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ABSTRACT 

Low dose rapamycin therapy has been proposed as a longevity candidate in healthy aging adults. We present a 
review of the evidence for low dose rapamycin and rapalog therapies in healthy human adults and model the 
findings of one cohort study using the PhenoAge model. Despite the preclinical evidence supporting the use of 
sirolimus to enhance mean and maximal lifespan, the data in humans have yet to establish that rapamycin, or 
its analogues, is a proven seno-therapeutic that can delay aging in healthy older adults. Rapamycin and rapalogs 
warrant further study with larger cohorts to better establish their contribution to human aging. 

 

INTRODUCTION 

Rapamycin therapy is considered a promising approach 

for lifespan extension and the delay of age-related 

disease, with numerous preclinical studies documenting 

benefit [1–19]. These benefits have inspired some 

patients to seek rapamycin therapy from specialty 

practitioners. Yet, the clinical evidence of benefit 

associated with low-dose rapamycin use in healthy 

human adults has not been established, and there may 

exist signals indicating caution with off-label use at 

non-immunosuppressive doses. 

 

Rapamycin was first isolated in 1975 from a bacterium, 

Streptomyces hygroscopicus, found in a soil sample 

on Easter Island. Researchers would later discover 

that it had anti-fungal, anti-tumorigenic, and immuno-

modulatory properties [20, 22]. In subsequent decades, 

researchers studying yeast resistance to rapamycin 

identified its biological target, named the mechanistic 

target of rapamycin (mTOR) [21, 22]. At present, the 

role of mTOR inhibition in age-related disease has 

been well-documented in multiple preclinical models 

[1–19]. The mechanistic target of rapamycin acts as an 

integral regulator of cell growth, autophagy, and 

division. Rapamycin’s ability to delay age-related 

disease has been replicated, most notably in the 

intervention testing program (ITP), where consistent 

extensions for median and maximum lifespan in both 

male and female mice have been identified [22]. 

 

While the benefit of rapamycin therapy has been 

demonstrated in non-human models, nonetheless, the 

clinical evidence for low-dose mTOR inhibitors as  

a therapy for extending lifespan or delaying the onset  

of age-related disease in healthy adults remains 

unestablished. Here, we provide a critical appraisal  

of studies evaluating low-dose rapamycin therapy in 

healthy adults and offer considerations for its potential 

use as an off-label longevity drug in humans. 

 

Clinical evidence in healthy participants 

As the concept of aging as a modifiable risk factor for 

illness and death continues to gain traction, repurposing 

previously approved drugs, such as rapamycin,
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metformin, and acarbose to delay age-related disease, is 

becoming increasingly prevalent. 

Longevity data in humans is difficult to acquire. Any 

well-designed trial that attempts to assess the longevity 

impact for any drug in people will be time consuming, 

expensive, and complicated by uncertainties in clinically 

valid endpoints. Since rapamycin is a generic medication, 

there is little incentive for any private group to fund such 

a study, which further complicates acquisition of high- 

quality evidence with regard to low-dose rapamycin 

therapy. Accordingly, the clinical evidence evaluating 

low-dose rapamycin, or its analogues, in healthy 

participants is scant, with less than a dozen known trials 

exploring a variety of biomarkers, including immune 

function, protein synthesis, and hematologic parameters. 

 

Evidence favoring low-dose mTOR inhibition was 

established by Mannick et al. (2014) using everolimus 

(RAD001), an mTOR complex 1 (mTORC1) rapalogue, 

to evaluate markers of immune function in older  

adults. Mannick et al. evaluated a cohort of 218 healthy 

older adults receiving everolimus therapy, which was 

discontinued two weeks prior to influenza vaccination 

[23]. The results of this analysis suggested that low- 

dose everolimus therapy (0.5 mg/day and 5 mg weekly) 

induced a 20% increase in immune titers, while 

circulating T-cell inhibiting PD-1 positive CD4 and CD8 

counts declined relative to placebo, a finding which is 

associated with enhanced T-cell function, or a more 

youthful immune phenotype [23, 43]. Rather than being 

immune suppressive, low-dose mTOR inhibition was 

associated with signals of enhanced immune function  

in this population. While safety parameters were 

acceptable, benign apthous ulcers were significantly 

more common in the treatment arm. The ability of 

mTOR inhibition (everolimus) in combination with  

an ATP-competitive kinase inhibitor with secondary 

mTORi effects (RTB101) in reducing respiratory tract 

infection was confirmed by Mannick’s group in 2018 in 

a phase 2 trial of 264 healthy adults [24]. Caution is 

appropriate in interpreting these results, as the study  

did not detect a significant difference in annualized  

rates of respiratory tract infection, though the study may 

have been underpowered to detect this [25]. 

 

In a follow-up phase 2b and phase 3 analysis, 10 

mg/day of RTB101 demonstrated a similar effect and 

was associated with a marked reduction in respiratory 

tract infection incidence [25]. Laboratory analysis 

supported a phenotypic improvement in immune 

function, mediated by an upregulation of interferon- 

gamma (IFN-γ), an inflammatory cytokine whose 

induction stems from NF-kB activation. Several caveats 

apply in this trial. In the 2b phase, participants (n = 652) 

were initially randomized to RTB101 at 5mg/day, 10 

mg/day, or placebo. Importantly, the incidence of 

respiratory tract infections did not differ significantly 

between the 5 mg/day dose versus placebo. In part 2 of 

this trial, investigators instead randomized the remaining 

participants (473) to 10 mg/day, 20 mg/day, 10mg/day 

+ everolimus 10 mg/day, or placebo, noting that only 

the 10 mg/day dose of RTB101 was sufficient to reduce 

the respiratory tract infection rate relative to control. No 

significant safety events occurred and, similarly to the 

2a trial, isolated mTORC1 inhibition was confirmed, and 

there were no significant differences in hyperglycemia 

or hyperlipidemia. The relative success of lower doses 

versus higher doses is of potential interest and may point 

towards the existence of an immunologic “threshold” at 

which the immune enhancing effects of low dose mTOR 

inhibition are replaced by immunosuppressive effects 

observed at higher doses. 

 

Other limitations should be noted, including the 

increase in respiratory tract infection incidence in 

smokers or those with COPD. Although “intermittent” 

mTOR inhibition achieved a clinically significant 

effect, continuous therapy did not. In the phase 3 arm of 

this study, the results of the phase 2b study were not 

replicated, though this finding was complicated by an 

endpoint alteration from laboratory-confirmed infections 

in phase 2 to patient-reported infections in phase 3, as 

requested by the FDA. This decision muddied their 

findings, limiting the ability to detect a significant 

difference between groups. The authors suggested that 

this unexpected observation may be the result of 

improper symptom logging and/or a healthier cohort 

composition. The latter consideration may be significant 

because the effect of mTOR inhibition was greatest in 

subjects >85y, and in subjects >65y with evidence of 

asthma, when compared with cohort controls. Thus, 

rapamycin therapy may have an outsized, positive 

effect on hematopoietic parameters in immunologically 

challenged participants. In sum, the evidence favoring 

the beneficial effect of rapamycin therapy on the 

incidence of respiratory tract infection is compelling but 

not convincing at present. 

Kaeberlein et al. (2023) reported on community use of 

rapamycin for longevity purposes, finding that users had 

a significantly lower likelihood of COVID infection and 

long-COVID incidence along with subjective increases 

in various measures of well-being and physical stamina 

[26]. This cohort of rapamycin users also documented 

self-reported benefit in abdominal cramps, depression, 

abdominal pain, muscle tightness, anxiety, and eye  

pain relative to non-users. It is important to note this 

cohort was not blinded to their intervention and may 

have been impacted by some degree of placebo effect. 

Importantly, this cohort reported no safety signals. 

Nonetheless, the Kaeberlein study supports observations 
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made by previous human and animal studies with 

respect to immune enhancement. Thus, while 

promising, this study does not constitute firm evidence 

that rapamycin can extend healthspan or lifespan in 

humans. 

Trials of rapamycin have yielded ambiguous evidence 

with respect to muscle protein synthesis. For example, 

Gunderman et al. (2014) demonstrated that 16 mg of 

rapamune blunted post-exercise increases in protein 

synthesis [27]. In contrast, Dickinson et al. (2013) 

found that the same dose did not alter rates of synthesis 

in skeletal muscle as assessed via muscle biopsy,  

nor did it affect circulating markers of autophagy up  

to 4 hours post-ingestion relative to baseline [28]. 

However, this study only considered basal post-

absorptive and non-post-exercise rates. Thus, it is 

possible that sirolimus may demonstrate anti-sarcopenic 

effects that should be considered, particularly because 

sarcopenia has been repeatedly associated with adverse 

outcomes in the context of age-related decline [29,  

30]. However, it is also plausible that muscle protein 

synthesis exerts age-dependent effects and that mTOR 

inhibition by sirolimus may in fact benefit other aspects 

of muscle preservation including reduced catabolic 

activity. The relative absence of surveillance and testing 

for this finding in other cohorts limits the conclusions 

derived from these two clinical studies. 

 

In a trial by Horbelt et al. (2020), 22 healthy young men 

were subjected to RAD001 (everolimus) at various 

dosing schedules to evaluate its effect in 4 doses  

over 12-hour periods for 15 days [31]. Several days  

post-administration, significant reductions for two 

interleukins (IL), IL-2 and IL-10 were identified. 

Reductions in IL-10 are noteworthy and warrant 

attention given that IL-10 is recognized as a key anti- 

inflammatory cytokine, as it promotes homeostasis 

(resolution of inflammation) and immune surveillance 

(preparation for robust response given need, e.g. cancer 

cells or pathogens) [32]. IL-10 expression has also been 

associated with increased longevity [32]. With respect 

to psychological parameters, lower and medium doses 

(5-10 mg) of everolimus significantly increased self- 

reported anxiety and increased noradrenaline. While 

these changes cannot be interpreted in isolation, the  

net effect of rapamycin therapy in this cohort was 

significant and merits further consideration. 

 

One of the most detailed trials of low-dose rapamycin 

use in healthy participants comes from Kraig et  

al.’s (2018) examination of 25 healthy older adults 

(aged 70-95 years), which evaluated the safety of  

1 mg/day sirolimus for 8 weeks. A mean 7.2 ng/dL 

circulating level of sirolimus was achieved, with authors 

documenting changes in several hematologic, hormonal 

 

and physical parameters [33]. The limitations of this 

study are (1) a relatively short duration and (2) the  

use of continuous (1 mg/day) rather than intermittent 

rapamycin dosing schedules that may lead to off-target 

effects. Kraig et al.’s results reported no significant 

improvement in various metabolic parameters, while 

noting several potentially undesirable findings between 

groups, including a significant decrease in plasma 

albumin, increased triglycerides and Hemoglobin A1C 

(HbA1C) and a near-significant (p=0.06) increase  

for very-low-density lipoprotein (VLDL) within 

rapamycin-treated subjects. Albumin declines during 

aging [34], which could suggest an unfavorable  

age-related change with rapamycin use, though liver 

function biomarkers appeared unaffected. Increases in 

triglycerides, HbA1C, and VLDL are also concerning, 

however, insulin sensitivity was not altered, nor were 

results from oral glucose tolerance tests or fasting 

glucose. Thus, Kraig et al. concluded that rapamycin 

therapy did not lead to significant adverse outcomes  

in the short term. Alterations in various hematologic 

parameters on rapamycin therapy included a 

significantly decreased red cell distribution width 

(RDW), a marker that has been associated with a 

“youthful” biological age [35]. Other hematologic 

parameters were consistent with previous trials of 

rapamycin therapy that identified decreases for  

mean corpuscular volume (MCV), mean corpuscular 

hemoglobin (MCH), and hemoglobin (Hgb) [36–38]. 

A higher MCV and lower hemoglobin are associated 

with an increased all-cause mortality risk [36–38], 

which may suggest an opposing impact on health-

related biomarkers. With regard to physical parameters, 

weight was reduced in the rapamycin cohort, however, 

handgrip strength was unchanged, which may support 

the complex role of mTOR inhibition in muscle 

preservation. There is also evidence that handgrip 

strength may be related to cognitive capacity, thus 

suggesting a possible protective role against neuro-

logical decline [39]. Further, though walking speed 

declined markedly in the control group, the rapamycin 

cohort maintained gait speed without a significant 

functional decline. 

 

Rapamycin users demonstrated no significant reduction 

on any individual inflammatory marker in this small 

cohort. Instead, inflammatory cytokines broadly 

increased, including a significant TNF-α elevation.  

This cohort was not appropriately powered and thus 

non-significant changes in inflammatory parameters 

such as IL-2, IL-6, and monocyte chemoattractant 

protein 1 (MCP-1), while interesting, may not necessarily 

denote harm and instead could be artifacts of the study. 
As a caveat, TNF-α is a marker of autophagy; thus, we 

cannot conclude whether this finding is a confound 

associated with an underlying, healthy alteration
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[40]. Some circulating immune cells (CD) increased, 

with a signal indicating regulatory T cell (Treg) clusters 

may have improved if more appropriately powered. 

Treg expression is considered a marker of “healthy” 

tolerance, as it promotes homeostasis and immune 

surveillance [41, 42]. Further work to better understand 

the complex relationship between various immune 

components and aging is needed. Kraig et al. concluded 

that rapamycin therapy did not demonstrate any 

significant adverse outcome in the short term, nor was  

a signal of clear benefit identified. 

 

Theoretical evidence 

Mendelian randomization provides a strong theoretical 

basis for potentially understanding the impact of 

biological therapy. In a preprint from Sobcyzk and 

Gat (2023), a genetically predicted reduction in mTOR 

expression was correlated with an increased chance of 

attaining exceptional longevity. However, significant 

inverse associations were not identified for stroke, 

coronary artery disease, myocardial infarction (MI), or 

prostate cancer, but there was evidence of a reduction 

for heart failure risk [43]. Reduced mTOR signaling 

was also associated with a significant increase in 

genetically predicted incident diabetes. Study authors 

also noted that mTOR was inversely associated with 

body weight, height, and predicted an earlier onset of 

female period and a lower basal metabolic rate. 

 

Mendelian randomization studies have also evaluated 

the effects of downstream products of mTOR therapy, 

noting that its reduction may be associated with a 

lower incidence of Parkinson’s and Alzheimer’s diseases, 

for which there are currently limited treatments and  

a poor prognosis [44, 45]. These considerations are 

nuanced and may support a role for targeted rapalogs  

or their derivatives in the treatment of age-related 

disease. 

Modeling a sample cohort 

The subject of clocks in human aging is controversial, 

with some authors documenting limitations in 

extrapolating the results of any “one” clock in terms  

of predictive capacity [46-48]. The following modeling 

analysis uses Levine et al.’s “PhenoAge” to explore  

the theoretical net effect of rapamycin treatment  

in the Kraig et al. trial. These data are suggestive  

at best and are limited by lack of subject level 

observations. 

 

METHODS 

To more precisely estimate the effect of the Kraig 

et al. sirolimus intervention, we modeled a series of 

patients representing a similar mean age (placebo, 80.6y; 

rapamycin-treated, 80.4y) pre- and post-intervention 

and entered their average biomarker values into a 

Phenotypic Age calculator, a biomarker-based aging 

“clock” with a strong correlation (0.94) to chronological 

age, with an older PhenoAge associated with an 

increased all-cause mortality risk [46]. Both C-reactive 

protein (CRP) and the percentage of lymphocytes 

(LYMPH %) were not available in the Kraig et al. 
dataset; thus, we imputed age-expected values for both 

groups, which were held constant (CRP = 1.75 mg/L, 

LYMPH = 19%) [49, 50]. Statistical significance for 

this comparison could not be determined owing to the 

lack of subject level data. 

RESULTS AND DISCUSSION 

In the placebo group, baseline and end-of-study 

Phenotypic Age were 78.32y and 78.47y, with a 

calculated Difference = +0.15y. In the rapamycin 

cohort, baseline and end-of-study Phenotypic Age  

were 81.34y and 77.38y, which is a net -3.96y change, 

which may be a significant finding when compared 

with the +0.15y PhenoAge change for placebo (Table 

1). The rapamycin cohort, assuming no significant 

changes reported in LYMPH % or CRP, may have 

successfully reduced their estimated biological age  

with daily, low- dose rapamycin therapy. 

Neurocognitive function 

Results of neurocognitive trials using rapamycin have 

not been completed, however, several authors have 

provided evidence of plausible mechanistic benefit 

[51]. Currently there are two ongoing trials for 

rapamycin in the domain of cognitive function, such as 

a Phase 2 study on rapamycin for mild cognitive 

impairment (MCI) and early Alzheimer’s (AD) and 

include brain imaging assessments (MRI and PET 

scans). These studies aim to evaluate potential 

structural changes, including gray matter metrics, over 

treatment periods. 

 

“Evaluating Rapamycin Treatment in Alzheimer’s 

Disease using Positron Emission Tomography” (ERAP) 

or the ERAP trial is a six-month-long, single-arm,  

open-label, phase IIa biomarker-driven study which  

is testing rapamycin at a dose of 7 mg weekly and 

measuring changes in cerebral glucose metabolism  

[52]. The other trial is the “Rapamycin - Effects on 

Alzheimer's and Cognitive Health” (REACH) which 

aims to test the effect of 1 mg of daily rapamycin on 

various markers of AD disease burden [53]. Jointly, 

these trials may provide preliminary answers as to 

whether or not preclinical benefit can be translated into 

in vivo measurable benefit. 
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Table 1.  Example PhenoAge model. 
 

 

Controls* 

 

Pre-trial 

Phenotypic age = 78.32y 

Chronological Age = 80.6y 

Difference = -2.28y 

 

Post 

Phenotypic Age = 78.47y 

Chronological Age = 80.4y 

Difference = -1.93y 

 

Control: Difference (Post) – Difference (Pre) = 0.15 years 

of Phenotypic Age 

Rapamycin* 

 

Pre 

Phenotypic Age = 81.34 y 

Chronological Age = 80.4y 

Difference = + 0.94y 

 

Post 

Phenotypic Age = 77.38 

Chronological Age = 80.4 

Difference = -3.96y 

 

Rapamycin: Difference (Post) – Difference (Pre) = -3.96 years 

of Phenotypic Age 
 

 

CRP and %LYMPH % were not available, chronological age-expected (CRP=1.75 mg/L, LYMPH = 19%) were imputed. 

 

Cardiovascular and cerebrovascular systems 

The cardiovascular effects of rapamycin vary across 

vascular territories and cardiac function. While there is 

plentiful research on animal models and in tissue and 

cell models, human outcome data is sparse. While the 

use of biomarkers is no substitute for outcome data, 

under the circumstances the existing marker data is 

worth reviewing in this context. 

 

Rapamycin has been associated with reductions in IL- 

10 and borderline increases in several pro-inflammatory 

biomarkers [31]. This is a finding that merits study. 

Further, while rapamycin elevates triglycerides and 

serum LDL at high doses in kidney transplant patients, 

CVD event risk was not increased [54, 55] and, in fact, 

stroke risk may have diminished. The local application 

of rapamycin as well as everolimus appear to reduce 

rates of restenosis and eventual CVD death after 

angioplasty compared to placebo [56, 57]. There is also 

limited evidence that rapamycin-treated patients are at 

lower risk for stroke [58]. In sum, there is insufficient 

human outcome data to comment on the impact of 

rapamycin therapy on human cardiovascular health. 

 

Cancer risk 

There is no literature reporting cancer incidence or 

prevalence in healthy, non-immunocompromised cohorts 

with low dose rapamycin use, so inference from existing 

studies to an otherwise healthy cohort is challenging. In a 

meta-analysis of 20 randomized controls trials in kidney 
transplant patients, high-dose sirolimus treatment was 

associated with a lower overall kidney and NMSC cancer 

risk relative to other immunosuppressive regimens, but 

demonstrated no effect on other cancers with the 

 

exception of a potentially elevated prostate cancer risk. 

The authors of that study note the NMSC finding that this 

“may be partly due to removal of cyclosporine” as 

opposed to the addition of sirolimus [55]. Similarly, with 

reference to the elevation in prostate cancer risk the 

causality of this association is unclear and authors report 

that the association may be an artifactual and potentially 

related to rapamycin’s interference with PSA screening 

[55]. It is worth noting that findings of many preclinical 

models and approved clinical applications of rapamycin 

and or rapalogs have demonstrated potential mechanistic 

benefit with respect to cancer risk and treatment [59]. 

However, based on outcome data in humans, we cannot 

comment on rapamycin’s cancer risk in healthy adults. 

Clinical implications and future directions 

Despite extensive preclinical evidence supporting 

sirolimus and other mTOR inhibitors as potential gero- 

therapeutics, human data have yet to demonstrate that 

rapamycin can extend mean or maximal lifespan or 

delay the onset of age-related diseases. The findings 

reported herein underscore the need for larger, well-

designed human studies to clarify rapamycin’s clinical 

relevance. Off-label prescribing should include vigilant 

monitoring for adverse effects and open discussion of 

knowns and unknowns with patients. Key priorities for 

future research include (1) establish efficacy with well- 

designed trials identifying relevant clinical endpoints  

in healthy adults, (2) identify therapeutic dose-response 

curves, and (3) explore synergistic interactions with 

other gerotherapeutics. 
 

While once weekly dosing of 5-7 mg, or 10-15 mg 

biweekly is commonly recommended to patients, there 

is still no established dose response curve for rapamycin 

 

http://www.aging-us.com/


6 AGING www.aging-us.com 
 

with regard to health span extension [60]. There are 

theoretical concerns with respect to intermittent dosing, 

including rebound mTOR hyperfunction following 

protracted mTOR inhibition. This concern may support a 

consistent weekly or daily dosing schedule as described 

in the only clinical trial that has been published with 

low-dose rapamycin in healthy older adults, but no 

longer term data exists to clarify this [33]. Rapamycin is 

estimated to impart biological effects at about 5 ng/mL 

and achieve greater relative toxicity above 15 ng/mL  

(pk parameters: 60-80 hours to 0.5 max concentrations), 

which suggests that rapamycin therapy (0.5-1 mg) daily 

or (5-7 mg) weekly could be sufficient to avoid side 

effects and reduce risk of theoretical hyper-mTOR 

functional reconstitution [61, 62]. mTOR inhibition 

offers an exciting and potentially important contribution 

to the biology of aging. However, rapamycin therapy in 

healthy participants remains incompletely understood, 

with limited outcome data. 

CONCLUSION 

This paper has reviewed trials of low-dose mTOR 

inhibition therapy in human subjects. What emerges is 

a complex picture that remains insufficient to affirm  

or negate the longevity and healthspan extending 

benefits attributed to rapamycin. Despite the preclinical 

evidence supporting the use of sirolimus to enhance 

mean and maximal lifespan, the data in humans has  

yet to establish that rapamycin, or its analogues, is an 

effective seno-therapeutic to delay aging in healthy 

older adults. 
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