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ABSTRACT

In the past 20 years, the involvement of gut microbiome in human health has received particular attention, but its
contribution to age-related diseases remains unclear. To address this, we performed a comprehensive two-
sample Mendelian Randomization investigation, testing 55130 potential causal relationships between 37 traits
representing gut microbiome composition and function and age-related phenotypes, including 1472 inflammatory
and cardiometabolic circulating plasma proteins from UK Biobank Pharma Proteomic Project and 18 complex
traits. A total of 91 causal relationships remained significant after multiple testing correction (false discovery rate
p-value <0.05) and sensitivity analyses, notably two with the risk of developing age-related macular degeneration
and 89 with plasma proteins. The link between purine nucleotides degradation Il aerobic pathway and
apolipoprotein M was further replicated using independent genome-wide association study data. Finally, by
taking advantage of previously reported biological function of Faecalibacterium prausnitzii we found evidence of
regulation of six proteins by its function as mucosal-A antigen utilization. These results support the role of gut
microbiome as modulator of the inflammatory and cardiometabolic circuits, that may contribute to the onset of
age-related diseases, albeit future studies are needed to investigate the underlying biological mechanisms.

INTRODUCTION contribute to the development of autoimmune diseases,
inflammatory  diseases, cardiovascular  diseases,
Many human disorders, such as cancer, diabetes, susceptibility to infections, and other health problems
neurodegeneration and cardiovascular diseases, are [2, 3]. Therefore, changes in the gut microbiota
closely linked to the intricate and multifactorial process influence various aspects of both gut and systemic
of aging, which involves physiological changes. To immune and inflammatory responses, suggesting a
identify possible therapeutic targets for age-related link to the age-related decline in cardiovascular and
disorders and to understand the mechanism of aging, it immune function, often referred to as immune aging,
is essential to study changes within different body immunosenescence or inflammaging [3].
compartments during lifespan, such as those in the gut
microbiome [1]. The human gastrointestinal tract (gut) During aging, significant changes occur in the gut
hosts a vast microbial community of approximately 100 microbiome. For example, opportunistic pathogens
trillion microorganisms, which changes significantly such as FEnterobacteria, which can induce intestinal
throughout life. Furthermore, it is composed of a large inflammation, increase, while by contrast beneficial
number of immune cells that constantly communicate commensals such as Bacteroides, Bifidobacteria and
with the gut microbiota, an essential process for Lactobacilli decrease [3]. These changes in microbial
maintaining immune homeostasis. Disruption of composition underline the importance of studying the
this interaction can lead to dysbiosis, which can microbiota throughout life to better understand its role
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in aging and associated diseases. However, it remains
uncertain whether changes in the microbiota drive these
conditions or whether these or the related therapies
impact the microbiota. Given this ambiguity, we
investigated the causal relationships between the gut
microbiome and age-related complex traits, along
with associated immune-related and cardiometabolic
circulating proteins.

To investigate potential causal links between the gut
microbiome and age-related traits and proteins, the
two-sample Mendelian Randomization (MR) technique
was employed, a causal inference approach that uses
genome-wide association study (GWAS) data to infer
causal relationships while controlling for confounding
factors and reverse causality. Other studies [4—10] have
used MR to assess the causal relationships between
gut microbiome and specific age-related traits. For
example, Mao et al. [6] investigated its causality with
age-related macular degeneration; Chen et al. [7, 10]
explored links with longevity traits; and Bo et al. [8]
focused specifically on frailty. In our work, we opted
for a comprehensive analysis with an extensive number
of age-related outcomes (Figure 1). Furthermore, we
emphasized the importance of a rigorous approach to
MR analyses. This involves (i) employing GWAS
carried out on large data set to ensure sufficient
statistical power, (ii) the use of stringent parameters
to ensure validity of MR assumptions such as the
independence and strong association of the instrumental
variables (IVs), (iii)) performing multiple testing
correction and sensitivity analysis, and (iv) exclusion of
reverse causality bias via bidirectional MR. Moreover,
our study followed the STROBE-MR (Strengthening
the Reporting of Observational Studies in Epidemiology
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using Mendelian Randomization) checklist [11] and
guidelines from Burgess et al. [12].

Unlike previous studies, we performed replication
analyses for the significant results using independent
GWAS datasets, a fundamental step that has often
been overlooked. Replication [13] is one way to prevent
false positive results from being spread [14, 15]. This
approach strengthens the robustness and reliability of
our findings, making them a more solid reference point
for understanding the causal relationships between the
gut microbiome and aging-related phenotypes.

RESULTS

A two-sample MR was performed to investigate the
causal relationships between the gut microbiome
(exposure) and selected age-related phenotypes
(outcome). As exposures we considered 37 microbiome
features, with at least one variant associated at genome-
wide significant level with the trait (Supplementary
Table 1A). All the exposures showed an F-statistic >10,
indicating sufficient instrument strength and reducing
the risk of weak instrument bias (Supplementary Table
2A). As outcomes we selected 1490 age-related
phenotypes including diseases and quantitative traits
(Table 1). We searched for publicly available GWASs
related to the most common age-related diseases,
excluding cancer and neurological disorders, and for
traits related to overall aging (like lifespan and
longevity). We identified 18 GWASs of age-related
traits that included at least 20,000 European ancestry
individuals and for which the necessary information to
perform MR analysis (SNP chromosome and position,
effect allele, other allele, beta, standard error, p-value)

Age-related and inflammatory traits
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Figure 1. Graphical representation of the study. Created in BioRender. Sanna, S. (2025) https://BioRender.com/a450861.
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Table 1. Age-related outcomes selected for the MR analysis.

Outcome name

Data article

Sample size

Type of trait

Choice of the trait

Age-related macular
degeneration

Jiang et al., 2021 (PMID:
34737426)

456348: 1295
cases and 455053

Binary (ICD-9-CM:
362.29, based on

European ancestry with
higher sample size

controls hospital record)
. . Shah M et al., 2023 . European ancestry with
Cardiovascular ageing (PMID: 37604819) 29506 Continuous higher sample size
296525: 34541 .
. van der Harst P et al., . European ancestry with
Coronary artery disease 2017 (PMID: 29212778) Casescgﬁ?rgg 1984 Binary higher sample size
. Atkins JL et al., 2021 . European ancestry with
Frailty (PMID: 34431594) 175226 Continuous higher sample size
Zenin A et al., 2019 . European ancestry with
Health span (PMID: 30729179) 300447 Continuous higher sample size
. 440,328: 34,217 .
. Malik R et al., 2018 ’ ; . European ancestry with
Ischemic stroke (PMID: 29531354) casesceg;(iri?sé,l 1 Binary higher sample size
. Timmers et al., 2019 . European ancestry with
Lifespan (PMID: 30642433) 1012240 Continuous higher sample size
. 36745: 11262 .
Longevity 90th Deelen J et al., 2019 . European ancestry with
percentile (PMID: 31413261) caseg;trrllt(rio2155483 Binary higher sample size
Longevity 99th Deelen J et al., 2019 28926117121324 58448(3:%65 Bina European ancestry with
percentile (PMID: 31413261) controls Yy higher sample size
. 484598: 7751 .

. Dénertas HM et al., 2021 . European ancestry with
Osteoporosis (PMID: 33959723) casescirrll?rglz 6847 Binary higher sample size
Parental longevity 1 .

. Pilling LC et al., 2017 . European ancestry with
(combined parental (PMID: 29227965) 389166 Continuous higher sample size
attained age) E—

Parental longevity (both Pilling LC et al., 2017 . European ancestry with
parents in top 10%) (PMID: 29227965) 86949 Continuous higher sample size
Parental longevity Pilling LC et al., 2017 . European ancestry with
(mother’s age at death) (PMID: 29227965) 246941 Continuous higher sample size
Parental longevity Pilling LC et al., 2017 . European ancestry with
(mother’s attained age) (PMID: 29227965) 412937 Continuous higher sample size
Parental longevity Pilling LC et al., 2017 . European ancestry with
(father’s age at death) (PMID: 29227965) 317652 Continuous higher sample size
Parental longevity Pilling LC et al., 2017 . European ancestry with
(father’s attained age) (PMID: 29227965) 415311 Continuous higher sample size
Parental longevity a1 .

- Pilling LC et al., 2017 : European ancestry with
(combined parental age (PMID: 29227965) 208118 Continuous higher sample size
at death) —

. Loh PR et al., 2018 . European ancestry with
Type 2 diabetes (PMID: 29892013) 468298 Continuous higher sample size
Circulatin Most extensive recent
in ﬂammat% v and Sun et al., 2023 (PMID: 54219 Continuous panel of circulating
Y 37794186) (OLINK) inflammatory and

cardiometabolic proteins

cardiovascular proteins

This table shows all the GWAS summary statistics used as outcomes in the MR analysis and the reason for the choice of these
specific GWASs. Abbreviations: GWAS: genome-wide association study; MR: Mendelian Randomization.

Out of the 55130 MR tests performed, 91 causal
relationships remained significant after multiple-testing
correction (FDR p-value <0.05). The results highlighted a

was available. We also included 1472 inflammatory and
cardiometabolic proteins, selected from the study of Sun
et al., 2023 [16].
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Table 2. Significant causal relationships between gut microbiome features and age-related macular degeneration.

IVW post-FDR WM MR- Pleiotropy Heterogeneity Reverse Lowest
Exposure Outcome f. correction _value PRESSO -valugy -Vaglue causality replication
p-value P p-value P 4 p-value p-value
Coriobacteriales AMD  0.61 0.047 0.007 0.009 0.44 0.75 0.98 0.234
Coriobacteriaceae  AMD  0.61 0.047 0.007 0.009 0.44 0.75 0.98 0.234

This table shows significant results of the MR analysis between gut microbiome and age-related macular degeneration. For each
exposure-outcome pair, we show the causal estimate 8. (corresponding effect on disease risk liability for 1 standard deviation
unit increase on the gut microbiome trait), the p-value obtained with IVW method, after FDR multiple testing correction, and the
p-value from all sensitivity analyses (weighted median, MR-PRESSO as pleiotropy aware MR-tests, tests of pleiotropy (Egger
intercept) and heterogeneity (Cochran’s Q), and the reverse causality). The last column indicates the lowest p-value of the
replicated causal relationship using independent datasets. Abbreviations: AMD: age-related macular degeneration; FDR: false
discovery rate; IVW: inverse variance weighted; MR: Mendelian Randomization; WM: weighted median.

causal link between the gut microbiome and age-related
macular degeneration (AMD) and levels of 62 distinct
circulating protein levels (Supplementary Table 2B, 2E—
21, 2L2Q).

Age-related macular degeneration

AMD GWAS was collected from the study of Jiang
et al. [17], which analyzed data of 1,295 cases and
455,053 controls from UK Biobank [18]. We found that a
genetic predisposition to higher levels of bacteria of the
order of Coriobacteriales or of family Coriobacteriaceae
increases the risk of developing AMD disease (5. = 0.61,
corresponding to an OR = 1.84, ppy = 0.047). All the
sensitivity analyses (Table 2) and graphical inspections
(Supplementary Figures 1 and 2) confirmed this result,
further supported by the absence of reverse causality
(all p > 0.087) (Supplementary Table 2C).

We tested the replicability of these causal relationships
using three more GWAS data of AMD (Supplementary
Table 1C). Albeit the definition of AMD was different,
their large sample size provided sufficient power for
replication (Supplementary Figure 3). We defined
replication when p-value <0.05 and same direction of
the effect as in the main MR analysis. Despite the
sufficient power, none of these three GWASs led
to significant results (Supplementary Figure 4 and
Supplementary Table 2D).

Cardiometabolic and inflammatory proteins

The GWAS summary statistics for circulating
inflammatory and cardiometabolic proteins refer to
the study of Sun et al., 2023 [16], which analyzed
a total of 2923 proteins in 54219 UK Biobank
participants (Supplementary Table 1B). Among all
these proteins, we analyzed as outcomes a total of 1472
proteins from the inflammatory and cardiometabolic
panels, markers of interest for our study. Out of all the
54464 MR analyses carried out with the 37 microbiome

features, 89 showed significant MR results after FDR
correction (adjusted p < 0.05) and all sensitivity
analyses, including bidirectional MR (Supplementary
Table 2J).

Interestingly, out of these 89 total causal relationships
detected, 57 were with proteins listed in the
inflammatory panel (36 distinct proteins) and 32 with
proteins from the cardiometabolic panel (26 distinct
proteins) (Figure 2).

We replicated significant causal relationships for
proteins for which GWASs were available in other
studies. Specifically, we used three key datasets: Zhao
etal. [19], Sun et al., 2018 [20], and Folkersen et al.
[21] (Supplementary Table 1C). A relationship was
considered replicated if the IVW p-value was less than
0.05 and the direction of the effect was consistent with
our main analysis. With these criteria, we found that
the causal relationship between the purine nucleotides
degradation II aerobic pathway and apolipoprotein M
(ApoM) was replicated using the ApoM GWAS from
Sun et al., 2018 [20] (GCST90240318) (Figure 3). In
particular, in both analyses an increase in pathway
abundance was causally linked with a decrease in ApoM
circulating levels (main analysis: fc =—0.11, pgr = 0.02;
replication analysis: fc = —0.22, p = 0.01). All other
results are detailed in the Supplementary Table 2K.

Of note, unlike the UK Biobank Plasma Proteomic
Project (UKB-PPP) proteins used in Sun et al., 2023
[16], measured using the OLINK platform, the
INTERVAL study (Sun et al., 2018 [20]) employed
the SOMAscan assay for protein quantification.
Additionally, the INTERVAL study has a much smaller
sample size compared to the UK Biobank (3622 vs.
54219 participants). In contrast, the other two studies —
Folkersen et al. [21], and Zhao et al. [19] — also used
OLINK for protein measurements albeit with a slightly
different methodology, and have sample sizes of 21758
and 14824 participants, respectively.
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Figure 2. Significant causal relationships between gut microbiome and inflammatory and cardiometabolic proteins. Forest
plot showing causal estimates for the 89 significant causal relationships identified.
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Further investigation of GalNAc-linked utilization

We further investigated the underlying biological
meaning of the significant causal relationships
between the lactose-galactose degradation I pathway
(LACTOSECAT) pathway, and plasma protein levels,
being this pathway strongly associated with a genetic
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variant in the 4BO gene [22]. We therefore aimed to
investigate whether the causal relationships observed
in our study might be connected to the utilization of
N-acetylgalactosamine (GalNAc) in blood type A
individuals, since a recent study from our collaborators
[23] showed that strains of ABO-associated species,
such as strains of Faecalibacterium prausnitzii, can
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Figure 3. The causal relationship between purine nucleotides degradation Il aerobic pathway and ApoM levels. The (A)
shows the results of the main MR analysis between purine nucleotides degradation Il aerobic pathway and ApoM protein. In the scatter
plot, each dot is an IV and the x and y-axis represents the association coefficients with the exposure and outcome, respectively. The three
lines represent the results of the three different MR tests, with the slope of the lines being equal to causal estimates of each test. The (B)
follows the same definition of (A) but refers to results obtained using the GWAS data of the ApoM protein from Sun et al., 2018
(GCST90240318) as outcome. In the (C) the causal estimates from the leave-one-out analyses are shown and compared with the causal
estimate from main analysis (red line). In the (D) we show the post-hoc power estimates at varying causal effect sizes for different studies
of ApoM as outcome. The causal effect identified in the main analysis (8. = -0.11) and corresponding power are highlighted in the curves.
Abbreviations: ApoM: Apolipoprotein M; GWAS: genome-wide association study; IV: instrumental variable; MR: Mendelian Randomization;
PWY.6353: purine nucleotides degradation Il aerobic pathway; SNP: single nucleotide polymorphism.
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utilize this sugar from individuals who secrete the
mucosal A-antigen.

We conducted MR analysis using as exposures host
genetic variants associated with the deletion structural
variant (SV) region (577-579 kb) present in strains of
F. prausnitzii known to be active in degradation of
secreted mucosal A-antigens (Supplementary Table
1D), and proteins and LACTOSECAT pathway as
outcomes. First, we corroborated the existing biological
evidence with MR, and showed that predisposition
to higher load of F. prausnitzii SVs (thus higher
GalNAc utilization activity) is causally linked with
higher levels of the lactose-galactose degradation I
pathway, supporting our hypothesis that the activity of
this microbial pathway is related to mucosal-A antigen
utilization (IVW p < 0.05) (Supplementary Table 2R).
We also detected a causal link between F. prausnitzii
SV and 2 cardiometabolic and 4 inflammatory protein
levels in blood. Specifically, we found that higher load
of F. prausnitzii SV and consequently higher mucosal-A
antigen utilization, was causally linked with an increase
in circulating levels of Pulmonary surfactant-associated
protein D (SFTPD), Sialic acid-binding Ig-like lectin
8 (SIGLECS), Triggering receptor expressed on
myeloid cells 2 (TREM2), Alpha-1-antichymotrypsin
(SERPINA3) and Complement component C7 (C7), and
with decreasing levels of T-cell surface glycoprotein

CD3 gamma chain (CD3G) (all IVW p < 0.05).
Furthermore, the direction of the effect of the MR
analysis between F. prausnitzii SV and proteins is
consistent with the direction of the effect of the MR
analysis detected between LACTOSECAT pathway and
proteins (Figure 4).

DISCUSSION

In this study, we investigated the causal effect of
variation in gut microbiome composition and function on
age-related traits, using the Mendelian Randomization
approach. Among all the investigated outcomes, the
analyses highlighted a potential causal effect on AMD,
and on 36 inflammatory proteins and 26 cardiometabolic
circulating plasma protein levels.

A strong and replicable causal relationship highlighted
by our study is the one between purine nucleotides
degradation II (aerobic) pathway and apolipoprotein M
protein in plasma. This pathway leads to the stepwise
breakdown of purine nucleotides into urate, which
in humans is the final product due to the absence of
the enzyme uricase. Urate is mostly reabsorbed by
the kidneys, with only ~10% excreted [24]. Its
accumulation has been linked to cardiovascular risk -
hyperuricemia is associated with higher incidence of
cardiovascular events [25, 26]. Our findings suggest
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lactose and galactose degradation |
Qa'b‘ Gal \j\ :t‘ll O‘LG@{O
,/\?» . 1 %, S,
‘}Q ({\ ‘ ‘(.:ll\(\l’ % w
K & %
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G lactose trasport _ y ao6p Sy Gal6P —22 . T6P
<\°‘ ¥ PTS g
LA 1 siGLECs, c7,
]‘ Faecalibacterium lowest p = 9.7e-6 SFTPD, TREM2,
prausnitzii SV SEREINAG o
577-579 kb J CD3G g%

not significant R

Figure 4. Directed causal relationships involving the abundance of Faecalibacterium prausnitzii structural variant 577 _579,
the LACTOSECAT pathway, and plasma proteins. The figure illustrates the causal relationship between the abundance of
Faecalibacterium prausnitzii structural variant 577_579 and LACTOSECAT pathway, between LACTOSECAT pathway and six plasma proteins
and the one between Faecalibacterium prausnitzii and the same six plasma proteins. It also shows the lactose and galactose degradation |
pathway (horizontal) along with the GalNAc degradation pathway (vertical), with annotated steps detailing the processes involved in
GalNAc degradation, as described in Zhernakova et al. (2024). Created in BioRender. Sanna, S. (2025) https://BioRender.com/09k1g5m.
Abbreviations: ApoM: Apolipoprotein M; DHAP: glycerone phosphate; GalNAc: N-acetylgalactosamine; Gal6P: D-galactopyranose 6-
phosphate; GalNAc6P: N-acetyl-D-glucosamine-6-phosphate; GalN6P: N-Acetylgalactosamine-6-phosphate; GAP: D-glyceraldehyde 3-
phosphate; LACTOSECAT pathway: lactose and galactose degradation pathway; Lac6P: lactose 6’-phosphate; T6P: D-tagatofuranose-6-

phosphate; TBP: D-tagatofuranose 1,6-biphosphate.
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that increased purine degradation may contribute to
cardiovascular risk through two converging mechanisms:
elevated urate levels and reduced ApoM concentrations.
ApoM, mainly produced in the liver and kidneys, is
essential for HDL formation and function, promoting
cholesterol efflux and exerting anti-inflammatory and
atheroprotective effects. Its location in the Major
Histocompatibility Complex (MHC) class III region
also links it to immune and inflammatory processes
[27]. An increase in urate levels may be a risk factor for
endothelial dysfunction [28], a process that, particularly
in older individuals who are more vulnerable to chronic
inflammation, can lead to downregulation of ApoM
expression. This may contribute to the development of
atherosclerosis and subsequent vascular events [29].

Another interesting result is the identification of causal
relationships between the LACTOSECAT pathway
and six circulating protein levels, which we showed to
be attributable to GalNAc utilization of secreted
mucosal A antigen in blood type A individuals. Using
MR and the existing knowledge of host-interaction
function of F. prausnitzii strains, we confirmed that
higher abundance of LACTOSECAT pathway is
driven by higher GalNAc utilization in blood type A
individuals, and this in turn increases or decreases
the levels of these proteins. Specifically, GalNAc
utilization in blood type A individuals leads to higher
activity of the pathway, and in turn to increased levels
of SIGLECS8, SFTPD, TREM2, SERPINA3, and
C7. Whereas CD3G levels decrease with both higher
F. prausnitzii and increased LACTOSECAT pathway
activity. Based on these results, we speculate that
differences in disease risk among blood type groups
for age-related conditions on which these proteins
are potentially involved may be different due to a
modulation of gut microbiome on host protein
levels. In particular some studies demonstrated that
TREM?2 is protective for atherosclerosis [30],
while the increase of the presence of some other
proteins, like SERPINA3 and C7 led to an increase
of cardiac mortality and coronary artery disease
respectively [31, 32].

We acknowledge that there is an extensive growth in
literature on the associations between gut microbiome
and the onset of many chronic and age-related
diseases. However, reliability and reproducibility of
most of these findings are limited by several pitfalls
in the statistical protocol used, such as a lenient
selection of IVs, being limited to one single MR
test and not performing sensitivity analyses, and the
lack of correction for multiple testing. Furthermore,
very few studies have aimed to replicate their
findings in independent datasets, leaving their results
inconclusive.

Chen et al. [7, 10], for example, investigated the
presence of potential causal relationships between
gut microbiome and five longevity traits — frailty,
health span, lifespan, longevity, parental longevity —
using the same GWAS data that we have used in
our study. Among their exposures there were traits
derived from the GWAS carried out on the Dutch
Microbiome Project, which we also used in our study.
They identified several causal relationships that we
were unable to reproduce. The primary differences
between their study and ours lie in the methodology,
particularly in the threshold used for selecting IVs.
Indeed, to avoid overestimating the causal effect,
we only focused on microbiome traits with at least
one genome-wide significant hit and opted for a
more stringent association p-value of 5 x 1079,
instead of 1 x 1073. Furthermore, we did not base
our significance on nominal p-values but rather
employed multiple testing correction. This approach
reduces the number of significant findings but
strengthens the robustness and reliability of our
results. Out of the 168 exposure-outcome significant
pairs reported by Chen et al. [7, 10], 12 would
survive our pipeline for selection of exposure and
only 3 were nominal significant for the IVW test.
However, none were significant after adjusting for
multiple testing (all pzy >0.16). Additionally, none
would pass the sensitivity analyses therefore they
would not be considered significant even without
applying FDR (Supplementary Table 3).

Of note, another study (Mao et al. [6]) has specifically
investigated the causal link between gut microbiome
and AMD, but the two GWAS used for analyses
were different from those used by us. As exposure
(microbiome GWASs) they used data from the
MiBioGen consortium [23], and as outcome (AMD
GWAS) data were derived from FinnGen biobank
analysis (round 5), which includes 3763 cases and
205359 controls. Using a p < 5 x 107 as significance
threshold to select IV, 6 microbiome features (out of
211 tested) were found to be causally linked to AMD
at p < 0.05 (smallest p = 0.005). None of these features
include species of the order of Coriobacteriales. These
results, however, were not supported by a correction
for multiple testing, therefore they could not be
considered statistically significant. In addition, the
other MR methods they implemented were not taken
into account; for example, the p-values from MR-
PRESSO were never significant (all p > 0.05). In
contrast, the causal relationship we detected with AMD
was robust to FDR correction and to all sensitivity
analysis we opted for. It must be noted however that
despite we have used a stringent and rigorous pipeline,
we were unable to replicate the causal relationship
using different datasets.
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Our findings highlight the importance of a rigorous
methodological approach in the application of MR
to study the causal relationships between the gut
microbiome and age-related phenotypes. A strict
observance to MR guidelines [12, 33] and STROBE-MR
[11] is essential to ensure the integrity and reliability of
the results and a proper evaluation of finding, concept
that extends beyond the specific exposure and outcome
we selected. Several findings from previous studies
[6, 7, 10] that did not follow the guidelines were in fact
not supported by our analyses. Our study also focus
attention on the need for replication of the results in
independent GWAS datasets, rather than assuming that
an initial statistical significance can be interpreted as
definitive proof of causality. This concept is essential
to avoid misinterpretation and to progress towards
the discovery of effective therapeutic interventions.
The range of applications of MR and related methods
for understanding causal mechanisms has in fact
expanded rapidly over the past 20 years, coupled
with the increasing number of public GWAS studies,
and therefore the adherence to a rigorous pipeline is
mandatory.

We also acknowledge the study limitations. First, the
genetic of microbiome traits has a limited impact on
explaining the total variation, therefore only one IV
could be selected at 5 x 107® for each trait, significantly
impacting power of MR. We mitigated this limitation
by using a lower threshold of 5 x 107 to detect more
IVs and rigorously assessed the coherence of causal
estimates from each IVs using several sensitivity
analysis methods. Secondly, we acknowledge that
genetics of gut microbiome traits can be influenced by
other factors, including diet and lifestyle factors which
may confound MR analyses by deviating from the
independence assumption. While we have no data to
explore this confounding, we attempted to reduce its
impact by considering only those microbiome traits
with strong genetic link (at least one genome-wide
significant hit), most of which are known to consistently
replicate in other cohorts regardless of diet [34]. It
must be noted that some of these effects may be
even stronger depending on diet. For example, the
association between genetic variants at the ABO locus
with bacterial species and pathways, many of which
show significant causal relationships in our analyses,
is enhanced by fiber intake [35]. Third, we recognize
the lack of replication of some results in independent
cohorts. Furthermore, we are aware that differences
in data collection methods and characteristics of the
cohorts analyzed may have introduced sources of bias,
which may have prevented the detection of weaker
but still relevant relationships. For instance, in the case
of AMD we identified three independent GWASs for
the disease, each employing different case definitions.

The primary AMD dataset considered AMD as a
binary trait coded as 362.29 in the ICD-9-CM
(Supplementary Table 1B), which differs from the
definitions used in the other three datasets employed
for replication (Supplementary Table 1C). Thus, despite
the higher statistical power in the replication datasets
(Supplementary Figure 3), inconsistent phenotypic
definitions may have confounded replication results.
Similarly, in the case of circulating inflammatory and
cardiometabolic proteins, all replication datasets had
lower sample sizes and thus lower power compared
with the main analyses.

While our analyses are robust and the results
compelling, we were unable to elucidate the underlying
biological mechanisms driving the observed causal
relationships. Therefore, any clinical application aimed
at microbiome modulation remains premature.

In conclusion, we investigated the causal relationships
between the gut microbiome and age-related phenotypes
using the MR approach and ensured the integrity and
reliability of the results by a strict adherence to MR
guidelines. Our results support a causal role of gut
microbiome in age-related macular degeneration and
in both upregulating and downregulating the expression
of 36 inflammatory and 26 cardiometabolic protein
levels, some of which occur via mucosal-A antigen
utilization. Particularly robust was the causal link
between a microbial purine nucleotides degradation II
aerobic pathway and and levels of the protein ApoM,
which was successfully replicated in an independent
cohort. While these links are particularly intriguing,
we acknowledge that future studies are needed to
investigate the underlying biological mechanisms and to
further confirm our evidence.

MATERIALS AND METHODS
Exposure and outcome selection

Two-sample MR was performed to investigate the
causal relationship between the gut microbiome
(exposure) and selected age-related phenotypes
(outcome) (Figure 1). As exposure data we used
genome-wide association study (GWAS) summary
statistics collected from a previous study by Lopera-
Maya et al. [22]. Lopera-Maya et al. used shotgun
genome sequencing on fecal samples from 7738
individuals participating in the Dutch Microbiome
Project [36] to derive quantitative information on 207
taxa and 205 pathways. By analyzing these 412
microbiome variables with GWAS method, they
identified significant genetic associations (p < 5 x 107%)
for 37 of these: 18 taxa and 19 pathways; these 37
were considered as exposure for our study. The relevant
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GWAS summary statistics can be accessed through
the GWAS Catalog (https://www.ebi.ac.uk/gwas/home)
[37] (Supplementary Table 1A).

The outcomes of interest included 18 age-related
phenotypes, both diseases and quantitative traits (Table
1), of which summarized GWAS results were also
collected on GWAS Catalog [37] and, for “lifespan”,
from the Edinburgh DataShare repository (https:/
datashare.ed.ac.uk/handle/10283/3209). Additionally, we
included 1472 circulating proteins from inflammatory
and cardiometabolic panels of UK Biobank Plasma
Proteomic Project (UKB-PPP), for which the GWAS
summary statistics were reported in the study by
Sun et al., 2023 [16]. These outcomes were selected
for their relevance to aging and cardiometabolic
health, as they comprise key traits related to longevity,
frailty, cardiovascular and metabolic disorders, as
well as systemic inflammation. Furthermore, these
GWASs were selected because they were carried out
in very large cohorts of European ancestry (28967 < N
< 1012240), (Table 1), so they provided sufficient
statistical power for analyses.

GWAS quality control and selection of instrumental
variables

We performed a quality control (QC) screening for each
of the downloaded GWAS files (37 for the microbiome
and 1490 for the outcomes). In particular, we confirmed
that all studies were aligned to build 37 (genome
assembly GRCh37/hg19) or otherwise to a compatible
assembly such as hg38 (cardiovascular aging and
circulating protein levels) and assigned missing rsIDs
to genetic variants when needed. Furthermore, we
removed variants in the exposure if their effect size was
very large and likely unreliable (+/— 4 standard
deviation units).

After QC, we selected genetic variants to be used as [Vs
for MR analyses. Since MR assumptions require
independent (not in linkage disequilibrium) and highly
associated IVs, we selected significant (p < 5 x 107)
independent hits, after linkage disequilibrium clumping
using a window of 10 Mb and R? cutoff = 0.001.

To avoid the weak instrument bias, we computed the F
statistics [38] as:

F:Rz(n—kz—l)
k(1—R?)

Where £ is the number of SNPs in the instrument and »
the sample size of the exposure GWAS. R’ is the total
proportion of explained variance for each exposure,

calculated by summing all R}, values of all variants

included in the instrument. It can be computed, using
the following formula [39]:

2 _ 2B*MAF (1— MAF)
M 2B MAF(1— MAF) + 2n(se())’ MAF (1 - MAF)

where MAF is the minor allele frequency, f is the
effect size for a given variant and » the sample size of
the exposure GWAS. Instruments with F >10 were
considered sufficiently strong and retained for analysis.

To reduce computational time in the clumping process,
we used a local version of the European population (503
samples) genotypes from the 1000 Genomes Project
(phase 3) [40, 41], that excluded variants with minor
allele frequency (MAF) less than 1%.

Methods for causal inference

After the general QC of GWAS, two-sample MR
analysis was performed, using “TwoSampleMR”
version 0.6.8 package [42, 43] in R environment version
4.4.1. The main MR method we employed to evaluate
causality is the “Inverse Variance Weighted” (IVW)
method [44, 45], as it is the strongest method with
the greatest discovery power. To avoid the risk of
overestimating the significance of our findings, we
applied a correction for multiple testing within each of
the 1490 outcomes — the Benjamini-Hochberg (BH)
false discovery rate (FDR) correction [46] — considering
a significance level of 5% after correction.

The MR method relies on three important assumptions:
(1) IVs are associated with exposure (relevant exposure);
(2) IVs are not associated with outcome due to
confounding pathways (independence); (3) IVs do not
impact the outcome directly, except potentially via
exposure (exclusion restriction) [44].

While the first assumption is met by our selection of IV
with the clumping method, the other two assumptions
cannot be investigated a priori. Therefore, in addition
of the IVW method, we employed other MR methods
as sensitivity analyses: weighted median method [47]
and MR-PRESSO (using “MRPRESSO” version 1.0
package on R) [48, 49]. Given the limited power, we
considered significant those tests with nominal p-value
less than 0.05 (thus not applying multiple testing
correction). Of note, while we derivate causal estimates
also from the MR Egger test and these are provided on
Supplementary Tables, they were not used to define a
causal relationship significant, as these estimates have
inflated Type 1 error rates [50]. Nevertheless, even if
not significant in some cases, the direction of the causal
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effect was concordant with other MR methods. In
addition, we specifically investigated the presence of
constant horizontal pleiotropy, heterogeneity, and the
influence of a single variant on causal estimates with
several statistical tests [50]. In particular, these included
the Egger intercept term which assumes all IVs display
the same amount of pleiotropy, the Cochran’s Q
statistics which assesses heterogeneity across single
IV causal estimates [51], and the leave-one-out test —
where IVW is repeated removing in turn one IV
from the set of IVs. The results were also visualized
graphically using scatter plots and leave-one-out plots.

Significant results after [IVW were also subjected to
bidirectional MR analysis, it means using the outcome as
exposure and the exposure as outcome, to confirm the lack
of significant reverse causal relationships. This approach
ensures that observed associations are not merely due to
reverse causation or confounding, thereby strengthening
the validity of causal inferences drawn from the study.

We then run replication analyses for all significant
findings (those passing IVW and sensitivity analyses),
using independent GWAS’ datasets as outcome and
exposure, if available (Supplementary Table 1C).

Post-hoc power analysis

For all our significant results we calculated the post-hoc
power to compare the power of the main and replication
analyses and have further information about the strength
of our findings. We used for continuous outcomes the
formula [52]:

Power, = @(«[(RzﬂczN) _Zl—a/Z)

and for binary outcomes:
~Zican ]

Where S, is the causal effect obtained from main MR
analysis, N is the sample size of the outcome’s GWAS,
R?is the exposure’s explained variance by the selected
IVs and ratio is calculated by dividing the number
of cases by the number of controls of the outcome
GWAS. The function @ is the cumulative distribution
function of the standard normal distribution and zi_q»
is the quantile of the standard normal distribution
corresponding 1—a/2, for a significance level a.= 0.05.

ratio

Power, =®| ,[NR’ 3’
1+ ratio

To compute the explained variance R’, required to
calculate the statistical power, we used the formula
described in the QC section [39].

Further investigation of GalNAc-linked utilization

Since in the study by Lopera-Maya et al. [22] the
LACTOSECAT pathway was highly associated to a
genetic variant in the 4BO gene, the gene responsible
for determining blood group types (Supplementary
Table 1), we further investigated the significant
relationships related to this pathway. A recent study by
our collaborators [23] has shown that ABO-associated
species can also utilize N-acetylgalactosamine (GalNAc)
sugar from blood type A individuals who can secret the
mucosal A-antigen. We therefore aimed to investigate
whether the causal relationships observed in our study
might be connected to utilization of GalNAc in blood
type A individuals.

Specifically, we assessed the causal relationships
between the presence of structural variants (SVs) of
Faecalibacterium prausnitzii, which contain genes that
perform GalNAc degradation activity [53], and the
LACTOSECAT pathway and significant outcome results.
Of note, this bacteria species was not detected in Lopera-
Maya et al. [22], and thus no GWAS was available for our
MR analyses. However, the study of Zhernakova et al.
[37] identified human single nucleotide polymorphisms
(SNPs) that alter the abundance of the GalNAc utilization
gene region, and thus these SNPs could be used to
investigate the causal effect of F. prausnitzii.

We conducted MR analysis using the abundance of the
deletion SV region (577-579 kb) related to GalNAc
activity in F. prausnitzii as exposures (Supplementary
Table 1D), with proteins and lactose-galactose degradation
I pathway and significant related phenotypes as outcomes.

We performed clumping of GWAS related to abundance
of the SV with the same criteria used in the main analysis
and then we tested the causal relationships with MR
method, considering as significant the results with [IVW
p-value <0.05.

Availability of data and materials

No data were generated for this study. We used public
data [16, 17], [19-22], [53-66], download links are
available in Supplementary Table 1. The scripts used
for all the analyses are publicly available in the GitHub
repository: https://github.com/Sanna-s-L AB/Mendelian-
randomization-Project.git. A schematic workflow of
analyses conducted in this study is displayed in
Supplementary Figure 5.
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Supplementary Figure 1. Scatter plot of main MR analysis between Coriobacteriales and age-related macular degeneration.
This figure shows the results of the main MR analysis between Coriobacteriales (o__Coriobacteriales or f__Coriobacteriaceae) and AMD. In
the scatter plot, each dot is an IV and the x and y-axis represents the association coefficients with the exposure and outcome, respectively.
The three lines represent the results of the three different MR tests, with the slope of the lines being equal to causal estimates of each test.
Abbreviations: AMD: age-related macular degeneration; IV: instrumental variable; MR: Mendelian randomization; SNP: single nucleotide
polymorphism.
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Supplementary Figure 2. Leave-one-out plot of the main MR analysis between Coriobacteriales and age-related macular
degeneration. In this figure the causal estimates from the leave-one-out analyses between Coriobacteriales (o__Coriobacteriales or
f__Coriobacteriaceae) and AMD are shown and compared with the causal estimate from main analysis (red line). Abbreviations: AMD: age-
related macular degeneration; MR: Mendelian randomization.
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Supplementary Figure 3. Power estimates of Coriobacteriales vs age-related macular degeneration analysis. This plot shows

the power estimates at varying causal effect sizes 8, for independent studies of age-related macular degeneration as outcome. The causal
effect identified in the main analysis (6. = 0.061) and corresponding power are highlighted in the curves.

WWWw.aging-us.com 1984 AGING



A

rs11652058

rs2907732 : .

rs4234207 : .

rs78362376

1528806584 o

rs550057 e

IVW p-val=0.2337

All

' i \
-0.25 0.00 0.25
MR leave-one-out sensitivity analysis for

'f__Coriobacteriaceae' on 'AMD (replication - GCST90086112)"

c

111652058 : .

rs28806584

rs2907732 2 -

rs4234207 .

rs78362376

rs550057 ‘e

IVW p-val=0.2549
Al ;

] i ' ' !
-0.1 0.0 0.1 0.2 0.3
MR leave-one-out sensitivity analysis for
‘f_Coriobacteriaceae' on 'AMD (replication - FinnGen)'

rs4234207

rs78362376

rs2907732

rs28806584

rs550057

rs11652058

All

IVW p-val=0.3679

. i . '
-0.1 0.0 0.1 0.2
MR leave-one-out sensitivity analysis for
‘'f__Coriobacteriaceae’ on 'AMD (replication - GCST010723)'

Supplementary Figure 4. Replication analyses between Coriobacteriales vs. independent GWASs of age-related macular
degeneration. The (A) shows the leave-one-out plot of MR replication with GWAS of age-related macular degeneration (AMD2) from
Guindo-Martinez et al., 2021 (GCST90086112) and the exposure Coriobacteriales (o__Coriobacteriales or f _Coriobacteriaceae). The (B)
shows the leave-one-out plot of MR replication analysis with “Early AMD” GWAS from Winkler et al., 2020 (GCST010723) as outcome. The
(C) represents leave-one-out plot of replication analysis with AMD GWAS from FinnGen study (https://www.finngen.fi/en/access results)
as outcome. Abbreviations: AMD: age-related macular degeneration; GWAS: genome-wide association study; IVW: inverse variance

weighted; MR: Mendelian randomization.
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Supplementary Figure 5. Workflow of the study. This workflow shows all the steps of the MR analysis examining the causal link
between the gut microbiome and specific age-related outcomes. Abbreviations: IV: instrumental variable; GWAS: genome-wide association
study; MR: Mendelian randomization; NAs: missing values; SNP: single nucleotide polymorphism; QC: quality control.
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Supplementary Tables
Please browse Full Text version to see the data of Supplementary Tables 1-3.

Supplementary Table 1. List of exposures and outcomes used in the MR analyses.
Supplementary Table 2. Detailed MR results for all analyses carried out in this study.

Supplementary Table 3. Comparison between Chen et al.'s, (2024) significant results and those we obtained
with our pipeline for the same exposure-outcome pairs.
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