynaptic filament to resolve the D-loop 

during HR [38, 64, 65]. The physical binding of RPA 

activates and enhances the unwinding activities of BLM 

in both nicked and intact ssDNA [66–68]. After the first 

strand of DNA resynthesis, it can proceed to either the 

synthesis-dependent strand annealing pathway by 

dissociating the newly synthesized strand, or to the 

dsDNA break (DSB) repair pathway by capturing the 

second strand of DSBs for another resynthesis [69]. 

 

To ensure proper maintenance of the genome, the 

selection of the DNA repair pathway (NHEJ vs. HR) 

depends on the cell cycle stage [70, 71]. It is 

demonstrated that BLM is essential for recruiting 

classic NHEJ factors during the G1 phase and HR 

factors during the S phase. BLM can also act as a 

negative regulator that inhibits HR in the S phase and 

classic NHEJ in the G1 phase. The inhibition of BLM 

breaks the balance between repair pathways [72]. In 

addition to the classical NHEJ discussed above, BLM is 

also capable of inhibiting the alternative NHEJ 

pathway, which is a primary cause of highly error-prone 

chromosomal translocations [73]. BLM does so by 

protecting DNA from the attachment of CtIP/Mre11 and 

promoting the aggregation of 53BP1 (p53-binding 

protein 1) at DSBs [74]. 

 

During the DSB repair pathway, a complex DNA 

structure known as the double Holliday junction (dHJ) 

is formed to prevent crossing-over, thereby avoiding 

genomic instability and chromosomal rearrangements. 

By interacting with TOP3a and RMI1/RMI2, BLM can 

form a BLM dissolvasome (also known as the BTR 

complex) to resolve the dHJ [75]. Notably, in patients 

with “Bloom-like syndrome”, genetic mutations of RMI 

or TopIIIα were found, suggesting the phenotypes of BS 

may result from the dysfunction of the BTR complex 

[76, 77]. 

 

In addition to DNA repair, BLM also participates in 

DNA replication. A replication fork is a three-way 

junction between replicated and unreplicated portions of 

a DNA molecule. The progression of replication forks 

can be stopped by DNA damage, secondary nucleic acid 

structure, and protein-DNA complex [78]. The helicase 

domain in BLM specifically recognizes and resolves the 

DNA structures in a wide range of DNA substrates, 

including G4, D-loop, dHJ, and forked duplexes (Table 

1) [38, 44, 79, 80]. Along with its role in the HR 

pathway and physical interactions with RPA, BLM can 

stabilize replication and remodel it to restart the 

replication process [77, 81–83]. Concomitantly, 

sumoylation, the post-translational modification that 

covalently attaches small ubiquitin-like modifier 

(SUMO) to target proteins, serves as another important 

mechanism through which BLM influences DNA 

replication. BLM sumoylation is essential for the 

stability and restart of replication forks, particularly 

under replication stress, as its absence leads to reduced 

fork velocity, increased fork collapse—a process where 

the replication fork structure disintegrates—and 

impaired recruitment of RAD51 to stalled forks [84]. 

Through sumoylation regulation, the function of BLM 

is switched between pro- and anti-roles in HR by 

regulating the localization of RAD51 at damaged 

replication forks, thereby determining whether the 

stalled replication forks are restarted [85]. Telomeric 

replication is a subtype of replication that poses a 

challenge for the replication machinery due to the G-

rich tandem repeats. The maintenance of the telomere 
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Table 1. The ability of the RecQ helicases to unwind DNA/RNA structures. 

 

Cruciform 
DNA 

 
 

 

Double strand 
helix 

 
 

D-Loop 
 

 

G-Quadruplex 
(G4) 

 
 

 

Holliday 
junction 

 
 

R-Loop 
 

 

RECQL1  ✓ [28, 29]  ✓ [30–32] ✓ [28, 33]  

BLM ✓ [34] ✓ [35–37] ✓ [38–40] ✓ [20, 41–44] ✓ [45–47] ✓ [48, 49] 

WRN ✓ [34] ✓ [37, 50] ✓ [23, 44, 51] ✓ [23, 41] ✓ [23, 52] ✓ [49, 53] 

RECQL4  ✓ [54, 55]     

RECQL5  ✓ [37, 56]   ✓ [36, 37, 57]  

 

length relies on telomerase and alternative lengthening 

of telomeres (ALT) [86]. BLM helicase plays a 

significant role in telomeric replication by resolving 

replication fork-blocking G4 structures and correctly 

dissociating telomeric regions from the BTR complex in 

the ALT pathway [87]. Notably, the RQC domain is 

responsible for resolving some repetitive structures like 

telomeric G4. The G4 resolving activity is an important 

function of BLM and WRN within the RecQ helicase 

family. In general, BLM plays a versatile role in DNA 

repair that goes beyond simply binding to DNA. By 

concluding the function and selection of BTR complex 

reviewed by Manthei and Keck [88], and the summary 

of BLM’s role in the initiation and maintenance of ALT 

presented by Chang and their team [89], the complexity 

of how BLM maintains genome stability is well 

illustrated. 

 

One remarkable feature in cells lacking BLM helicase  

is the loss of heterozygosity and increase in sister 

chromatid exchange (SCE). SCE is a byproduct of  

the DNA repair pathway triggered by DSB or a 

collapsed replication fork formed during HR. Hence, 

the SCE level serves as an index for assessing 

chromatin instability and HR deficiency [90–92]. As 

discussed above, BLM’s ability to dissolve dHJ and 

regress replication forks directly contributes to 

maintaining chromosome stability and preventing SCE. 

Interestingly, sequencing the SCE genomic locations of 

BLM-deficient cells reveals that SCEs are not randomly 

distributed across the genome but are enriched 

explicitly in coding regions, particularly at locations 

with G4 motifs in the transcribed genes [93]. Generally, 

cells with BLM deficiency tend to experience failures in 

dHJ dissolution, increased recombination in G4, and 

impaired replication fork management, all of which can 

lead to SCE. 

 

Besides safeguarding DNA replication, BLM also aids 

in transcriptional regulation by resolving secondary 

structures and interacting with transcription factors. 

Since more than 40% of human gene promoters contain 

one or more G4 structures, BLM likely plays a crucial 

role in transcription by modulating the accessibility of 

these promoters to transcription factors (TFs) [94]. In 

the differential expression of mRNA between wild-type 

and BLM-depleted cells, G4 motifs exhibit significant 

enrichment at transcription start sites (TSSs) and are 

particularly concentrated within the first intron [95]. 

This regulation of TSS structure may influence gene 

expression by altering the chromatin accessibility of 

transcription factors. Furthermore, BLM can directly 

interact with c-Jun and RNA polymerase, affecting their 

binding efficiency to gene promoters, thereby 

facilitating or inhibiting transcription [96, 97]. Lastly, 

BLM further regulates transcription by resolving R-

loops, which are secondary structures formed by the 

hybridization of nascent RNA to its complementary 

DNA template, thereby protecting the actively 

transcribed sites from DNA damage [48, 98]. Removing 

R-loops improves transcription by preventing conflicts 

between transcription and replication. 
 

In conclusion, BLM can play multiple roles in 

maintaining genome stability by participating in DNA 

damage repair, replication, and transcription. It alters 

the dynamics of the DNA repair pathway in each cell 

cycle phase to ensure low error rates. It restarts stalled 

replication forks and resolves secondary nucleic acid 

structures such as G4, D-loop, and R-loop. Furthermore, 

BLM regulates transcription by modifying the 

chromatin accessibility and the recruitment of 

transcription factors. Overall, BLM helicase is a critical 

safeguard of genome integrity. 

 

Molecular function of WRN 
 

The WRN gene encodes the WRN helicase and is 

usually mutated in Werner syndrome (WS) [99]. Similar 

to BLM helicase, WRN helicase contains the core 

helicase domain in addition to the RQC domain and 

HRDC domain. Notably, WRN is the only member of 

the RecQ helicase family that contains an exonuclease 

domain in addition to the helicase domain, making it a 
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large multifunctional protein [15]. The exonuclease has 

an activity specific to the 3’-to-5’ direction. The 

exonuclease domain is located near the N-terminus, 

allowing it to resolve various DNA structures, including 

flap-structured dsDNA, bubble structure duplex, and 

fork-shaped duplex. WRN and BLM can interact and 

cooperate with each other; and not surprisingly, they 

share many common binding partners, such as DNA2, 

EXO1, RAD51 and RPA [100–102]. Critically, the 

helicase activity of WRN is weak when it is present 

solely. Under the stimulation by RPA, WRN becomes a 

powerful helicase that can unwind more than 1 kb of 

dsDNA unidirectionally [103]. 

 

Being an essential member in maintaining genome 

stability, WRN functions in optimizing the DNA repair 

pathway by playing various roles in HR, classic NHEJ, 

alternative NHEJ, and SSA. The absence of WRN was 

found to result in accumulated DNA damage, a lower 

proliferation rate, loss of epigenetic marks, and pre-

mature senescence [104–107]. Considering that these 

WRN-deficient cells are also sensitive to DNA damage-

inducing agents [108–110], the impairment of DNA 

repair is one of the critical reasons. 

 

Independent of the recruitment of DNA repair proteins, 

WRN can be directly recruited to and accumulate at the 

DSB sites via its HRDC domain, enabling persistent 

and rapid recruitment to stabilize DSBs [111]. 

Furthermore, the phosphorylation of WRN, which 

might be cell-phase dependent, alters its affinity to RPA 

and results in the selection of the repair pathway. If 

DSBs are present in the G1 phase, WRN is 

unphosphorylated on S426 and has a lower affinity 

toward RPA. In case DSBs are present in the S or G2 

phases, S426 of WRN would be phosphorylated by 

active CDK2, increasing WRN’s affinities for RPA and 

RAD51 to promote strand invasion and D-loop 

formation [112]. The interaction between WRN and 

Ku70/Ku80 complex specifically enhances the 

exonuclease activity of WRN [113]. The Ku 

heterodimer is recruited to the DNA ends of DSBs.  

By interacting with the Ku complex and DNA-PKcs, 

WRN inhibits the recruitment of the MRN 

(MRE11/RAD50/NBS1) complex, which is known as a 

DNA binder, to the DSB ends [114, 115]. Furthermore, 

it suppresses the recruitment of MRE11 and CtIP, 

thereby preventing the initiation of alternative NHEJ. 

The binding of WRN in DSBs promotes classic NHEJ 

through its helicase and exonuclease activities while 

inhibiting alternative NHEJ through non-enzymatic 

functions, thereby increasing the affinity for classic 

NHEJ [116]. Following WRN’s enzymatic action, the 

DNA ends are trimmed to overhangs, becoming a form 

that is suitable for the ligation initiated by the XRCC4-

DNA ligase IV complex, and thus promoting classic 

NHEJ [117]. WRN in this pathway is a regulator to 

choose between classical and alternative NHEJ 

depending on the microhomology [116]. 

 

Additionally, WRN and BLM are the only helicases in 

the RecQ helicase family that can resolve G4 

structures. As discussed above, G4 structures are 

typically found in telomeres and promoters. By 

comparing the transcriptional output between normal 

and WS fibroblasts, a significant enrichment of the 

computational G4 motif was found downregulated in 

WS fibroblasts [118]. Consistently, our lab specifically 

identified a G4 substrate for WRN in the regulation of 

short stature through unwinding the SHOX (short 

stature homeobox protein) promoter G4 and 

modulating its transcription [119]. WRN might also 

affect the abundance of G4 indirectly by aiding the G4 

processing activity of WRNIP1 (Werner helicase 

interacting protein 1) [120]. 

 

In conclusion, WRN is a multifunctional helicase within 

the RecQ helicase family, distinguished by unique 

molecular features that differentiate it from BLM, 

which is functionally and structurally similar to WRN in 

general. WRN’s specific exonuclease activity enables it 

to detect and process different DNA structures 

effectively, playing a crucial role in DNA repair and 

maintaining genome stability. Through interactions with 

diverse protein partners, including RPA, Ku70, and 

WRNIP1, WRN participates in critical DNA repair 

pathways (such as NHEJ) and plays a decisive role in 

regulating replication stress responses. The ability of 

WRN to resolve G4 structures highlights its specialized 

function, particularly in telomere maintenance and gene 

regulation. 

 

Molecular function of RECQL4 
 

RECQL4 is the gene mutated in Rothmund-Thomson 

syndrome (RTS). Like BLM and WRN, RECQL4 is 

also involved in DNA repair, recombination, and 

replication. It was first found and characterized by 

Kaito and their team in 1998, together with another 

RecQ member RECQL5 [121]. Unlike RECQL1, BLM, 

and WRN, which are nuclear proteins, RECQL5 is 

found in both the nucleus and cytoplasm, whereas 

RECQL4 is the only member found in not only the 

nucleus and cytoplasm but also in the mitochondrion. 

Contrasting with WRN and BLM, RECQL4 lacks the 

HRDC and RQC domains, which are thought to be the 

putative DNA binding domains. Additionally, RECQL4 

is shown to have intense DNA annealing activity [122]. 

As a helicase member, RECQL4 also demonstrates  

the helicase activity by helicase assays [123]. RECQL4 

can promote NHEJ by interacting with Ku70 to  

repair DSBs. RECQL4 activity is regulated by its 
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phosphorylation and ubiquitination. The phospho-

rylation enhances the helicase activity and increases HR 

efficiency to promote cell survival [124]. Through 

interacting with different partners, REQCL4 shows 

distinct functions in different molecular processes. For 

example, it can interact with SLD5 and MCM7 that 

participate in DNA replication. In other scenarios, 

RECQL4 interacts with telomere-binding proteins 

TRF1 (telomeric repeat binding factor 1) and TRF2 

(telomeric repeat binding factor 2) to regulate telomere 

stability [51, 125]. Although RECQL4 is not able to 

resolve G4 structure, it was shown to play a role in 

telomere maintenance by associating with shelterin 

proteins and resolving telomeric D-loop structure by 

synergetic interaction with WRN [51]. 

 

Different from most of the proteins involved in DNA 

repair pathway, RECQL4 has a unique function in 

mitochondrial genome maintenance and crosslink 

repair. The N-terminus of RECQL4 has a mitochondrial 

localization signal (MLS) domain that enables it to 

shuttle into the mitochondria. By co-transporting p53, 

RECQL4 participates in the replication of mitochondrial 

genome [126]. In cells with RECQL4 deficiency, 

accumulation of mitochondrial DNA (mtDNA) damage 

is observed [127]. RECQL4 thus serves as an accessory 

factor for the initiation and regulation of mtDNA 

replication, which is crucial for maintaining the mtDNA 

copy number [128]. 

 

At the cellular level, cells deficient in RECQL4 exhibit 

a higher propensity for chromosome mosaicism, 

increased apoptosis, and an accumulation of mitotic 

irregularities. This tendency is primarily attributed to a 

higher ratio of cells that become trapped during the 

prophase of mitosis [129–131]. Similar to the effects 

seen with the depletion of BLM and WRN, cells lacking 

RECQL4 also exhibit increases in senescence signals 

and accumulated DNA damage [132]. Research 

involving RECQL4-deficient cell lines has demons-

trated significant alterations in mitochondrial function 

and dynamics due to the role of the MLS domain. The 

absence of RECQL4 in these cells results in a marked 

reduction in mtDNA copy number, an increase in ROS 

level, and a disruption in mitochondrial DNA repair 

pathway. Additionally, these cells exhibit a notable 

decrease in mitochondrial bioenergetic capacity, along 

with increased fragmentation of mitochondria [127, 

128, 133]. 

 

To summarize, RECQL4 is a helicase that plays a 

significant role in DNA repair, recombination, and 

replication, particularly in mitochondrial function. The 
MLS domain enables RECQL4 to enter mitochondria 

and regulate mtDNA replication. Although it is 

structurally different from BLM and WRN, it also 

participates in the maintenance of genome stability in 

NHEJ, HR, and BER (base excision repair) pathways 

through other interactions and its own helicase 

activities. 

 

BLM dysfunction and bloom syndrome 
 

BLM dysfunction is directly linked to an autosomal 

recessive genetic disorder “Bloom syndrome” (BS). The 

affected individuals typically present with prenatal and 

postnatal growth retardation, sun-sensitive skin lesion, 

poikiloderma, immunodeficiency, increased risk of 

diabetes, and cancer [134–138]. The growth retardation 

of BS patient starting prenatally results in the small for 

gestational age, shorter birth length and lower birth 

weight (Table 2) [135, 139, 140]. Throughout childhood 

and into adulthood, individuals affected by this 

condition remain significantly shorter and lighter than 

their peers, typically measuring around 15–20% below 

standard height and weight norms [135]. The cells 

isolated from BS and the cells with BLM deficiency 

exhibit increased reactive oxygen species (ROS) and 

oxidative DNA damage, which may lead to a reduction 

in the DNA replication rate and impaired cell cycle 

progression [141–144]. The dysregulation of cellular 

processes, which negatively affect the proliferation 

pathway, results in a decreased proliferation rate, 

leading to a growth delay in BS [141]. 

 

One of the clinical features of BS that has raised the 

most attention from researchers is immunodeficiency. 

Schoenaker and their team compared the blood samples 

of BS patients and found that they have lower serum 

immunoglobulin levels and reduced T cells, B cells, and 

NK cells, while having a specifically higher percentage 

of CD4+ and CD8+ effector memory T cells [145]. The 

critical role of BLM helicase in the differentiation and 

functional maintenance of the αβ T-cell lineage helps 

explain the immunodeficiency observed in BS patients. 

BLM is essential for not only the early T-cell 

differentiation but also for the ability of thymocytes to 

receive the beta selection signal. Consequently, the 

decreased numbers of T cells and thymocytes in Blm 

conditional knockout mice are a result of impaired 

proliferation and survival within the immune cell 

signaling pathways [144]. 

 

From the view that BS patients have high tendency to 

develop various types of cancer, BLM is regarded as a 

tumor suppressor. The ability of BLM to facilitate the 

degradation of the oncogene transcription factor c-Jun 

has been previously demonstrated, supporting the 

tumor-suppressing role of the BLM helicase [97]. This 

degradation mechanism alters the function of c-Jun to 

activate its downstream oncogenes, so it partially 

explains the increased cancer susceptibility and 
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Table 2. Clinical signs and symptoms for RecQ deficiency diseases [231–234]. 

 Werner syndrome Bloom syndrome Rothmund-Thomson type 2 Baller-Gerold syndrome  

Very 

frequent 

Abnormal hair whorl Abnormality of the immune system Erythema Aplasia/Hypoplasia of the radius 

Abnormal thorax morphology Adipose tissue loss Hyperpigmentation of the skin Aplasia/Hypoplasia of the thumb 

Abnormality of the voice Decreased circulating antibody level Hypopigmentation of the skin Brachycephaly 

Cataract Growth delay Poikiloderma Brachyturricephaly 

Convex nasal ridge Intrauterine growth retardation  Failure to thrive in infancy 

Hypogonadism Severe postnatal growth retardation  Frontal bossing 

Lipoatrophy Small for gestational age  Growth delay 

Osteoporosis   Hand oligodactyly 

Pili torti   Large fontanelles 

Premature graying of hair   Proptosis 

Prematurely aged appearance   Short stature 

Short stature    

Slender build    

Sparse scalp hair    

White forelock    

Frequent 

Abnormal testis morphology Abnormal proportion of CD8 T cells Abnormality of the dentition Abnormal carpal morphology 

Abnormality of retinal 

pigmentation 
Cafe-au-lait spot Aplasia/Hypoplasia of the eyebrow Abnormal metacarpal morphology 

Aplasia/Hypoplasia of the skin Cutaneous photosensitivity Dermal atrophy Anteriorly placed anus 

Aplasia/Hypoplasia of the testes Decreased circulating IgA level Facial erythema Aplasia/Hypoplasia of the patella 

Atherosclerosis Decreased circulating IgG level Growth delay Bowing of the long bones 

Chondrocalcinosis Decreased circulating total IgM Multiple skeletal anomalies High palate 

Congestive heart failure Decreased head circumference Nail dysplasia Intrauterine growth retardation 

Decreased fertility 
Decreased proportion of CD4-

positive T cells 
Short stature Malabsorption 

Hyperkeratosis Gastroesophageal reflux Small for gestational age Narrow mouth 

Increased bone mineral density Hypopigmentation of the skin Sparse hair Short nose 

Insulin resistance Insulin resistance Sparse or absent eyelashes  

Lack of skin elasticity Malar flattening   

Lipodystrophy Male infertility   

Myocardial infarction Micrognathia   

Narrow face Narrow face   

Pulmonary artery stenosis Neoplasm   

Rocker bottom foot  Otitis media   

Skeletal muscle atrophy Poor appetite   

Skin ulcer Premature ovarian insufficiency   

Small hand Recurrent infections   

Subcutaneous calcification Retrognathia   

Telangiectasia of the skin Skin rash   

Type II diabetes mellitus    

Occasional 

Abnormality of the cerebral 
vasculature 

Abdominal obesity Abnormal blistering of the skin 
Abnormal cardiac septum 
morphology 

Acral lentiginous melanoma Abnormal blistering of the skin 
Abnormal trabecular bone 

morphology Abnormal localization of kidney 

Breast carcinoma Abscess Abnormality of dental enamel Abnormality of the ureter 

Cutaneous melanoma Acute lymphoblastic leukemia 
Abnormality of immune system 

physiology Anal atresia 

Gastrointestinal carcinoma Acute myeloid leukemia Abnormality of the radial head Broad forehead 
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Hypertension Azoospermia Abnormality of ulnar metaphysis Cleft palate 

Joint stiffness Bronchitis Alopecia totalis Conductive hearing impairment 

Laryngomalacia Cheilitis Anemia Epicanthus 

Melanoma Chronic pulmonary obstruction 
Aplasia/hypoplasia involving bones 

of the upper limbs Hydronephrosis 

Meningioma Diabetes mellitus Basal cell carcinoma Hypertelorism 

Neoplasm Gastrostomy tube feeding in infancy Carious teeth Hypotelorism 

Neoplasm of the lung Lymphoma Cleft palate Lymphoma 

Neoplasm of the oral cavity Malignant genitourinary tract tumor Cryptorchidism Micrognathia 

Neoplasm of the small intestine Myelodysplasia Delayed eruption of teeth Narrow face 

Ovarian neoplasm Neoplasm of the breast Delayed skeletal maturation Narrow nasal bridge 

Renal neoplasm  Neoplasm of the colon Developmental cataract Nystagmus 

Sarcoma Neoplasm of the skin Diarrhea Osteosarcoma 

Secondary amenorrhea Oligozoospermia Facial edema Poikiloderma 

Spontaneous abortion Paronychia 
Functional abnormality of the 

gastrointestinal tract Prominent nasal bridge 

Squamous cell carcinoma Patchy alopecia Genu varum Scoliosis 

Thyroid carcinoma Pneumonia High palate Urogenital fistula 

 Poikiloderma Joint dislocation Vesicoureteral reflux 

 Recurrent gastroenteritis Long nose  

 Recurrent herpes  Lymphoma  

 Recurrent tonsillitis Metaphyseal sclerosis  

 Recurrent urinary tract infections Metaphyseal striations  

 Respiratory tract infection Microdontia  

 Rhinitis Myelodysplasia  

 Severe toxoplasmosis Nasogastric tube feeding  

 Severe varicella zoster infection Neoplasm of the skin  

 Sparse eyelashes Neutropenia  

 Telangiectasia Osteopenia  

 Uveitis Osteosarcoma  

  Patellar aplasia  

  Patellar hypoplasia  

  Pathologic fracture  

  Plantar hyperkeratosis  

  Reduced number of teeth  

  Short metacarpal  

  Short phalanx of finger  

  Slender nose  

  Squamous cell carcinoma  

  Synostosis involving bones of the 

upper limbs  

   Vomiting  

 

genomic instability observed in BS patients. Moreover, 

Blm mutation in mice with Ptch (patched 1) deficiency 

(Ptch1+/−Blmtm3Brd/tm3Brd) develops tumors more 

aggressively than Ptch1+/−Blm+/+ mice. Chromosome 

aneuploidy is associated with loss of p53 as a result of 

genomic instability in these mutant mice [146]. In other 

studies on human subjects, the heterozygosity of BLM 

increases the risk and progression of colorectal cancer 

and breast cancer [147]. 

While simply defining BLM as a “tumor suppressor” 

may not truly reflect its actual role in normal and cancer 

cells. BLM expression is associated with cell 

proliferation and differentiation. In non-neoplastic cells, 

BLM is highly expressed in actively proliferative cells 

such as epithelial cells of the digestive tract and the 

skin. The high expression of BLM in undifferentiated 

cells and progenitors, and with the evidence that BLM 

suppresses the expression of certain differentiation 
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markers, suggest that BLM may promote proliferation 

and inhibit differentiation [148]. In some cancers, 

however, BLM is required for their uncontrolled 

proliferation. The expression of BLM is high in cancers 

such as lymphoma and carcinomas originated from 

prostate and epithelium [149, 150]. The function of 

BLM in tumorigenesis and tumor progression could be 

explained by the inhibition of apoptosis and promotion 

of proliferation in prostate cancer but not in normal 

prostate tissue [151]. Prostate cancer is not the only 

malignancy associated with increased BLM expression; 

similar patterns have been observed in patient samples 

and cell lines from colon and breast cancers [152–154]. 

Additionally, in prostate cancer patients receiving 

chemotherapy or immunotherapy, BLM expression 

levels have been found further increased [155]. As a 

result, scientists have explored the possibility of 

targeting BLM to improve survival rate in breast, colon, 

and prostate cancers. Combining chemotherapy and/or 

immunotherapy with BLM inhibitors, the improved 

survival rates observed provide further evidence of 

BLM’s role in cancer progression [156]. 

 

Nuclear cataracts, a subtype of age-related cataracts 

(ARC), are another clinical feature shown to be 

associated with the pathological mutation of BLM [157]. 

The relationship between BLM and cataract progression 

has been identified as being linked to its regulation of 

the capsular lens cell viability and apoptosis. Notably, 

knockdown of BLM protein accelerates the progression 

of ARC, and this effect is further exacerbated by UV 

stimulation [158]. Additionally, characteristics of 

photosensitive skin indicate that BS patients’ skin reacts 

more strongly to UV radiation from sunlight. A 

deficiency in BLM, a crucial DNA repair helicase, 

reduces the effectiveness of DNA damage repair caused 

by UV radiation, providing an indirect explanation for 

the photosensitive skin [159, 160]. 

 

While many early important findings came from in vitro 

studies and cell-based experiments, investigating the 

function of the BLM gene in a complex organism could 

help elucidate the disease phenotype observed in BS 

and clarify its paradoxical role in tumor suppression or 

promotion. Chester and their team generated complete 

Blm knockout mice. They found developmental delay 

and embryonic lethality before E13.5 [161]. Although 

Blm knockout cells also showed a high frequency of 

SCE similar to human cells, the embryonic lethality in 

this strain limited the study of disease pathogenesis. 

Conversely, Luo’s group successfully created viable 

Blmm3 knockout mice with premature termination of the 

protein. In these mice, increased loss of heterozygosity 
and SCE were observed. Moreover, they also observed 

cancer predisposition and accelerated methylation aging 

in multiple tissues [162, 163]. Apart from mammals, 

several groups also established zebrafish model to study 

BLM function. Interestingly, the deletion of blm in 

zebrafish resulted in germ cell differentiation problem, 

in which only male zebrafish could develop following 

sexual determination. The homozygous mutant fish also 

showed reduced fertility (and longevity) due to aberrant 

spermatogenesis with meiotic arrest [164, 165]. These 

studies recapitulate some of the features in BS patients 

and suggest a conserved function of the BLM helicase 

in safeguarding gametogenesis during sexual 

differentiation. Together with the mouse and human 

iPSC models [166, 167], these studies suggest a vital 

role of BLM helicase in normal development and 

prevention of diseases like cancers. 

 

WRN dysfunction and Werner syndrome 
 

The WRN helicase is associated with WS, an autosomal 

recessive disease characterized by premature aging. WS 

was first described in a family with four siblings, aged 

between 31 and 40, who exhibited symptoms such as 

premature graying of hair, scleroderma cataracts, and 

short stature [168]. The gene associated with WS was 

later mapped to a member of the RecQ helicase family. 

Despite its rarity, WS draws the attention of 

gerontologists because of its phenotypes of accelerated 

aging in patients. Usually, the first sign of diagnosis is 

the lack of growth spurt at puberty and short stature. 

After puberty, patients exhibit early onset of premature 

aging phenotypes as early as the 20s to 30s, such as 

baldness, graying of hair, loss of subcutaneous fat, and 

atrophy of muscle and skin [169]. Other symptoms 

include foot ulcers, cataracts, atherosclerosis, osteo-

porosis, type II diabetes, and malignancy, which 

become more frequent in the middle age of patients 

(Table 2) [170]. Because of the high incidence of 

developing myocardial infarction and malignancy, the 

median age of WS patients is approximately 54, which 

is generally shorter than normal longevity [171]. 

 

An expanding body of research aims to elucidate the 

relationship between the molecular functions of WRN 

helicase and the clinical and pathological features of WS 

(Figure 2). While cataracts are frequently observed in 

patients with WS, a decrease in the expression of the 

WRN gene due to epigenetic factors has been noted in the 

anterior lens capsules of ARC patients [172]. Epigenetic 

alteration is one of the hallmarks of aging [173]. Notably, 

epigenetic reprogramming by Yamanaka factors is 

known to reset the epigenetic status in differentiated cells 

as well as in senescent cells. We and others demonstrated 

that when WS iPSC was differentiated into mesenchymal 

stem cells (MSC), premature senescence recurred [174]. 

A similar phenomenon was observed in the MSCs 

derived from WRN-deleted embryonic stem cells (ESC) 

[175, 176]. Epigenetic marks, including DNA 
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methylation, histone modification, chromatin remodeling, 

and RNA modification, are copied and passed to the 

daughter cells during replication. However, due to 

increased ROS production and other random DNA 

damage, some epigenetic marks are lost during cell 

proliferation or senescence [177]. Some specific 

epigenetic modifications are now defined as age-

associated markers, such as the age-associated variably 

methylated positions (aVMPs), and the global loss  

of H3K9me3 heterochromatin. Consistently, these 

chronological markers are also altered in WRN-deficient 

cells, demonstrating the function of WRN in preventing 

stem cell senescence [176]. 

 

In the absence of WRN, heterochromatin is destabilized 

with the loss of epigenetic modification complexes. The 

loss of heterochromatin and the scaffold protein HP1α 

(heterochromatin-binding protein 1α) results in the 

disorganization of nuclear architecture, genome 

instability, and cellular senescence. Zhang and their 

team found a marked decrease in the abundance of 

H3K9me3 heterochromatin, accompanied by a reduction 

in heterochromatin architecture at the nuclear periphery 

in WRN-null cells [176]. The deficiency of WRN 

results in the instability of the functional complex 

formed with the histone methyltransferase SUV39H1, 

HP1α, and nuclear lamina-heterochromatin anchoring 

protein LAP2β, consequently leading to impaired 

establishment and maintenance of H3K9me3-enriched 

heterochromatin domains [176]. A substantial body of 

evidence from both experimental models and human 

studies demonstrates that a decrease in H3K9me3 is a 

hallmark of cellular and organismal aging, with losses 

observed not only in WRN-deficient cells but also in 

physiologically aged tissues, progeroid syndromes, and 

across various somatic cell types [178–181]. Sidorova 

and their group further prove this mechanism of WRN-

dependent heterochromatin maintenance by identifying 

the association of WRN with histone deacetylase 

HDAC2 and HP1α as a complex, interacting with lamin 

B1 (LMNB1) and the lamin B receptor (LBR). This 

model elucidates the loss of peripheral heterochromatin 

observed in WRN deficiency cells, coinciding with the 

general epigenetic hallmark of aging [182]. 

 

 
 

Figure 2. Conceptual framework illustrating how loss of WRN leads to the hallmarks of aging. Loss of WRN helicase results in 

alterations in different cellular and molecular processes (circles in the inner zone). These processes are linked to the known hallmarks of 
aging (circles in the outer zone) [173]. For instance, impaired DNA repair is associated with genome instability, whereas reduced proliferation 
and premature senescence are connected to stem cell exhaustion. 
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Tsuge and their team have categorized the molecular 

phenotypes of WS into several types of dysfunction: 

transcriptional dysregulation, repair dysfunction, 

chromosomal instability, stem cell senescence, 

mesenchymal cell senescence, endothelial cell senes-

cence, and telomere dysfunction [183]. These markers 

have made WS patient cells a valuable model for 

studying cellular senescence and accelerated aging in 

gerontological research. Classically, studies on cellular 

aging involve comparing gene expression changes 

between aged and young fibroblasts, and these 

transcriptional changes are highly recapitulated in WS 

cells [184]. The aging-related symptoms seen in various 

organs and tissues, such as the skin, cornea, and bone, 

suggest that the WRN helicase plays a specific role in 

preventing senescence in particular cell types. The 

signature symptoms of WS include short stature, 

osteoporosis, skin atrophy, loss of fat tissue, and muscle 

wasting. These phenotypical analyses indicate that the 

tissues affected in WS patients primarily originate from 

mesenchymal lineages. It also suggests that loss of 

WRN helicase may specifically affect certain cell  

types and tissues. Reduced proliferation, premature 

senescence, and increased DNA damage and apoptosis, 

are generally observed in WS MSC. Over time, these 

changes are expected to lead to MSC exhaustion, which 

will adversely affect further cell expansion and terminal 

differentiation. In agreement, impaired trilineage 

differentiation of MSCs to chondrocytes, adipocytes, 

and osteocytes has been demonstrated in cultured WS 

MSC [185]. However, it remains unclear how the 

dysfunction of WRN helicase specifically affects 

mesodermal differentiation. 

 

Atherosclerosis, which is also common in WS, is 

primarily caused by endothelial dysfunction. To gain 

insight into the pathogenesis of atherosclerosis in WS, 

Ogata and their team revealed that the calcification of 

subcutaneous tissue in WS patients, resulting in 

refractory skin ulcers, was attributed to the aging of 

lymphatic vessels [186]. The calcification of lymphatic 

vessels and lymphatic endothelial cell dysfunction are 

consistently observed in WS patients. Laarmann and 

their team demonstrated that WRN plays a crucial role 

in maintaining endothelial cell homeostasis. In their 

study, the knockdown of WRN destabilized the 

endothelial barrier, compromised HUVEC migration, 

and increased Ca2+ release [187]. These alterations may 

contribute to the chronic inflammatory process in  

the endothelium. Furthermore, endothelial cells are 

influenced by stromal cells, such as pericytes (an MSC-

like cell), that help stabilize blood vessels. The loss of 

WRN in MSC alters the expressions of various cytokine 
genes [188]. Cytokines that promote angiogenesis are 

generally downregulated, diminishing the ability  

of HUVECs to form vessel-like structures [189]. 

Takayama and Yokote’s team developed a co-culture 

system that integrates iPSC-derived vascular endothelial 

cells, macrophages, and vascular smooth muscle cells to 

replicate atherosclerosis in WS. Using this model, they 

found that the loss of WRN in macrophages activated 

type I interferon signaling, leading to increased 

proliferation of vascular smooth muscle cells. 

Conversely, endothelial cell proliferation decreased, 

resulting in atherosclerosis-like characteristics [190]. 

These recent studies enable us to better understand the 

disease pathogenesis by dissecting the interactions 

between different cell types within a defined system. 

The same mutation in the WRN helicase could directly 

affect endothelial cells or indirectly affect them through 

the paracrine actions of other cell types. 

 

As the WRN gene is highly similar between human and 

mouse, Lebel and Leder’s team have generated a 

progeroid animal model by inactivating the Wrn 

helicase in mice. The first reported Wrn mutant mouse 

was the WrnΔhel/Δhel, which has the RecQ helicase 

domain deleted. These mutant mice exhibit reduced 

embryonic survival and ~17% reduction in lifespan 

among those that survive. Cultured cells from this 

mutant mouse show some phenotypes similar to those 

seen in human WS cells, including pro-oxidative status 

and genomic instability, sensitivity to topoisomerase 

inhibitors, and reduced replicative potential [191]. 

Interestingly, the Wrn-null mutant mice, despite lacking 

the full-length Wrn protein, do not display obvious 

progeroid phenotypes [192]. Thus, the WrnΔhel/Δhel and 

Wrn-null mice are crossed with other mutant strains, 

including Safb1-null, p53-null, p21-null, and Parp1-null 

mice, to investigate the cooperative function of WRN 

with other DNA repair or cell cycle proteins [192–195]. 

In the p53-null background, WrnΔhel/Δhel mice exhibit 

increased tumorigenicity; however, no such effect  

is observed in the p21-null background [195]. Parp1 

and Wrn double mutant mice show a higher frequency 

of chromatid breaks, complex chromosomal re-

arrangements, and fragmentation, similar to what is 

observed in human WS fibroblasts [194]. Additionally, 

the Wrn−/− Terc−/− double mutant mice exhibit age-

related osteoporosis, reduced lifespan, and other 

progeroid-like characteristics [196]. These studies 

suggest that the WRN helicase plays a critical role in 

protecting against genomic instability by interacting 

with other proteins. 

 

In addition to rodent models, the function of the WRN 

gene has been studied in various other animals, 

including nematodes, fruit flies, and zebrafish. In 

Caenorhabditis elegans, the WRN homolog acts as a 
DNA checkpoint; its deficiency leads to reduced 

lifespan, progeroid tissue phenotypes, increased DNA 

damage, and genome instability [8, 197–201]. Similarly, 
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the Drosophila model of WS exhibits accelerated aging 

phenotypes and a reduction in lifespan that cannot be 

reversed by calorie restrictions, which is shown to 

regulate the intrinsic aging processes via cellular and 

metabolic adaptations [202, 203]. Other groups 

including ours have utilized zebrafish as a vertebrate 

model to investigate the fish wrn gene. Knockout of wrn 

in zebrafish displays defects in skeletal development 

and adipogenesis, which are regulated by pathways 

similar to those involved in human stem cell 

differentiation [119, 164, 204, 205]. Using zebrafish as 

an aging model for drug screening, recent findings from 

Ma and their team suggest sapanisertib as a potential 

drug to ameliorate the aging phenotypes effectively 

[206]. These different animal models combine genetic 

relevance with physiological complexity, enabling a 

comprehensive understanding of the pathological 

mechanisms of WS. Each model, including the human, 

has its advantages and limitations. Nonetheless, the 

findings from these studies provide valuable insights 

into disease development mechanisms and potential 

therapeutic interventions. 

 

RECQL4 dysfunction and associated diseases 
 

Unlike BLM and WRN, which are linked to specific 

diseases with similar symptom clusters, mutations of 

the RECQL4 gene can lead to a variety of conditions, 

including Rothmund-Thomson syndrome (RTS), 

Baller-Gerold syndrome (BGS), and RAPADILINO 

syndrome, depending on the specific mutation 

involved [207]. These three RECQL4-associated 

disorders share some overlapping clinical features, such 

as developmental defects (e.g., small stature), 

gastrointestinal disturbances, and radial ray anomalies 

(Table 2). Further clinical characterization and genetic 

testing are essential for classifying these conditions as 

distinct diseases. This scenario illustrates allelic 

heterogeneity, demonstrating that mutations in a single 

gene can result in different diseases and various 

genotype-phenotype correlations, underscoring the 

critical role of RECQL4 in human health. 

 

RTS is an autosomal recessive disorder. It is the most 

well-known condition linked to mutations in the 

RECQL4 gene. First described by Rothmund in a 

Bavarian village during the 1860s, this condition was 

identified much earlier than the RECQL4 gene was 

discovered. Thomson later reported additional cases 

with similar clinical features and named the syndrome. 

 

RTS is distinct among conditions associated with 

RECQL4 mutations as it presents with symptoms of 

premature aging, sparse hair, and an increased risk of 

cancer – similar to those seen in WS. The link between 

RTS and the RECQL4 mutation was established in 1999 

[208]. However, only about two-thirds of RTS patients 

have mutations in RECQL4 and are classified as RTS 

type II, typically presenting with congenital bone 

defects. The remaining one-third of patients have 

mutations in ANAPC1 or in yet unidentified genes that 

are classified as RTS type I [209]. The most common 

mutations observed in the type II RTS patients are 

frameshift or nonsense mutations, which broadly impair 

or completely eliminate the functionality of the 

RECQL4 helicase domain [210–213]. 

 

BGS is also an autosomal recessive disorder that was 

first described by Baller in 1950 and later defined by 

Gerold [214, 215]. The most common cause of BGS is a 

C-terminal missense mutation in the RECQL4 gene. 

Although BGS shares the symptoms such as 

poikiloderma with RTS, it is specifically associated 

with coronal craniosynostosis. Additionally, mutations 

in other genes, such as FGFR2 and TWIST, have also 

been linked to BGS [216–219]. 

 

In contrast to the previous two syndromes, 

RAPADILINO is not named after the person who 

characterized it. Instead, the name is a short form of the 

clinical features of patients presenting RAdial ray 

malformations, absence of PAtellae, DIarrhea, LImb 

abnormalities and slender Nose [220]. Unlike RTS and 

BGS, RAPADILINO syndrome is solely caused by 

mutations in the RECQL4 gene. The disruption of the 

nuclear localization signal (NLS) domain and splicing-

site mutations are the most common types of RECQL4 

mutations associated with RAPADILINO. Interestingly, 

some RECQL4 mutations linked to RAPADILINO may 

leave the helicase domain intact [221, 222]. 

 

Loss of RECQL4 is also studied in animal models. The 

original knockout of Recql4 in mice is embryonically 

lethal at stages E3.5 to E6.5. As a result, alternative 

models, such as Recql4-deficiency model, conditional 

knockout model, and helicase malfunction model, have 

been developed to replicate the effects of RECQL4 

dysfunction observed in patients with specific mutations 

or loss-of-function alleles [223]. These models allow  

for a better understanding of the pathophysiology 

associated with RECQL4 deficiencies and facilitate the 

exploration of potential therapeutic interventions. 

 

In a study involving such a mouse model, it was found 

that the deficiency of RECQL4 increases senescence, 

aligning with the findings in human cells [132]. 

Furthermore, the role and mechanism of RECQL4 in 

bone development were demonstrated using a 

conditional knockout model. In this model, inactivation 
of p53 led to a rescue of the developmental defects 

[224]. More precisely, somatic deletion of Recql4 in 

murine models has illustrated the critical role of this 
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gene in hematopoiesis. The absence of Recql4 results in 

accelerated bone marrow failure, which affects various 

blood cell lineages and increasing apoptosis in 

multipotent progenitor cells. These findings highlight 

the importance of RECQL4 in maintaining hemato-

poietic integrity [225]. Additionally, the roles of 

RECQL4 in the initiation of replication and 

maintenance of genome integrity are also demonstrated 

in Xenopus and Drosophila models [213, 226–230]. 

 

In conclusion, diseases related to RECQL4 dysfunction 

can be differentiated based on their clinical features. For 

instance, RTS presents with more developmental 

defects and an elevated risk of cancer, while BGS 

exhibits distinct characteristics related to cranial and 

skeletal development. Additionally, RAPADILINO 

syndrome is marked by more severe abnormalities in 

the limbs and gastrointestinal tract. 

 

CONCLUSION AND FUTURE PROSPECT 
 

In conclusion, all members of the RecQ helicase possess a 

conserved helicase core formed by two similar domains, 

which enables them to unwind the structure of nucleic 

acid duplexes. They play a crucial role in maintaining 

genome stability through unwinding various secondary 

structures and recruiting binding partners to aid in 

replication, transcription, and DNA repair. The severe 

genetic disorders caused by the mutation of RecQ 

helicases, including BS, WS, RTS, BGS, and 

RAPADILINO syndrome, highlight the essential function 

of RecQ helicases in the maintenance of genome 

stabilities. Despite multiple animal and cell models being 

used in the study of RecQ helicases, many questions 

remain unanswered. Because the RecQ helicases often 

exhibit overlapping yet distinct functions in genome 

maintenance, the content-dependent function of each 

helicase needs further study. Although similar protein 

domains are thought to perform similar functions, such as 

the ability of RQC domain to resolve G4 structures, the 

substrate preferences of each helicase differ significantly. 

This aspect of uncertainty needs to be further addressed 

through molecular experiments. Moreover, while 

significant progress has been made in developing small-

molecule inhibitors targeting RecQ helicases for cancer 

therapy, optimizing these treatments to minimize off-

target effects continues to be a challenge. The 

development of advanced animal models and high-

resolution structural analyses will be crucial in uncovering 

novel therapeutic targets and intervention strategies. 

Investigating the role of RecQ helicases in age-related 

diseases and metabolic disorders could yield new insights 

into their broader physiological functions. Ultimately, 
integrating multi-omics approaches and innovative gene-

editing techniques will pave the way for precision 

medicine strategies tailored to RecQ-associated diseases. 
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