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INTRODUCTION 
 

Idiopathic pulmonary fibrosis (IPF) is a chronic, 

progressive lung disease characterized by the excessive 

accumulation of extracellular matrix components, leading 

to declining lung function and ultimately respiratory 

failure. Predominantly affecting individuals over the age 

of 60, the correlation between aging and IPF underscores 

the importance of understanding the aging-related 

mechanisms contributing to its pathogenesis. Both aging 

and fibrotic diseases pose major healthcare challenges. 

As such, global deaths to fibrotic diseases have been on 

the rise over the last three decades and constitute 18%, 

according to the latest estimates [1]. Similarly, the 

population aging problem has been a mainstay of 

biomedical and political debates for decades [2, 3]. 

Identifying the mechanisms shared by aging and fibrosis 

is crucial for developing targeted therapies that can 

potentially benefit the global population. 

Current treatments for IPF are limited and primarily 

focus on slowing progression rather than addressing 

underlying causes. Lung transplantation remains the 

only way to improve a patient’s survival rate, and prior 

anti-fibrotic therapies may be considered a way to help 

a patient outlast the long waiting period [4, 5]. This 

scarcity of effective therapies stems partly from an 

incomplete understanding of the molecular and cellular 

processes driving fibrosis in the aging lung. However, 

novel strategies to fight IPF are emerging with many of 

them focusing on its aging-related nature [6]. 

 

Recent advancements in biomedical research, notably in 

artificial intelligence (AI), offer a new vector to 

developing IPF therapies. AI-driven approaches can 

analyze vast amounts of biological data to identify 

novel biomarkers, therapeutic targets, and actionable 

insights. The existing AI pipelines have been 

successfully used to analyze the aging footprints in 
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independent dataset to show that severe cases of COVID-19 are associated with an increased aging rate. 
Computational analysis using ipf-P3GPT revealed distinct but overlapping molecular signatures between aging 
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mailto:alex@insilico.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


www.aging-us.com 2 AGING 

proteomic, transcriptomic, epigenetic and other types of 

omics biodata [7–9]. Today, these research technologies 

have matured enough to be used in more practical 

applications as testified by a number of granted deep 

aging clock patents [10–13]. Even more AI applications 

are actively used in biomedical research settings not 

focused on aging, such as target discovery, drug 

candidate design, clinical trial design, and others [14–

16]. These AI models serve to open new classes of 

drugs with promising anti-aging potential, such as HIF-

PH inhibitors for the treatment of irritable bowel disease 

[17, 18].  Models such as those from the Precious and 

Nach0 lineups hold the promise of enabling a fully 

digital mode of clinical research by emulating real-life 

experimental settings based on existing data [19–22]. 

Simultaneously, LLM-inspired genomic AI models 

allow scientists to discover new mechanistic and 

evolutionary theories of aging and explain the behavior 

of living systems in environments previously considered 

too complex to model [23–27]. 

 

The rapid pace of AI innovation and hardware 

improvements promotes an optimistic outlook on the 

future of clinical therapeutics. By extracting actionable 

knowledge from a diverse and vast range of biomedical 

studies, more connections between seemingly disparate 

pathological processes can be built to find the cures for 

conditions beyond the reach of contemporary medicine. 

IPF is such a disease with an unclear etiology and a 

paucity of life-extending clinical countermeasures, apart 

from lung transplantation [28].  The existing body of 

evidence suggests that the onset of IPF has a strong an 

aging-related component, suggesting that this disease 

may be a specific instance of the general aging process 

[29]. Various authors highlight that IPF is characterized 

by the accumulation of senescent cells, insufficient 

autophagy, proinflammatory environment, and mTOR 

deregulation, which are commonly considered 

hallmarks of aging [30, 31]. Other authors suggest that 

the activation of embryonic pathways is essential for 

lung regeneration, while their deregulation is common 

in older individuals which leads to aberrant tissue 

maintenance [32]. 

 

In this study, we aim to explore the similarities between 

aging and IPF using AI models, such as Precious3GPT 

(P3GPT) and aging clocks (Figure 1). By identifying age-

related biomarkers and therapeutic targets and utilizing 

AI to predict disease status, we offer new avenues for 

developing novel anti-fibrotic treatments. This study 

represents a significant step forward in understanding and 

addressing the complexities of IPF and aging 

mechanisms with the potential to improve outcomes for 

patients suffering from this challenging condition. 
 

RESULTS 
 

Fibrosis-aware aging clock 

 

We developed a proteomic aging clock using data from 

55,319 UK Biobank participants aged 50-85 years. 

Overall, the clock demonstrated robust performance 

with a mean absolute error (MAE) of 2.68 years and 

R²=0.84 in five-fold randomized cross-validation, 

indicating strong predictive capacity (Figure 2 and 

Supplementary File 5). To assess performance stability 

 

 
 

Figure 1. Deep learning models for studying IPF and fibrotic diseases. (A) This paper presents two deep learning models: an omics-

transformer that generates differential gene expression profiles from text prompts and a pathway-aware aging clock trained on UK Biobank 
proteomics data. The models focus on IPF-relevant biological pathways including TGF-β signaling, oxidative stress, inflammation, and ECM 
remodeling. (B) Architecture of the pathway-aware proteomic aging clock. The neural network processes protein measurements through 
feature extraction layers that branch into age prediction and pathway-specific attention mechanisms, enabling interpretable aging 
predictions with pathway awareness. 
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across different age ranges, we stratified the cohort 

into four age brackets. The distribution of samples was 

weighted toward older participants, with 16.3% aged 

50-59 (n=9,020), 29.4% aged 60-69 (n=16,278), 

42.7% aged 70-79 (n=23,645), and 11.5% aged 80-89 

(n=6,376). 

 

Analysis of prediction errors revealed significant age-

dependent variations in clock performance (ANOVA 

p<0.0001, Figure 2). The clock showed comparable 

MAE values for participants aged 50-59 (2.52 years), 

60-69 (2.75 years), and 70-79 (2.32 years), but 

performance declined notably in the oldest age group 

(80-89 years, MAE=4.08 years). This pattern suggests 

that while the clock maintains strong overall predictive 

capacity, biological age assessment becomes more 

challenging in advanced age, possibly reflecting 

increased heterogeneity in aging mechanisms. 

Examining prediction biases across age brackets 

revealed a systematic pattern in error direction. The 

clock tended to overestimate ages in younger 

participants (mean error +2.25 years in ages 50-59), 

showed minimal bias in middle age groups (mean error 

+0.19 years in ages 60-69), and progressively 

underestimated ages in older participants (mean error -

0.84 years in ages 70-79 and -4.07 years in ages 80-89). 

 

 
 

Figure 2. Comparison of biological age predictions between healthy controls and cases of severe COVID-19 infection.  
(A) Proteomic aging clock shows R2=0.84 in the task of age prediction in CV within the UK Biobank dataset (N = 55,319). (B) Proteomic aging 
clock’s error depends on the age group and is skewed toward the mean of the total sample. (C) Biological age acceleration (difference 
between predicted and chronological age) across severity groups. compared to healthy controls. Error bars represent standard error of the 
mean. (D) Linear regression analysis reveals that patients with severe cases, which are likely to develop lung fibrosis, showed significantly 
higher biological age predictions (+2.77 years, p=0.026). 
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After confirming the clock’s accuracy in CV, we 

applied it to the Olink Explore 1536 dataset from [33] 

featuring healthy, moderate, and severe cases of 

COVID-19 (N=84) with unidentified fibrosis status. 

Due to a large number of missing values in this dataset 

and non-uniform age distribution across outcome 

groups, a direct comparison of prediction errors 

between them was not feasible. Hence, we applied a 

linear regression method to assess the effect of disease 

severity on the pace of aging. Our analysis identified 

that the patient with a severe case of the infection, and 

thus likely to develop lung fibrosis, had significantly 

higher biological age compared to healthy controls 

(+2.77 years, p=0.026), suggesting that the trained 

clock carries biological relevance in fibrotic cases 

(Supplementary File 6). 

 

ipf-Precious3GPT analysis 

 

After exploring the function of the aging clock, we  

set out to identify the genes contributing to the 

progression of both IPF and aging by using ipf-P3GPT 

(Figure 3). ipf-P3GPT is an abridged version of the 

full-scale P3GPT that was trained on a data collection 

enriched in fibrotic disease from human and in vitro 

studies. Using this model, we generated two distinct 

gene expression profiles: one representing the classical 

IPF transcriptomic response and another modeling the 

aging process in lung tissue from 30 to 70 years old. 

The model assigned attention scores to each gene, 

indicating their relative importance in the respective 

biological processes. 

 

Analysis of differentially expressed genes revealed 

distinct transcriptional signatures for IPF (n=96 genes) 

and aging-associated (n=93 genes) processes in lung 

tissue (Table 1 and Supplementary File 7). The overlap 

between these signatures was limited to 15 genes 

(15.6% of IPF signature), suggesting substantial 

divergence in the underlying molecular programs. 

Among the overlapping genes, 46.7% (7/15) showed 

concordant directional changes, while 53.3% (8/15) 

exhibited opposing regulation between IPF and aging 

conditions. This initial observation prompted us to 

investigate the specific molecular pathways affected in 

each condition. 

 

Both aging and IPF signatures demonstrated significant 

involvement of ECM-associated genes, albeit with 

distinct regulatory patterns. IPF signature included 

multiple collagen types (COL1A1↓, COL3A1↓, 

COL5A1↑, COL15A1↑) and matrix-modifying 

enzymes (MMP1↑, MMP13↑). The aging signature, in 

contrast, showed a different matrix remodeling profile, 

characterized by changes in structural proteins (ELN↓, 

MFAP4↓, MFAP5↓) and matrix-associated factors 

(POSTN↓). Notably, COL1A1 showed opposing 

regulation between IPF (downregulated) and aging 

(upregulated), suggesting divergent matrix reorganization 

mechanisms. 

 

Further examination revealed that the IPF signature was 

enriched for TGF-β pathway components (TGFBR1↓, 

GDF15↓, BGN↑) and inflammatory mediators 

(CXCL8↑, IL1B↓, CCL8↓). While the aging signature 

shared some inflammatory mediators (IL6↑, IL1RL1↑), 

it exhibited a distinct growth factor profile (FGF7↓, 

CSF3↑). Both conditions showed involvement of 

matrix-associated growth factors, though through 

different molecular effectors. 

 

 
 

Figure 3. ipf-P3GPT model architecture. The transformer 

model features a 64-dimensional embedding layer, three 
transformer blocks with dual attention heads, and a vocabulary-
sized output layer. The model processes disease, age group, and 
compound treatment comparisons using a custom XML-aware 
tokenizer, achieving 72.2-75.9% validation accuracy across 
instruction types. 
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Table 1A. Shared genes between IPF and aging-associated 
lung fibrosis. 

 IPF Aging 

Gene Direction Score Direction Score 

Concordant genes 

IL1RL1 ↑ 48.8 ↑ 16.9 

ASPN ↑ 43.9 ↑ 9.4 

PAPPA ↑ 34.7 ↑ 12.5 

F2R ↓ 34.4 ↓ 5.6 

COL15A1 ↑ 32.3 ↑ 3.4 

ADAMTS1 ↓ 23.3 ↓ 2.4 

IL6 ↑ 19.2 ↑ 3.6 

CD83 ↓ 16.1 ↓ 3.3 

Discordant genes 

COL1A1 ↓ 51.3 ↑ 10.0 

SERPINA3 ↓ 43.2 ↑ 9.2 

FOSB ↑ 41.3 ↓ 7.7 

EDNRB ↓ 37.9 ↑ 14.2 

APOH ↓ 36.1 ↑ 9.4 

NPTX2 ↑ 27.5 ↓ 9.2 

GPC5 ↓ 24.8 ↑ 5.0 

VIPR1 ↓ 23.4 ↑ 12.5 

QSOX1 ↑ 21.9 ↓ 4.3 

 

Table 1B. Key unique genes in each condition (Top 15 by attention 
score). 

IPF-specific Aging-specific 

Gene Direction Attention Gene Direction Attention 

AKT3 ↓ 100.0 IL10RA ↑ 100.0 

TUBB3 ↑ 88.3 MFAP4 ↓ 61.7 

CFB ↓ 86.0 FGF7 ↓ 57.4 

PKN3 ↓ 70.7 S100A3 ↑ 49.6 

CCL8 ↓ 63.5 SEMA3G ↓ 45.7 

GDF15 ↓ 60.3 IL11 ↓ 36.1 

APOC1 ↑ 56.0 FASLG ↑ 30.4 

MET ↑ 55.6 NTRK2 ↑ 25.5 

BCHE ↓ 55.6 VIT ↑ 23.2 

SFRP1 ↑ 52.7 MMP3 ↑ 20.4 

AGBL2 ↓ 52.5 SCGB3A1 ↑ 19.5 

DAPK2 ↓ 51.1 MARCO ↓ 19.5 

MRC1 ↓ 50.7 TAGLN3 ↑ 18.1 

NRGN ↓ 49.7 GZMA ↓ 17.4 

VEGFA ↑ 47.9 FNDC1 ↑ 15.6 

Values represent relative attention scores among the gene tokens 
attending to the fibrosis diagnosis by the ipf-P3GPT model. ↑ indicates 
upregulation, ↓ indicates downregulation. 
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DISCUSSION 
 

Our study presents several significant findings regarding 

the intersection of aging biology and IPF progression, 

while introducing novel AI-driven approaches for 

understanding disease mechanisms and therapeutic 

interventions. To further the community’s understanding 

of IPF and other fibrotic diseases, we present two deep 

learning models: a proteomic aging clock developed 

with UKB data and an abridged version of P3GPT, a 

transformer-based model for generating and analyzing 

omics-level data. 

 

The proteomic clock we developed shows an accuracy 

(R2=0.84) below another recently published aging clock 

ProtAge (R2=0.94) in a different subsection of UKB 

[34]. Unfortunately, a direct comparison was not feasible 

since the authors had not deposited the weights of the 

model used. This performance difference can be 

attributed to several factors. First, our model was 

deliberately constrained to accommodate pathway-

specific internal representations relevant to IPF 

pathogenesis. The integration of IPF-relevant pathway 

attention mechanisms introduced a trade-off between age 

prediction accuracy and capturing fibrosis-related 

biological signals. Additionally, while the UK Biobank 

dataset is extensive, the effective sample size for training 

neural architectures may be insufficient to fully 

capitalize on the model's capacity. We maintained a 

conservative approach to parameter count, particularly in 

the attention mechanism layers, to ensure generalization 

to independent datasets. This methodological choice 

prioritized biological relevance for fibrosis applications 

rather than maximizing chronological age prediction 

performance, which distinguishes our approach from 

general-purpose aging clocks. 

 

The four hallmark pathways added to the model’s 

attention block and secondary output head were selected 

based on their reported importance in IPF development 

[4, 35–37]. . These specific pathways consistently 

emerge as central to the fibrotic process in multiple 

tissues and represent key mechanistic nodes where aging 

and fibrosis intersect [38]. While numerous additional 

pathways play roles in IPF, these four were prioritized 

based on their documented centrality to disease 

progression and their known modulation during aging 

[39]. This focused approach also allowed us to maintain 

a lower number of model parameters given the sample 

size constraints while capturing the most biologically 

relevant signals. Yet, in future iterations we shall 

consider including more pathways in the model to 

expand its field of applications Additional pathways of 

interest for future development include cellular 

senescence, mitochondrial dysfunction, and autophagy 

pathways, which may provide complementary insights 

into age-related aspects of IPF pathogenesis. We then 

inspected an Olink proteomic dataset using this clock to 

find out if its prediction error carries biological signal. 

Olink platforms are rapidly gaining popularity and we 

have located multiple open access datasets generated 

with them, such as those featured in [40–44] . These 

datasets, however, lack sufficient chronological age 

annotation, describe non-fibrotic diseases, or were 

generated with Olink platforms measuring <1000 protein 

quantities. The datasets generated with the most 

complete Olink Explore 3072 platform remain rare and 

require a lengthy access procedure. Thus, we focused on 

the COVID-19 dataset from [33] as the most fitting for 

our purposes.  While COVID-19 is not equivalent to 

IPF, we chose this dataset because severe COVID-19 

cases frequently develop pulmonary fibrosis, making it 

biologically relevant for assessing our model's 

performance in fibrosis-associated conditions [45]. We 

acknowledge that direct validation on IPF-specific 

datasets would be optimal; however, comprehensive 

Olink proteomic data from IPF patients is currently 

limited in publicly accessible repositories. The COVID-

19 dataset represents the most suitable available 

alternative given the established association between 

severe COVID-19 and pulmonary fibrotic changes. The 

application of the aging clock to this dataset revealed 

that more severe cases of these respiratory diseases are 

associated with significantly (p<0.05) higher age 

predictions. We anticipate that this trend shall be also 

observed and clearer in other pulmonary and fibrotic 

diseases. Future work will include validation against the 

recently completed phase-2 clinical trial of rentosertib in 

IPF patients, which will provide a more direct 

assessment of our model's utility in IPF-specific contexts 

[46, 47].To further investigate the similarities shared by 

aging and IPF, we used generative AI in the form of ipf-

P3GPT which was instructed to generate transcriptomic 

lung IPF and aging (from 30 to 80 years) signatures. 

Both these signatures were identified by the model as the 

cases of fibrosis, and both contained genes from the key 

IPF-related pathways highlighted above (ECM 

remodeling, inflammatory signaling, TGF-β pathways). 

Yet, at a gene level, the two cases were quite dissimilar 

with only eight genes showing concordant expression in 

the emulated processes. Such genes include known 

contributors to IPF, such as COL15A1 [48]. Some 

known drivers of fibrosis are only present in the IPF 

signature: MMP1, MMP13, AKT3, IL6 [49–52]. And 

some key ECM components, such as COL1A1 are 

reported upregulated in IPF and down-regulated in 

normal aging, as also recorded in literature [53]. The 

predominance of non-overlapping genes indicates  

that IPF involves distinct pathological mechanisms 

beyond normal aging, including aberrant wound  

healing responses (MMP1, MMP13), altered growth 

factor signaling (TGFBR1, GDF15), and dysregulated 
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inflammatory mediators (CXCL8, IL1B). While aging 

may contribute to IPF susceptibility, the disease involves 

distinct pathological processes that diverge significantly 

from normal age-related changes. 

 

This limited overlap provides critical insights into the 

relationship between aging and IPF pathogenesis. The 

15 overlapping genes represent core processes affected 

in both conditions, including extracellular matrix 

remodeling (COL15A1, ASPN), inflammatory signaling 

(IL1RL1, IL6), and tissue repair mechanisms (PAPPA, 

ADAMTS1). Some of these genes represent important 

hubs in the intersection of IPF and aging. ADAMTS1 is 

an ECM protease with an established connection to 

cardiovascular disease and oncology [54, 55]. While 

ipfP3GPT suggests that this gene’s expression goes 

down in IPF and old age, results obtained in rat models 

of lung fibrosis indicate that its higher expression is 

associated with alleviated protein deposition [56]. Such 

proteins require further investigation as the potential 

anti-IPF, anti-aging dual targets [57]. The combination 

of concordant and discordant gene expression presents 

both challenges and opportunities for therapeutic 

development. For discordantly regulated genes, 

interventions must carefully consider the potentially 

opposing effects on aging versus pathological fibrosis. 

Some of these genes may represent compensatory 

responses rather than primary drivers of pathology, 

further complicating therapeutic targeting. 

 

The differential regulation of key fibrotic pathways 

between IPF and aging generations suggests that IPF 

may represent dysregulation rather than mere 

acceleration of normal aging processes. The shared 

pathway involvement but divergent gene regulation 

indicates that IPF might arise when normal age-related 

tissue maintenance mechanisms become pathologically 

altered. This hypothesis is supported by the opposing 

regulation of critical ECM components and the partial 

overlap in inflammatory mediators, suggesting that IPF 

may hijack normal aging-associated, compensatory 

tissue remodeling programs, driving them toward a 

pathological state. Even among genes whose expression, 

according to ipf-P3GPT, is concordant in aging and IPF, 

the attention scores assigned by the model vary, 

indicating a different level of involvement in the 

accompanying fibrotic processes. 

 

The insights provided by ipf-P3GPT demonstrate the 

value of creating focused, application-specific AI 

models. While maintaining core capabilities of the 

original P3GPT architecture, this streamlined version 

offers reduced computational overhead, rapid inference 

times, and domain-specific knowledge concentration. 

These characteristics make it particularly suitable for 

exploring disease mechanisms and therapeutic responses 

in the context of IPF. An important extension to the 

previously reported P3GPT omics data representation is 

the addition of a fibrosis-specific tag to all prompts in 

training, which would allow ipf-P3GPT to be used 

directly as a tool for assessing the clinical significance of 

external omics signatures or its own generations. By 

exploring the gene tokens attending to the fibrotic status, 

we were able to identify key contributors to the aging 

and IPF progression. 

 

Future studies incorporating tissue biopsies, rather than 

blood proteomes, and continuous follow-up would be 

valuable for validating our findings. As for the AI arm 

of experiments, a wider set of generations need to be 

explored, including those representing other fibrotic 

diseases, to identify more reliable patterns of multi-

omic expression. 

 

Our research project opens several promising avenues 

for investigation. We incentivize other scientists to use 

the data and models demonstrated here to gain a deeper 

understanding of the aging and fibrotic processes in 

their own studies. The particular use cases for the 

presented models may include indication expansion and 

the development of novel therapies for age-related 

diseases. 

 

Beyond IPF, our approach holds potential for 

investigating other fibrotic conditions such as liver 

cirrhosis, NAFLD, kidney fibrosis, and systemic 

sclerosis, where aging-related mechanisms may 

similarly contribute to pathogenesis. The pathway-

aware architecture of our aging clock and the 

specialized knowledge embedded in ipf-P3GPT could 

be adapted to these conditions through transfer 

learning approaches, potentially accelerating 

biomarker discovery and therapeutic development 

across the spectrum of fibrotic diseases. Furthermore, 

these tools enable a more personalized approach to 

patient stratification and treatment selection by 

identifying individual variations in aging-associated 

molecular patterns. This could lead to tailored 

therapeutic strategies based on a patient's specific 

aging and fibrotic signatures rather than conventional 

clinical parameters alone. The utility of the presented 

approach may also transfer to non-fibrotic diseases by 

training an array of specialized small-scale P3GPT-

like models, each acting as a knowledge source for 

their respective diseases. Such small-scale AI models 

can be used to streamline drug development for rare 

and dangerous conditions and augment existing AI 

workflows already in use. 

 

While the presented AI-driven approach offers a new 

tool for IPF and aging research, several limitations 

should be acknowledged. The most significant limitation 
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is the lack of experimental validation for the 

computational findings generated by ipf-P3GPT and our 

proteomic aging clock. Direct validation through wet-lab 

experiments, such as targeted gene expression assays or 

proteomic validation in clinical IPF samples, would 

strengthen the biological relevance of our findings. 

Additionally, the COVID-19 dataset represents an 

indirect validation setting only tangentially related to 

lung fibrosis. Future studies should incorporate 

dedicated IPF patient cohorts to directly validate the 

predictive capacity of our aging clock in this specific 

condition. The recently concluded phase-2 trial of 

rentosertib in IPF patients offers a convenient 

opportunity for further exploration [46]. Furthermore, 

the ipf-P3GPT model, while enhanced with fibrosis-

specific data, is still constrained by the availability and 

quality of existing public datasets, which may not 

capture the full heterogeneity of IPF presentations. 

Finally, our approach is focused primarily on 

transcriptomic and proteomic data, potentially missing 

important epigenetic or other factors that contribute to 

the aging-IPF relationship. Integration of multi-omic 

data in the following iterations could provide a more 

comprehensive understanding of these biological 

processes. 

 

As with any AI application in drug discovery, 

significant ethical considerations must be addressed. 

Empirical validation through rigorous experimental 

testing remains essential, as computational predictions 

alone are insufficient for making decisions in a process 

involving human health and well-being [58, 59]. The 

high-stakes nature of drug discovery for fatal conditions 

like IPF necessitates maintaining human oversight 

throughout the development pipeline, ensuring that 

responsibility for decisions remains with trained experts 

rather than automated systems. This "human-in-the-

loop" approach helps address both accountability 

concerns and the interpretability challenges of complex 

AI models. These considerations underscore the 

importance of developing AI tools as supplements to, 

rather than replacements for, rigorous scientific 

investigation when addressing complex age-related 

diseases. Envisioning clinical utility in the presented 

clock and ipfP3GPT, it is important to maintain the 

necessary validation across diverse patient populations 

to ensure equitable performance and avoid reinforcing 

existing healthcare disparities [60]. Additionally, the 

interpretability of complex AI models remains 

challenging, potentially creating tensions between 

model performance and clinical explainability. Any 

future clinical applications would need to be sufficiently 

transparent for healthcare providers and patients. 

 

The successful application of both our aging clock and 

ipf-P3GPT demonstrates the growing importance of AI 

tools in therapeutic development. These approaches not 

only enhance our understanding of disease mechanisms 

but also provide frameworks for identifying new 

therapeutic opportunities [19, 20]. The pathway-aware 

architecture of our aging clock in particular represents a 

step toward more biologically informed AI models that 

could accelerate the development of targeted 

geroprotective interventions. 

 

CONCLUSION 
 

This study underscores the value of integrating aging 

biology into therapeutic development for age-related 

diseases. The combination of targeted therapeutic 

intervention with AI-driven analysis provides a powerful 

approach for understanding disease mechanisms and 

identifying effective treatments. While further research is 

needed to fully characterize the research utility of ipf-

P3GPT and the proteomic clock, our findings suggest 

they are promising new tools for the study of IPF and 

potentially other age-related fibrotic conditions. 

 

MATERIALS AND METHODS 
 

Data collection 

 

For aging clock training, we used the UK Biobank 

collection of 55319 proteomic Olink NPX profiles 

annotated with age and gender. The validation  

set containing 84 Olink samples was obtained from 

[33] and the corresponding Dryad repository 

(https://doi.org/10.5061/dryad.9cnp5hqmn). 

 

For training ipf-P3GPT, we used a filtered collection of 

prompts used in training the original P3GPT model that 

contains 3873 prompts, including 672 prompts with the 

disease2diff2disease instruction and 3201 with the 

age_group2diff2age_group instruction (Supplementary 

File 1). The disease2diff2disease prompts were further 

enriched to include differentially expressed genes from in 

vivo and in vitro datasets available via Gene Expression 

Omnibus (GEO). The included studies feature a variety of 

settings involving fibrotic diseases and their models, such 

as IPF, liver cirrhosis, NASH, alcoholic liver disease, 

chronic kidney disease, TGF-β cell models, keloid 

scarring (Supplementary File 2). The full list of the added 

studies and their differentially expressed features obtained 

from them are available in the Supplementary Files. 

Differential gene analysis for the added transcriptomic 

studies was carried out using Limma [61, 62]. 

 

All the prompts were modified to contain only the gene 

names represented in the Olink 3072 platform [63]. The 

prompts were filtered to keep only those with >100 

significantly differently expressed genes (absolute log2 

fold change > 1, q-value<0.05). 

https://doi.org/10.5061/dryad.9cnp5hqmn
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All prompts were further extended with XML-like tags 

denoting EFO identifiers of samples’ tissue and its 

hierarchical ancestors, EFO identifiers of the condition 

studied in a dataset and its hierarchical ancestors, as well 

as the EFO identifier of the tissue primarily affected by 

the condition of interest. Terms from EFO release version 

3.73.0 were used for the mapping of GEO-specified 

metadata to prompt tags. Additionally, we extended each 

prompt with a binary <is_fibrosis> tag that serves as a 

direct way to assess whether an observed omics signature 

is associated with fibrotic changes. 

 

Proteomic aging clock 

 

We developed a multi-task neural network architecture 

that combines biological age prediction with pathway 

activity inference (Figure 1). The network consists of 

three main components: a shared feature extraction 

backbone, an age prediction branch, and a pathway 

prediction branch modulated by an attention mechanism. 

 

The shared feature extraction backbone processes 2923 

protein measurements through three fully connected 

layers (2923→512→256→128) with batch normalization 

and ReLU activation. This shared representation feeds 

into both the age prediction and pathway branches. The 

age prediction branch consists of two fully connected 

layers (128→64→1) with batch normalization and ReLU 

activation, followed by a softplus activation and scale-

shift layer to constrain outputs to a biologically plausible 

age range. 

 

The pathway branch processes the shared features 

through a fully connected layer with batch normalization 

and GELU activation (128→128), followed by a final 

linear layer with tanh activation (128→4) to predict 

pathway scores. An attention mechanism, implemented 

as two fully connected layers (128→128→4) with batch 

normalization and tanh-softmax activation, modulates 

the pathway predictions. 

 

The attention mechanism is initialized using weights 

derived from RNA study evidence described in the 

previous section. These initial weights are calculated by 

combining differential expression data across multiple 

studies, with each study weighted based on tissue 

relevance, disease type, and comparison setting. The 

attention weights can be updated during training while 

maintaining biological plausibility through a KL-

divergence regularization term. 

 

The model is trained using a combined loss function 

that incorporates age prediction error, pathway 

prediction error, and attention regularization. The age 

prediction component uses relative error to account  

for age-dependent uncertainty. The pathway prediction 

component uses mean squared error between predicted 

and directly calculated pathway scores. The attention 

regularization term uses KL-divergence to maintain 

consistency with the biologically derived initial weights 

while allowing for data-driven adaptation. 

 

Training is performed using the Adam optimizer with 

cosine annealing learning rate scheduling and early 

stopping based on validation loss. Gradient clipping is 

applied to ensure stable training. The model 

implementation uses PyTorch and includes batch 

normalization and dropout (p=0.2) in the feature 

extraction and age prediction branches to prevent 

overfitting. At inference, the missing protein values 

imputed with sample means. See Supplementary File 3 

for the package used to train the clock. 

 

ipf-P3GPT training 

 

We trained ipf-P3GPT, a lightweight transformer 

model, to learn differential gene expression patterns in 

pulmonary fibrosis. The model architecture comprises a 

64-dimensional embedding layer, three transformer 

blocks with two attention heads each, and a vocabulary-

sized output layer (Figure 3 and Supplementary File 4). 

The model was implemented in PyTorch 2.0. 

 

The transformer blocks consist of multi-head self-

attention layers followed by feed-forward networks 

(FFN). Each FFN expands the 64-dimensional input to 

256 dimensions through a linear transformation, applies 

GELU activation, and projects back to 64 dimensions. 

Layer normalization is applied after both attention and 

FFN components. The model processes three instruction 

types: disease comparisons, age group comparisons, and 

compound treatment comparisons. 

 

Training utilized a custom XML-aware tokenizer with a 

vocabulary size of 5,555 tokens. Input sequences were 

padded or truncated to 512 tokens. We employed 

mixed-precision training with gradient scaling using an 

AdamW optimizer (learning rate=1e-4) and batch size 

of 32. The training data was split 90:10 for training and 

validation, with weighted random sampling to balance 

instruction types. 

 

The model was trained for 100 epochs, achieving a final 

validation loss of 2.03. Instruction-specific accuracies 

reached 72.2% for age group comparisons and 75.9% 

for disease comparisons. Model weights were saved at 

the best validation loss checkpoint. 

 

All hyperparameters and architectural choices were 

empirically determined through ablation studies, with 

the final configuration optimizing for both model 

performance and computational efficiency. 
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Statistical tests 

 

Treatment effects were analyzed using Mann-Whitney’s 

U tests to compare healthy versus afflicted groups. For 

the linear effects assessment in the validation COVID-

19 dataset, the Ordinary Least Squares module from the 

statsmodels for Python package. 

 

Pathway analysis 

 

We analyzed four key molecular pathways relevant to 

IPF pathogenesis: TGF-β signaling, ECM remodeling, 

inflammation, and oxidative stress. For each patient, 

pathway scores were calculated as aggregated 

standardized values of proteins known to participate in 

respective pathways, with protein-pathway assignments 

based on curated hallmark sets from MSigDB [64–66]. 

 

The biological aging clock used in this analysis was 

trained using a pathway-aware architecture that 

incorporated prior knowledge of molecular mechanisms 

involved in IPF and aging. The selection of the four 

specific pathways was based on comprehensive 

literature review identifying them as central to both IPF 

pathogenesis and aging-related tissue changes. The 

number of pathways was deliberately limited to four to 

maintain model parsimony, given the parameter-

intensive nature of the attention mechanism and the 

constraints of the available training dataset size. This 

focused approach ensured robust training while still 

capturing the most biologically relevant signals for IPF 

research. 

 

The pathway attention weights were initialized using a 

curated database of aging-related pathway signatures 

and were further refined during model training on the 

UK Biobank proteomic dataset. 

 

Manuscript preparation 

 

The initial manuscript draft was created using  

DORA (Draft Outline Research Assistant, 

https://dora.insilico.com/), an AI-powered scientific 

writing platform. DORA is Insilico Medicine’s LLM-

based assistant for automated scientific writing, 

leveraging an ensemble of over 50 specialized AI 

agents powered by large language models. These 

agents work in concert to gather relevant literature, 

analyze data, and generate high-quality scientific 

content. All agents are empowered with Retrieval-

Augmented Generation (RAG) technology, which 

enables comprehensive data collection while 

maintaining scientific accuracy via online fact-

checking and PubMed citation linking. After DORA 

generated the initial draft, all authors collaborated to 

critically review, expand, and refine the manuscript, 

ensuring scientific rigor and the accuracy of the 

presented statement and references. 

 
Data and code availability 

 

All the scripts and materials featured in this study are 

available as an OSF repository [67]. The XML-formatted 

prompts are found in Supplementary File 1, while 

Supplementary Files 3–5 contain the code base for this 

project. Supplementary File 7 contains an ipfP3GPT 

usage example in Python Notebook Format. To improve 

reproducibility, the key dependencies used in this project 

are provided in Supplementary File 8. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Files 

 

Please browse Full Text version to see the data of Supplementary Files 1–8. 

 

 
Supplementary File 1. Prompts used in ipfP3GPT training. The prompts are XML-formatted lists describing 
experimental metadata with associated lists of differentially expressed genes. 

Supplementary File 2. Fibrosis-enriched study set. This file contains metadata for 161 fibrosis-related GEO 
datasets, and differential expression results for the most representative datasets used to train ipfP3GPT. 

Supplementary File 3. Package used to train proteomic clock. The Python codebase used to train and use the 
presented proteomic clock. 

Supplementary File 4. ipfP3GPTpython package. The Python codebase used to train and use ipfP3GPT. 

Supplementary File 5. Code used to analyze the proteomic clock. Demonstration Python Notebook with the 
proteomic clock inference examples. 

Supplementary File 6. Age predictions for the Olink data generated in (Feyaerts et al., 2022) 

Supplementary File 7. Code used to invoke ipfP3GPT. This demonstration Python Notebook allows the reader to 
reproduce key findings from the study. 

Supplementary File 8. Requirements. 


