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INTRODUCTION 
 

Amyloid-beta plays a pivotal role in cognitive decline in 
Lewy body (LB) disease. Neuropathological studies 

have shown that the amyloid burden in the central 

nervous system is more strongly correlated with the 

development of dementia than α-synuclein pathology 

both in Parkinson’s disease (PD) with dementia (PDD) 

and dementia with Lewy bodies (DLB) [1–3]. Marked 

amyloid deposition in patients with PDD is associated 
with a rapid rate of cognitive decline [4]. Aside from 

amyloid-beta, multiple proteinopathies, including tau  

[5, 6], α-synuclein [7], TAR-DNA-binding protein  

43 (TDP-43) [8], and vasculopathy [9] have been 
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ABSTRACT 
 

Amyloid-beta (Aβ) plays a pivotal role in cognitive decline in Parkinson’s disease (PD). The prevalence of 
amyloid positivity, evaluated using the cerebrospinal fluid (CSF) of patients with PD without dementia in their 
sixties, is lower than that in individuals with normal cognition without PD diagnosis in the same age range. 
However, it is unclear whether this is also the case in patients with PD without dementia in their eighties. 
Eighty-nine patients with PD without dementia were retrospectively classified into two groups with a cut-off 
age of 73 years at diagnosis: a HIGH group and a LOW group, with mean age at diagnosis of 80.2 and 64.9 years, 
respectively. The prevalence of amyloid positivity was significantly higher in the HIGH (30.6%) than in the LOW 
group (10.0%) (p = 0.02). The prevalence of amyloid positivity in both groups was lower than that in 
participants with normal cognition in the same age range. Our findings may be attributed to the shorter 
preclinical stage of asymptomatic cerebral Aβ deposition in PD, resulting from Aβ accelerating the transition 
from the asymptomatic to dementia stage. We believe that our findings will incentivize further studies to 
identify the best disease-modifying therapy for early PD without dementia. 
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implicated in the pathogenesis of cognitive impairment 

in Lewy body disease (LBD). However, in an era when 

anti- amyloid-beta antibodies have been implemented as 

disease-modifying therapies for Alzheimer’s disease 

(AD), amyloid-beta remains a crucial protein of interest. 

The amyloid-beta concentration of cerebrospinal fluid 

(CSF) has robust prognostic value for cognitive decline 

in both PD [10–12] and DLB [13]. Thus, CSF profiles 

are valuable in evaluating amyloid positivity and may 

also be useful in selecting patients with PD who are 

eligible for early disease-modifying therapy. 

 

The prevalence of PD increases approximately 10-fold 

between the ages of 50 and 80 years [14]. The number 

of patients who will be diagnosed with PD in their 

eighties is predicted to increase in our aging society. 

Previous clinicopathological studies have shown rapid 

progression in motor symptoms [15, 16] and earlier 

dementia development in patients with PD onset ≥ 80 

years than that in patients with earlier PD onset [15]. 

However, antemortem amyloid positivity in patients 

with PD without dementia in their eighties at diagnosis 

has not yet been reported.  

 

The prevalence of amyloid positivity in patients with 

PD without dementia is lower among patients in their 

sixties than individuals with normal cognition and no 

diagnosis of PD (hereinafter referred to as individuals 

with normal cognition) in the same age range [17, 18]. 

However, it remains unclear whether this is also the 

case in patients with PD without dementia in their 

eighties. 

 

We aimed to determine the prevalence of amyloid 

positivity using CSF profiles in patients with PD 

without dementia who were in their eighties at diagnosis 

by applying the CSF AD biomarkers to the AT(N) 

classification [19]. 

 

RESULTS 
 

The patients’ characteristics are shown in Table 1. The 

percentage of patients with normal cognition was 91.8% 

and 95.0% in the HIGH and LOW groups, respectively. 

All apolipoprotein E (ApoE) ε4 carriers had one ε4 

allele. Quantile-quantile plots of Aβ42 levels as a 

representative of approximately normally distributed 

data are presented in Supplementary Figure 1. 

 

No significant difference was observed in any clinical 

or imaging parameter between the two groups, except 

the Mini-Mental State Examination (MMSE) scores and 

education years. The MMSE scores were significantly 

lower in the HIGH than in the LOW group (27.1 ± 2.0 

vs. 28.3 ± 1.8, p = 0.01). Years of education were 

significantly lower in the HIGH than in the LOW group 

(11.8 ± 2.8 vs. 14.1 ± 3.2, p = 0.003). To evaluate the 

relationship between aging and education years or 

MMSE scores in each AT(N) category, we conducted 

Welch’s t-test comparing the HIGH vs. LOW group for 

education years and MMSE scores within each AT(N) 

category in Supplementary Table 1A. No significant 

differences were observed between the HIGH and LOW 

group in the AD continuum category for both education 

years and MMSE scores. 

 

CSF amyloid-beta 42 (Aβ42) levels (pg/mL) and age at 

diagnosis showed a negative correlative tendency  

(r = -0.19, p = 0.08) (Figure 1A), and CSF tau 

phosphorylated at threonine 181 (p-tau) levels (pg/mL) 

and age at diagnosis (Figure 1B) showed a positive 

correlative tendency (r = 0.20, p = 0.06). Conversely, 

CSF total-tau (t-tau) levels (pg/mL) and age at 

diagnosis were significantly positively correlated  

(r = 0.35, p < 0.001) (Figure 1C). The association 

between age at diagnosis and each AT(N) category for 

CSF Aβ42, p-tau, and t-tau is shown in Figure 1D–1F, 

respectively. Pearson’s correlation coefficient was not 

calculated for the non-Alzheimer’s (non-AD) 

pathologic change category due to the small number of 

cases. CSF Aβ42 and age at diagnosis showed negative 

correlative tendency (r =-0.36, p = 0.13) in the AD 

continuum category, whereas this tendency was not 

evident in the normal category (r = 0.08, p = 0.54) 

(Figure 1D). CSF p-tau and age at diagnosis showed a 

significant positive correlation in the AD continuum 

category (r = 0.48, p = 0.04), but showed no obvious 

tendency in the normal category (Figure 1E). CSF t-tau 

and age at diagnosis showed a significant positive 

correlation in both patients in AD continuum category 

(r = 0.53, p = 0.02) and normal category (r = 0.48,  

p < 0.001) (Figure 1F). 

 

The prevalence of amyloid positivity, that is, AD 

continuum, in both groups is shown in Table 2. The 

prevalence of amyloid positivity was significantly 

higher in the HIGH (30.6%) than in the LOW group 

(10.0%) (95% confidence interval, 1.10–17.8; odds 

ratio, 3.91; and p = 0.02), as determined by Fisher’s 

exact test. 

 

The clinical data of each AT(N) biomarker category are 

shown in Supplementary Table 1A. Age at diagnosis, 

disease duration (months), education years, MMSE 

scores, mild cognitive impairment (MCI) prevalence, 

and ApoE ε4 allele did not differ significantly in any 

pairwise comparisons of the three categories in each 

group. Specifically, to evaluate the relationship between 

the numbers of MCI and AT(N) categories, we 
conducted Fisher’s exact tests using Supplementary 

Table 1B for the HIGH group and Supplementary Table 

1C for the LOW group, yielding p-values of 1.00 and 
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Table 1. Clinical characteristics of the patients. 

 HIGH group 

 (N = 49) 

LOW group 

(N = 40) 

p-  

value 

Missing data, n (%) 

test* HIGH 

group 

LOW  

group 

Age at diagnosis and LP (y) 80.2 (± 4.4) 64.9 (± 7.3)  0 0  

Age at onset (y) 79.0 (± 4.6) 63.4 (± 7.6)  0 0  

Disease duration at diagnosis (m) 18.1 (± 13.9) 21.0 (± 15.0) 0.40 0 0 a 

The interval between 123I-ioflupane 

SPECT and LP (m) 
2.6 (± 9.4) 4.8 (± 10.7) 0.33 0 0 a 

Male, n (%) 21 (42.9%) 18 (45.0%) 1.00 0 0 b 

ApoE ε4 allele carriers, n (%) 10 (21.7%) 5 (14.3%) 0.57 3 (6.1%) 5 (12.5%) b 

Motor symptoms       

Hoehn-Yahr score 2.4 (± 0.7) 2.4 (± 0.8) 0.64 0 0 a 

bradykinesia, n (%) 49 (100.0%) 40 (100.0%) 1.00 0 0 b 

rigidity, n (%) 44 (89.8%) 38 (95.0%) 0.45 0 0 b 

resting tremor, n (%) 24 (49.0%) 21 (52.5%) 0.83 0 0 b 

recurrent falls, n (%) 8 (16.3%) 8 (20.0%) 0.78 0 0 b 

gait freezing or festination, n (%) 10.0 (20.4%) 6 (15.0%) 0.59 0 0 b 

Non-motor symptoms       

Presence of at least one non-motor 

symptom, n (%) 
38 (77.6%) 34 (85.0%) 0.43 0 0 b 

Autonomic nervous function        

Orthostatic hypotension, n (%) 19 (42.2%) 19 (50.0%) 0.38 4 (8.2%) 4 (10.0%) b 
123I-MIBG myocardial  

scintigraphy positivity, n (%) 
28 (59.6%) 22 (59.5%) 1.00 2 (4.1%) 3 (7.5%) b 

The interval between  
123I- MIBG myocardial 

scintigraphy and LP (m) 

2.8 (± 12.1) 1.9 (± 6.1) 0.58 2 (9.1%) 3 (6.1%) a 

Psychiatric symptoms       

GDS scores >=6, n (%) 9 (22.0%) 10 (37.0%) 0.27 8 (16.3%) 13 (32.5%) b 

Cognitive function-related data       

Education (y) 11.8 (± 2.8) 14.1 (± 3.2)  0.003** 13 (26.5%) 12 (30.0%) a 

MMSE scores 27.1 (± 2.0) 28.3 (± 1.8) 0.014* 8 (16.3%) 8 (20.0%) a 

Normal cognition, n (%) 45 (91.8%) 38 (95.0%) 0.69 0 0 b 

Comorbidity       

Diabetes mellitus, n (%) 4 (8.2%) 3 (7.5%) 1.00 0 0 b 

HIGH group = patients aged ≥ 73 at diagnosis, LOW group = patients aged < 73 at diagnosis, LP = lumbar puncture, y = years, 
m = months, SPECT = single-photon emission computerized tomography, MIBG = meta-iodobenzyl-guanidine myocardial, GDS 
= geriatric depression scale, MMSE = mini-mental state examination, MCI = mild cognitive impairment, ApoE = Apolipoprotein 
E, ** = p < 0.01, * = p < 0.05. P-values represent the result of Welch’s t-test or Fisher’s exact test. *test a = Welch’s t-test, b = 
Fisher’s exact test. 

 

0.36, respectively. Of the six patients with MCI, the 

AT(N) profiles of two MCI patients who were not in  

the normal category were as follows: A+T-(N)- in the 

patient in the AD continuum category in the HIGH 

group and A-T-(N)+ in the other patient in the non-AD 

pathologic change category in the LOW group. Among 

the six MCI patients, the normal category in the HIGH 

group included one ApoE ε4 allele carrier.  
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DISCUSSION 
 

The prevalence of amyloid positivity in the HIGH group 

was 30.6%, which was significantly higher than the 

10.0% in the LOW group (Table 2). To the best of our 

knowledge, this is the first study to demonstrate the 

prevalence of amyloid positivity using the CSF profiles 

of patients with early PD without dementia with a mean 

age of 80.2 years at diagnosis. 

 

Regarding the clinical characteristics of the patients in 

the two groups (Table 1) including positivity in 123I- 

MIBG scintigraphy, we inferred that PD severity did not 

differ significantly between the two groups. This 

allowed us to observe age-related differences in the 

prevalence of amyloid positivity in PD. The significantly 

lower MMSE scores in the HIGH group compared to the 

LOW group may have been affected by age and the 

significant difference in years of education between the 

two groups [20], though there were missing data on 

education years. 

 

In previous studies, the motor and non-motor symptoms 

in patients with PD ≥ 70 (mean: 74.3) years at onset 

were significantly more severe compared to those in 

their younger counterparts [21]. The risk of axial 

symptoms reportedly increases in patients aged ≥ 70 

years at PD diagnosis [22]. The discrepancy between 

previous results and ours may be attributed to the 

heterogeneity in the study cohorts and methodology. 

 

 
 

Figure 1. Relationship between Aβ42, p-tau, or t-tau levels and age at diagnosis. Scatter plots demonstrate the relationship 
between age at diagnosis and CSF biomarkers. Least squares regression lines are included where Pearson’s correlation analysis was 
performed. A negative correlative tendency (r = -0.19, p = 0.08) was observed between CSF Aβ42 levels (pg/mL) and age at diagnosis. (A) A 
positive correlative tendency (r = 0.20, p = 0.06) was observed between CSF p-tau levels (pg/mL) and age at diagnosis. (B) Significant positive 
correlation was observed between CSF t-tau levels (pg/mL) and age at diagnosis (r = 0.35, p < 0.001). (C) The association between age at 
diagnosis and each AT(N) category for CSF Aβ42, p-tau, and t-tau are shown. (D–F), with Pearson’s correlation coefficient not calculated for 
the non-AD category due to the small number of cases. CSF Aβ42 and age at diagnosis showed negative correlative tendency (r =-0.36,  
p= 0.13) in the AD continuum category, whereas this tendency was not evident in the normal category (r = 0.08, p = 0.54). (D) CSF p-tau and 
age at diagnosis showed a significant positive correlation in the AD continuum category (r = 0.48, p = 0.04), but showed no obvious tendency 
in the normal category. (E) CSF t-tau and age at diagnosis showed a significant positive correlation in both patients in AD continuum category 
(r = 0.53, p = 0.02) and normal category (r = 0.48, p < 0.001). (F) Data in AD continuum category are plotted in red, normal category in black, 
and non-AD pathologic change category in light blue (D–F). Aβ42 = amyloid-beta 42, p-tau = phosphorylated tau, t-tau = total tau, * = p < 
0.05, *** = p < 0.001. r and p represent Pearson’s correlation and significance, respectively. 
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Table 2. Comparison of the prevalence of amyloid positivity between the two groups. 

 HIGH group (N = 49) LOW group (N = 40) Odds ratio 95%CI p-value 

Amyloid positivity, n (%) 15 (30.6%) 4 (10.0%) 3.91 1.10–17.8 0.02* 

HIGH group = patients aged ≥ 73 at diagnosis, LOW group = patients aged < 73 at diagnosis, CI = confidence interval, * = p < 
0.05. P-values represent the result of Fisher’s exact test. 

 

In this study, the age at diagnosis was slightly older 

than that in previous studies, in which patients with 

dementia were excluded. 

 

The prevalence of amyloid positivity (10.0%) in the 

LOW group (mean age: 64.9 years) was similar to those 

reported by previous studies among patients with PD 

without dementia in the same age range (Table 3). 

Among patients with PD without dementia in their 

sixties, the prevalence of amyloid positivity is ≤ 10% 

[17, 18]. Specifically, one study reported a prevalence 

of 10% in patients with a median age of 61.0 years 

using the CSFAβ42/Aβ40 ratio [18]. The other study 

reported a prevalence of 0% in patients with a mean age 

of 68.8 years using amyloid positron emission 

tomography (PET) [17] (Table 3). 

 

The prevalence of amyloid positivity (30.6 %) in both 

the LOW and HIGH groups (mean age: 80.2 years) was 

lower than that in participants with normal cognition in 

the same age range (Table 3). In participants with 

normal cognition, the prevalence of amyloid positivity 

increases with age [23–25] and ranges from 20% [25, 

26] to 40% [27] in participants aged approximately 60 

and 80 years, respectively, based on evaluations using 

CSF Aβ42 [25, 26] or amyloid PET [25, 26] (Table 3). 

The finding that amyloid positivity prevalence was 

lower in patients with PD without dementia than that in 

participants with normal cognition in the same age 

range could be discussed as follows. Although 

experimental findings are not always consistent and the 

interactions between Aβ, α-synuclein, and tau remain 

controversial, several studies have reported interactions 

between Aβ and either α-synuclein or tau. Hybrid 

oligomers of Aβ and α-synuclein have been identified in 

the brains of patients with AD and DLB patients, as 

well as in amyloid precursor protein/α-synuclein 

transgenic mice, suggesting a direct interaction between 

the two [28]. In a mouse model of LBD, Aβ plaques 

promoted the seeding and propagation of α-synuclein 

and tau [29], which has been supported by in vitro 

studies showing co-aggregation and direct binding 

between Aβ and α-synuclein [30, 31]. Based on these 

findings, our results may be attributed to the shorter 
preclinical stage of asymptomatic cerebral Aβ 

deposition in PD [17], with Aβ facilitating the transition 

from the asymptomatic to dementia stage. Conversely, 

another study reported that α-synuclein may inhibit Aβ 

plaque formation [27], which may also explain our 

findings. Furthermore, given the reported interactions 

between α-synuclein and tau [32–38], it is plausible that 

these molecular relationships influence the interaction 

between Aβ and the other proteins. 

 

Our finding of a significant correlation between CSF t-

tau levels and age at diagnosis is consistent with a 

previous result [21]. This finding can be explained by 

aging-induced axonal damage in the neurons [39] and 

age-related co-pathologies, such as primary age-related 

tauopathy (PART) [40], because advanced age increases 

the risk of multiple pathologies [41]. For example, a 

patient with Parkinsonism onset at ≥ 80 years who 

underwent autopsy after death at 91 years displayed 

morphological features of PART in addition to PD [16]. 

Our observation of a significant correlation between t-

tau levels and age at diagnosis, regardless of amyloid 

positivity or negativity (Figure 1F), supports the idea 

that age-related t-tau elevation is not mainly caused by 

the common sequential changes reported in AD, such as 

decreased CSF Aβ42, increased CSF p-tau, and 

neurodegeneration [42, 43].  

 

A significant correlation between p-tau levels and age at 

diagnosis in patients with amyloid positivity (Figure 

1E) was observed. This may be attributable to tau 

accumulation induced by α-synuclein [44]. It may also 

be caused by the increased secretion or reduced 

clearance of p-tau associated with aging by unrevealed 

mechanisms in patients with PD with amyloid 

positivity. Alternatively, it may have been caused by the 

exclusion of younger patients with high p-tau in the 

amyloid-positive group from the present study, who 

may have developed dementia rapidly after amyloid 

positivization [17]. 

 

The AT(N) category distribution of the six patients 

with MCI and an ApoE ε4 allele in three categories in 

each group (Supplementary Table 1A) indicates a 

weak relationship between MCI and amyloid positivity 

or presence of an ApoE ε4 allele. In this study, we did 

not reach a conclusion regarding the association 
between the increased Aβ positivity rate in the HIGH 

group and clinical manifestations, including MMSE 

scores. 
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Table 3. Previous reports of the prevalence of amyloid positivity in subjects with normal cognition and PD 
without dementia. 

Participants 
Prevalence  

of amyloid positivity 

Age (y)  

of the participants 
Methods Refs 

In sixties     

Subjects with normal cognition 22.6% 62.5–67.4  CSF Aβ42 or amyloid PET [25] 

Subjects with normal cognition 23.0% 67.9 as mean age CSF Aβ42 or amyloid PET [26] 

PD without dementia 10.0% 61.0 as median age CSF Aβ42/Aβ40 ratio [18] 

PD without dementia 0% 68.8 as mean age Amyloid PET [17] 

This study; PD without dementia 10.0% 64.9 as mean age CSF Aβ42  

In eighties     

Subjects with normal cognition 42.0% 77.5–82.4  CSF Aβ42 or amyloid PET [25] 

This study; PD without dementia 30.6% 80.2 as mean age CSF Aβ42  

Subjects with normal cognition = subjects with normal cognition without a diagnosis of Parkinson’s disease, PD = Parkinson’s 
disease, y = years, Aβ = amyloid-beta, PET = positron emission tomography, Refs = references. 

 

The underlying pathology of MCI in PD is highly 

heterogeneous, and this heterogeneity includes 

different stages of Lewy body pathology, Alzheimer’s 

disease pathology, and cerebral amyloid angiopathy 

[45–48]. The pattern of cognitive decline is also 

reported to be heterogeneous, partly due to variations 

in neuropsychological assessments used across studies 

[47], leading to inconsistencies in findings [45–47]. 

However, impairments in attention and executive 

function are predominant [49], whereas memory 

deficits tend to be relatively less frequent [50]. 

Therefore, further research is needed to elucidate the 

relationship between the underlying mechanisms of 

PD-MCI and cognitive decline. 

 

CSF Aβ42 cutoff levels for amyloid positivity vary 

across the literature, particularly with the INNOTEST® 

assay (Supplementary Table 2), and prevalence of 

amyloid positivity varies depending on the cutoff levels 

(Supplementary Table 3A, 3B). However, our cutoff 

level is pathology-based, and its validity is supported by 

the previous studies [51, 52] originating from our 

institution. In addition, the median (interquartile range) 

cutoff level among the 30 studies excluding ours in 

Supplementary Table 2 was 530.2 (452.2–550.0) 

pg/mL, and three studies adopted the same 500 pg/mL 

threshold as ours, suggesting that the chosen cutoff 

aligns with prior studies. 

 

Regardless of the type of biofluid assay or imaging 

modality used, diagnostic uncertainty exists for values 

near the cutoff point [53]. When CSF Aβ42 or 

Aβ42/Aβ40 and amyloid burden measured by amyloid 

PET are treated as binary data, they show high 

concordance and are frequently used in clinical practice. 

However, when analyzed as continuous data, 

particularly at high levels of amyloid burden, these 

measures are not interchangeable [54]. Therefore, 

treating these measures as continuous variables is 

expected to provide more accurate and deeper insights 

into the relationships among amyloid accumulation, 

neuronal loss, and cognitive decline. 

 

The limitations of this study are as follows. First, 

neuropathological evaluation and CSF α-synuclein data 

were not available. However, PD was diagnosed 

according to the diagnostic criteria, and the nigro-

striatum impairment by dopamine transporter (DAT) 

single-photon emission computed tomography (SPECT) 

was confirmed. We believe that the diagnostic accuracy 

of PD is reasonable. Second, it has been reported that 

the Aβ42/40 ratio is better for assessing amyloid 

positivity [55]; however, data on Aβ40 were not 

available. Third, all participants were Japanese, 

resulting in the limited generalizability of the results to 

other populations [56]. Fourth, healthy controls were 

not included, but it is unavoidable in retrospective 

studies because they do not visit medical institutions. 

Thus, we referred to data of healthy controls in previous 

studies. Finally, the sample of patients included was 

relatively small, which restricts the discussion of the 

differences among the three categories in each group.  

 

To clarify the causal relationship between Aβ positivity 

and PD progression, a longitudinal, large-scale, multi-

center study is needed. It is essential to verify whether 

Aβ deposition accelerates dementia onset in PD patients 

in their eighties, as suggested in our study, similarly to 

those in their sixties. This requires healthy controls, PD 

with normal cognition, MCI-LB, and PDD/DLB 

patients. Comprehensive assessments should cover 

cognition, motor function, and biomarkers—such as 

CSF or blood-based α-synuclein seed amplification 

assays [57–59], AD biomarkers [53], and PET imaging 
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including amyloid and tau PET (e.g., 18F-MK-6240) 

[60]. Pathological confirmation, including TDP-43, is 

also necessary. Ultimately, we must define when, in 

whom, and which pathological processes to target for 

disease-modifying therapy to prevent cognitive decline 

in LBD. 

 

In conclusion, we elucidated the prevalence of amyloid 

positivity in patients with PD without dementia, whose 

mean age at diagnosis was 80.2 years, using CSF Aβ42 

levels. We believe that our findings will incentivize 

further studies to identify the best disease-modifying 

therapy for early PD without dementia. 

 

MATERIALS AND METHODS 
 

Participants and clinical protocol 

 

This study was approved by the Institutional Review 

Board of the Tokyo Metropolitan Institute for Geriatrics 

and Gerontology. Written informed consent was 

obtained from all participants or next of kin. We 

retrospectively evaluated consecutive patients who had 

been diagnosed with PD based on the UK Parkinson’s 

Disease Society Brain Bank clinical diagnostic criteria 

[61] at the Tokyo Metropolitan Institute for Geriatrics 

and Gerontology between April 2013 and December 

2022. The data were accessed from April 28, 2023. 

Although the authors had access to information that 

could identify individual participants during or after data 

collection, all personal information was anonymized and 

properly protected. 

 

During hospitalization for < 1 week, patients were 

diagnosed with PD based on clinical history and 

neurological examination. During the same period, 

patients underwent examination of cognitive function 

and orthostatic hypotension (OH), followed by CSF 

acquisition before administration of dopaminergic 

agents to confirm the diagnosis. 

 

We included idiopathic PD patients who were diagnosed 

within 5 years from the onset of a motor symptom, 

patients with normal cognitive function or MCI [62] 

(MMSE score ≥ 24), and patients with DAT binding 

deficit on 123I-ioflupane SPECT imaging. Exclusion 

criteria were dementia; family history of one or  

more individuals with PD; PD onset at < 40 years;  

anti-parkinsonian drugs or anti-depressants, such as 

sulpiride or mirtazapine [63]; and no improvement  

in motor symptoms after dopaminergic medication.  

All patients underwent brain magnetic resonance 

imaging (MRI); patients whose MRI suggested other 
neurodegenerative diseases, acute or subacute stroke, 

cerebral amyloid angiopathy [64], or idiopathic normal 

pressure hydrocephalus were excluded. 

Patients were divided into two groups according to age 

at diagnosis: ≥ 73 or < 73 years old comprised the 

HIGH and LOW groups, respectively. The justification 

for 73 as a cut-off age is that the mean age of the older 

group was approximately 80, the age range we intended 

to observe, and the numbers of patients in the two 

groups were relatively balanced at this cut-off, which 

ensured adequate statistical power. 

 

The following data were investigated: age; disease 

duration at diagnosis; sex; Hoehn–Yahr scores [65]; 

presence of motor symptoms such as bradykinesia, 

rigidity, resting tremor, recurrent falls (> once/year),  

gait freezing, or festination; presence of at least one  

non-motor symptom such as sleep disorder (sleep-

maintenance insomnia or possibility of rapid eye 

movement sleep behavior disorder (RBD) evaluated by 

scores ≥ 5 on the Japanese version of the RBD screening 

questionnaire [66]); autonomic nervous disorders 

(constipation, daytime urinary urgency, or symptomatic 

orthostasis); subjective or objective olfactory disturbance 

as evaluated using the odor stick identification test for 

Japanese (scores ≥ 8) [67–69]; psychiatric dysfunction 

(depression or anxiety); OH defined as a decrease in 

systolic blood pressure by ≥ 20 mmHg during head-up 

tilt for 10 min; 123I-meta-iodobenzyl-guanidine (MIBG) 

myocardial scintigraphy positivity; Geriatric Depression 

Scale scores (≥ 6); education years; MMSE score; ApoE 

phenotyping; and diabetes mellitus. 

 

To elucidate the AT(N) biomarker profiles of AD in 

patients with PD, we measured Aβ42, p-tau, and t-tau 

in CSF. According to the AT(N) biomarker profiles, 

we counted the number of patients in the three 

biomarker categories: normal, Alzheimer’s continuum 

(AD continuum), and non-AD pathologic change in 

the two groups.  

 
123I-ioflupane single-photon emission computed 

tomography assessment 

 

All 123I-ioflupane SPECT data were obtained at the Tokyo 

Metropolitan Institute for Geriatrics and Gerontology. 

Detailed methods of acquisition of DAT SPECT imaging 

and calculation of the specific binding ratio (SBR) of the 

striatal DAT binding using the DAT VIEW software 

(Nihon Medi-Physics, Co., Ltd, Tokyo, Japan) have been 

described previously [70]. Positivity was determined 

based on the mean value of the left and right SBRs < 

95% of the lower limit of the prediction interval [71]. 

 
123I-meta-iodobenzyl-guanidine myocardial 

scintigraphy assessment 

 

All 123I-MIBG myocardial scintigraphy data were 

obtained at the Tokyo Metropolitan Institute for 
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Geriatrics and Gerontology. 111 MBq 123I-MIBG 

(PDR Pharma Co., Ltd, Tokyo, Japan) was injected 

intravenously, and early and delayed images were 

obtained with a delay of 15–30 min and 3–4 h, 

respectively. The heart-to-mediastinum (H/M) ratio 

and washout rate were calculated as described 

previously [72]. The respective cutoff values for the 

widely used H/M ratio and washout rate were 2.20 and 

34%, respectively [73, 74]. Positivity was determined 

based on the presence of at least one of the following: 

the H/M ratio in the early or delay phase was < 2.20 or 

the washout rate was > 34%. 

 

Cerebrospinal fluid analysis 

 

CSF was obtained via lumbar puncture. The first 2 mL 

of CSF was used for routine examination, and the 

remaining CSF was directly collected in polypropylene 

tubes and stored at -30° C until analysis, which was 

conducted within 2 months. 

 

The CSF concentrations of Aβ42, p-tau, and t-tau were 

measured using enzyme-linked immunosorbent assay 

(INNOTEST®, Fujirebio Inc., Gent, Belgium), in 

accordance with the manufacturer’s protocol, as 

described previously [52, 75]. The lower detection limit 

of CSF p-tau was 25.0 pg/mL.  

 

To apply the CSF AD biomarkers to the AT(N) 

classification [19], we defined the biomarker of  

Aβ plaques (labeled “A”), fibrillary tau (labeled “T”), 

and neurodegeneration (labeled “N”) as follows using 

predetermined institutional cut-off values [75, 76]:  

A+ indicated Aβ42 < 500 pg/mL, T+ indicated p-tau > 

50.0 pg/mL, and N+ indicated t-tau > 300 pg/mL.  

The Aβ42 cutoff level was pathology-based, and  

its validity is supported by our previous reports  

[51, 52].  

 

Categorization in the AD continuum category was 

indicative of amyloid positivity. To evaluate the 

correlation between Aβ42, p-tau, or t-tau levels and 

age at diagnosis, we conducted Pearson’s correlation 

analysis. To further examine the influence of the 

amyloid positivity on p-tau or t-tau levels, we 

examined the relationship between p-tau or t-tau levels 

and age at diagnosis in patients in two groups based  

on Aβ42 positivity categorized as “AD continuum”  

or Aβ42 negativity categorized as “normal” excluding 

the patients in the “non-AD pathologic change 

category”. 

 

Apolipoprotein E phenotyping  

 

ApoE phenotyping was performed using isoelectric 

focusing, followed by Western blotting. 

Statistics 

 

Contingency table analysis was conducted using 

Fisher’s exact test. Continuous variables are presented 

as the mean ± standard deviation (SD) and compared 

using Welch’s t-test for comparison of means between 

two groups, or compared using one-way ANOVA for 

pairwise comparisons of means between two of three 

groups, followed by post hoc analyses using a Tukey’s 

Honest Significant Difference test. Pearson’s 

correlation analysis was conducted to determine the 

relationship between age at diagnosis and other 

continuous variables. Statistical significance was set at 

p < 0.05. Statistical analyses were conducted using R 

version 4.1.2 (R Foundation for Statistical Computing, 

Vienna, Austria) and EZR (Saitama Medical Center, 

Jichi Medical University, Saitama, Japan) [77]. 

Missing data were handled using the pairwise deletion 

approach.  
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 

 
 

Supplementary Figure 1. Quantile-quantile plots of Aβ42 levels. Quantile-quantile plots of Aβ42 levels in HIGH group (A) and LOW 

group (B) showed approximately normal distribution. HIGH group = patients aged ≥ 73 at diagnosis, LOW group = patients aged < 73 at 
diagnosis, Aβ42 = amyloid-beta 42. 
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Supplementary Tables 
 

 

Supplementary Table 1A. Distribution of MCI accompanied by clinical data in each AT(N) biomarker category. 

AT(N) biomarker 

categories 
Group Normal p-value 

AD 

continuum 
p-value 

Non-AD 

pathologic 

change 

p-value 

Number of missing data 

Normal 
AD 

continuum 

Non-AD 

pathologic 

change 

Number in each group 
HIGH n = 30  n = 15  n = 4     

LOW n = 32  n = 4  n = 4     

Age at diagnosis 
HIGH 79.6 (± 3.8)  81.3 (± 5.4)  80.8 (± 3.8)  0 0 0 

LOW 64.7 (± 7.2)  64.3 (± 9.4)  67.0 (± 3.8)  0 0 0 

Disease duration (m) 
HIGH 21.1 (± 14.1)  15.2 (± 13.1)  6.5 (± 3.5)  0 0 0 

LOW 23.6 (± 14.8)  13.3 (± 13.2)  7.8 (± 6.0)  0 0 0 

Education (y) 
HIGH 11.6 (± 2.7) 0.001** 12.1 (± 2.7) 0.48 11.5 (± 4.5) 0.81 7 4 2 

LOW 14.5 (± 2.7)  13.3 (± 1.9)  13.0 (± 5.3)  11 1 0 

MMSE scores 
HIGH 26.8 (± 2.0) 0.003** 27.6 (± 1.9) 0.86 27.7 (± 1.2) 0.96 4 3 1 

LOW 28.4(± 1.7)  27.3 (± 1.7)  27.8 (± 2.3)  7 1 0 

MCI, n (%) 
HIGH 3 (10.0%)  1 (6.7%)  0  0 0 0 

LOW 1 (3.1%)  0  1 (25.0%)  0 0 0 

ApoE ε4, n (%) 
HIGH 4 (13.8%)  6 (42.9%)  0  1 1 1 

LOW 4 (14.2%)  1 (25.0%)  0  4 0 1 

Continuous variables are presented as the mean (± standard deviation). AD continuum = Alzheimer’s continuum, Non-AD 
pathologic change =Non-Alzheimer’s pathologic change, HIGH = a group of patients aged ≥ 73 at diagnosis, LOW = a group of 
patients aged < 73 at diagnosis, MMSE = mini-mental state examination, MCI = mild cognitive impairment, ApoE = 
Apolipoprotein E, Aβ42 = amyloid-beta 42, p-tau = phosphorylated tau, t-tau = total tau, ** = p < 0.01. P-values represent the 
result of Welch’s t test comparing the HIGH group vs. the LOW group within each AT(N) category.  

 

Supplementary Table 1B. Contingency table for Fisher's exact test showing the 
numbers of MCI in each AT(N) category within the HIGH group. 

 Normal AD continuum Non-AD pathologic change Total 

MCI 3 1 0 4 

Normal cognition 27 14 4 45 

Total 30 15 4 49 

MCI = mild cognitive impairment, HIGH group = a group of patients aged ≥ 73 at diagnosis, AD 
continuum = Alzheimer’s continuum, Non-AD pathologic change = Non-Alzheimer’s pathologic 
change. 

 

Supplementary Table 1C. Contingency table for Fisher's exact test showing the 
numbers of MCI in each AT(N) category within the LOW group. 

 Normal AD continuum Non-AD pathologic change Total 

MCI  1 0 1 2 

Normal cognition 31 4 3 38 

Total 32 4 4 40 

MCI = mild cognitive impairment, LOW group = a group of patients aged < 73 at diagnosis, 
AD continuum = Alzheimer’s continuum, Non-AD pathologic change = Non-Alzheimer’s 
pathologic change. 
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Supplementary Table 2. Cutoff levels of CSF amyloid-beta 42 in 
prior studies using INNOTEST® and our study. 

No. CSF Aβ42 cutoff (pg/mL) Study References 

1 333 J-ADNI 26 

2 380 Krakow 25 

3 430 Brussels 25 

4 445 Lisbon 25 

5 450 Bremen 25 

6 450 Gothenburg 25 

7 450 Ljubljana 25 

8 450 Mannheim 25 

9 450 Thessaloniki 25 

10 459 St. Louis 25 

11 482 Mattsson 25 

12 490 Athens 25 

13 500 Barcelona CUH 25 

14 500 Brescia 25 

15 500 Nijmegen 25 

16 500  This study 

17 542 Coimbra 25 

18 550 Amsterdam 25 

19 550 Barcelona HSP 25 

20 550 DESCRIPA 25 

21 550 Lausanne 25 

22 550 LeARN 25 

23 550 Lorenskog 25 

24 550 Madrid 25 

25 550 Perugia 25 

26 550 Stockholm 25 

27 600 DCN 25 

28 600 Scinawa 25 

29 610 Warsaw 25 

30 638.5 Antwerp 25 

31 662.65 Chandigarh 25 

Median (IQR) cutoff level: 530.3 (452.3-550.0) 
Of the 31 cutoff levels, 30 were taken from prior studies cited in Table 3 (29 
from Reference [25] and one from Reference [26]), and the remaining one 
was our own. These levels ranged from 333 to 662.65 pg/mL. CSF = 
cerebrospinal fluid, No.= Number, Aβ42 = amyloid-beta 42, J-ADNI = 
Japanese Alzheimer’s Disease Neuroimaging Initiative, IQR = interquartile 
range. See the original paper about study names. 
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Supplementary Table 3A. Comparison of the prevalence of amyloid positivity between the two groups at a 
cutoff level of 400 pg/mL. 

 HIGH group LOW group 
Odds ratio 95% CI p-value 

(N = 49) (N = 40) 

Amyloid positivity, n (%) 11 (22.4%) 1 (2.5%) 11.1 1.5–496.9 0.01** 

HIGH group = patients aged ≥ 73 at diagnosis, LOW group = patients aged < 73 at diagnosis, CI = confidence interval, ** = p < 
0.01. P-value represents the result of Fisher’s exact test. 

 

Supplementary Table 3B. Comparison of the prevalence of amyloid positivity between the two groups at a 
cutoff level of 600 pg/mL. 

 HIGH group LOW group 
Odds ratio 95% CI p-value 

(N = 49) (N = 40) 

Amyloid positivity, n (%) 19 (38.8%) 9 (22.5%) 2.2 0.8–6.3 0.11 

HIGH group = patients aged ≥ 73 at diagnosis, LOW group = patients aged < 73 at diagnosis, CI = confidence interval. P-value 
represents the result of Fisher’s exact test. 
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