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The hallmarks of aging: a framework for 

understanding disease 
 

Hallmarks of aging as a concept represent the failure  

of the biologists’ earlier attempts to define a singular 

driver of aging. Mechanistic theories explaining  

aging as an evolutionary program or a mitochondrial 

dysfunction, or any other key source of degeneration 

could not explain the aging phenotype in its 

completeness [1–3]. Hence an alternative was proposed 

in defining aging as a combination of these various 

mechanisms chipping away at an organism as the 

“hallmarks of aging” [4]. 

 

A slightly predating concept of the “hallmarks of 

cancer” suggested that the development of malignant 

tumors rests on a set of primary enabling processes, 

such as somatic mutations, which eventually give way 

to emergent, secondary processes that result in the 

malignancy’s growth [5]. Similarly, the hallmarks of 

aging are understood as a triad of primary, antagonistic 

(compensatory), and integrative processes immediately 

linked to the aging phenotype. The critics of the aging 

hallmarks concept indicate, however, that the aging-

cancer analogy is not complete and some key 

distinctions are often overlooked [6]. In particular, 

genomic instability is the primary cause of all tumors 

while its aging analog, cellular damage, is a term that 

is much more open to interpretation and debate [6]. 

Another point of criticism is what constitutes a 

hallmark and how many of them there are. While the 

original 2013 publication defined nine processes, the 

most recent review of the framework features 12 of 

them [7–9]. The partition between primary and 

secondary aging hallmarks is not as clear as in cancer 

and the boundary between two hallmarks is often 

diffused, as is the case with inflammation which can 

hardly be isolated from other hallmarks [10]. 

 
Despite their theoretical drawbacks, the hallmarks of 

aging have been widely adopted both in academia and 

the biotechnology industry as a framework for their 
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ABSTRACT 
 

While aging-related diseases are often used as proxies for the general aging process in research, they largely 
differ in terms of how integral their development is to organismal aging. Hallmarks of aging offer a convenient 
conceptual framework to assess the relevance of a disease to the anti-aging narrative. In this review, we 
propose hallmark decomposition as a method of measuring the potential of a therapy to translate from a 
disease-specific treatment to a general geroprotector. To help other researchers adopt and improve this 
methodology, we are releasing a disease scoring system and report the hallmark alignment of 13 aging-related 
diseases, among which IPF is the disease most aligned with aging. 
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practical utility. They offer a language to describe the 

proxies of aging used in research. As pointed out by the 

late Leonard Hayflick, the undefined terminology is the 

bane of biogerontology leading to “communication 

failures, erroneous interpretations, and misdirected 

decisions” [11, 12]. The hallmarks framework allows 

the anti-aging efforts to be more specific in what type of 

aging is accelerated or prevented, and thus, provides a 

more reliable way to find the applications for the 

observed anti-aging effects. 

 

The hallmarks also give us an opportunity to explore 

the bidirectional and complex connection between 

aging and its manifestations in diseases. While aging 

reduces the overall resilience of an organism, certain 

pathologies exhibit particularly strong associations with 

specific aging hallmarks, making them valuable models 

for investigating geroprotective strategies. 

 

This perspective explores how aging-related diseases 

(ARDs) can serve as experimental platforms for 

discovering new geroprotective interventions. We place 

special emphasis on idiopathic pulmonary fibrosis  

(IPF) as an emblematic ARD based on extensive 

literature evidence, findings in preclinical and clinical 

studies, and a hallmark deconvolution scoring  

(Figure 1). 
 

The scoring is based on the hallmark-associated pathway 

enrichment in the published targets associated with a 

disease (see Methods). We propose to extend the concept 

of the hallmarks of aging by making it more practically 

inclined and relevant to anti-aging therapeutics. By 

deconvoluting the conditions as a sum of aging-related 

processes, we suggest a measure of biogerontological 

relevance that may be applied to clinical trials and case-

control studies. Furthermore, this measure can make 

biogerontology more “empirically progressive” by 

serving as a criterion for a therapy’s geroprotector 

potential [13]. If the effectiveness of a target, mechanism 

of action, or compound increases proportionally with 

how relevant a particular setting is to biological aging, 

 

 
 

Figure 1. Heatmap representation of hallmark scores across 13 aging-related diseases (ARDs). Higher numbers mean higher 
abundance of hallmark-specific genes among an ARD's targets. Among the scored diseases, type-2 diabetes and idiopathic pulmonary fibrosis 
demonstrate the strongest representation across multiple hallmarks, particularly in deregulated nutrient sensing. This analysis reveals 
distinct patterns of hallmark involvement across different ARDs, with some hallmarks (mitochondrial dysfunction, chronic inflammation) 
broadly represented across multiple conditions, while others (e.g. disabled macroautophagy) show more selective disease associations. NS: 
Not Significant at q-value<0.001 after Benjamin-Hochberg correction; mean enrichment scores calculated based on 250 samples of target 
genes for each disease; the plot is produced in Plotly 5.23 for Python 3.11. 
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then this entity is more likely to also have positive effects 

on aging itself, rather than only the indicated disease. In 

other words, we suggest that clinical efficacy against 

ARDs should be considered a necessary criterion for 

validating putative geroprotectors, with IPF representing 

a particularly informative testbed due to its strong 

association with multiple aging hallmarks. 

 

Mechanistic clustering of ARDs 
 

The hallmarks framework is commonly used to assess 

the relevance of a model, a disease, intervention, or a 

phenotype to the aging process [14–16]. Pathologies 

whose etiology is linked to the hallmark molecular 

mechanisms are described as aging-related. Such 

diseases are typically non-communicable, characterized 

by chronic development, may manifest after a long 

asymptomatic period, and often involve progressive 

functional decline. Some researchers propose a more 

precise definition of an ARD based on epidemiologic 

data indicating a higher incidence in older age groups 

[17]. But for research purposes, the aging-related status 

is most commonly established from a mechanistic 

perspective. 

 

Despite the fuzzy definition, some ARDs may be 

clustered together based on which hallmarks play the 

key role in their development [18]. One such cluster are 

inflammatory aging diseases, which include rheumatoid 

arthritis, chronic kidney disease, diabetes, inflammatory 

bowel disease, and others [19]. These diseases are 

characterized by a chronic low-grade inflammation, 

immune cell senescence, and dysregulation of innate and 

adaptive immune responses. This array of phenomena, 

also called “inflammaging”, manifests as elevated levels 

of pro-inflammatory cytokines such as IL-1β, IL-6, and 

TNF-α, which create a tissue environment conducive to 

disease progression [20]. The relationship between 

inflammation and aging is complex and bidirectional. 

While inflammatory processes contribute to tissue 

damage, they may also represent adaptive responses to 

accumulating stressors. This duality is exemplified by 

centenarians, who paradoxically exhibit elevated levels 

of pro-inflammatory cytokines alongside enhanced anti-

inflammatory mechanisms that maintain homeostasis 

[21, 22]. The case of IL-6 illustrates this complexity: 

while its inhibition shows therapeutic potential in 

conditions like rheumatoid arthritis and potentially IPF, 

IL-6 also plays essential roles in tissue regeneration and 

metabolism [23]. 

 

Another ARD cluster defined based on its driver 

hallmark are metabolic diseases, which include non-

alcoholic fatty liver diseases (NAFLD), metabolic 

syndrome, atherosclerosis, and diabetes [24, 25]. 

Deregulated nutrient sensing, particularly insulin 

resistance, serves as a central pathogenic mechanism in 

all these conditions [26]. This deregulation is closely 

linked to other hallmarks, such as mitochondrial 

dysfunction, inflammation, and the accumulation  

of senescent cells, which collectively exacerbate 

metabolic dysfunction [27–29]. These interacting 

hallmarks create a complex pathogenic network that 

becomes increasingly difficult to disrupt with age. 

 

Anatomical clustering and limitations 
 

While clustering ARDs by predominant hallmarks 

provides valuable mechanistic insights, the complex 

interplay between these hallmarks reveals the 

limitations of such classification. The hallmarks of 

aging rarely operate in isolation, blurring the boundaries 

between the clusters. An alternative approach to ARD 

classification focuses on the primarily affected organ 

systems, rather than the underlying mechanisms. This 

anatomical perspective yields clusters such as neuro-

degenerative diseases, which encompass conditions like 

Alzheimer's disease, Parkinson's disease, and 

amyotrophic lateral sclerosis. While these diseases share 

the common feature of progressive nervous system 

deterioration, they emerge from diverse combinations of 

aging hallmarks. 

 

Neurodegenerative diseases exemplify how multiple 

aging hallmarks converge to drive pathogenesis. In 

Alzheimer's disease, proteostasis failure manifests as β-

amyloid plaques and tau neurofibrillary tangles, while 

altered intercellular communication disrupts synaptic 

function [30]. Mitochondrial dysfunction contributes 

through reduced ATP production and elevated reactive 

oxygen species in cortical neurons [31]. Cellular 

senescence further exacerbates these pathologies, with 

senescent astrocytes and microglia releasing pro-

inflammatory factors that accelerate neurodegeneration 

[32]. The interplay between these hallmarks creates a 

vicious cycle of neuronal damage that ultimately leads 

to cognitive decline. 

 

These classification approaches provide useful 

frameworks but remain inherently subjective. The 

complex molecular networks underlying ARDs resist 

simplistic categorization, with most diseases involving 

multiple hallmarks across various tissues. This 

complexity highlights the need for quantitative methods 

to assess the relationship between specific diseases and 

aging biology. We propose conceptualizing ARDs along 

a spectrum based on their alignment with aging biology. 

At one end are conditions only tangentially related to 

aging, where age serves primarily as a risk factor rather 

than a central pathogenic mechanism. At the other end 

are diseases so inextricably linked to aging processes 

that they essentially represent accelerated or localized 
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manifestations of aging itself. In the following section, 

we demonstrate a way to construct such a spectrum to 

identify the diseases that would serve as optimal testbeds 

for geroprotective interventions. 
 

Aging alignment in pathologies 
 

We propose organizing ARDs based on how aligned 

they are with the wider aging process based on their 

clinically relevant target genes. We have chosen to 

annotate 13 ARDs discussed in detail in [33] to identify 

the disease that is the most similar to the aging process. 

To achieve this, we scored each disease based on the 

participation of disease targets in hallmark-associated 

pathways. The score was calculated based on the results 

from enrichment analysis of the targets with a hallmark-

annotated version of Gene Ontology Biological 

Processes (GO:BP) ontology with an adjustment 

rewarding hallmark diversity (see Methods). This 

method allowed us to identify the diseases whose 

patients were most likely to benefit from geroprotector 

discovery efforts, and conversely, which indications 

would make a better testbed for anti-aging research. 

 

From a wider perspective, our scoring reveals distinct 

hallmark co-occurrence patterns across ARDs, suggesting 

that these aging mechanisms are fundamentally 

interconnected with multiple pathological manifestations 

(Figure 1). For instance, deregulated nutrient sensing 

emerges as the most broadly represented hallmark, with 

high scores spanning from metabolic diseases like type 2 

diabetes (49.3 out of 100) to fibrotic conditions like IPF 

(31.2) and inflammatory disorders like osteoarthritis 

(21.9). Such cross-disease hallmark sharing suggests that 

therapies addressing metabolic dysfunction could benefit 

diverse ARDs beyond their primary indication. 

 

This multi-hallmark principle is exemplified by the 

highest-scoring ARDs, which include type 2 diabetes, 

IPF, Parkinson's disease, and rheumatoid arthritis (all 

>60 out of 100; Figure 2). These diseases demonstrate 

substantial involvement across multiple hallmarks 

 

 
 

Figure 2. Quantitative comparison of aging alignment scores across 13 aging-related diseases. The total score represents the 
similarity of a pathology to the general aging process, calculated as a weighted sum of partial hallmark scores (see Methods). Type-2 
diabetes, idiopathic pulmonary fibrosis, Parkinson’s diseases, and rheumatoid arthritis demonstrate substantially higher alignment with aging 
processes compared to other conditions. This analysis supports the hypothesis that IPF is an optimal testbed for geroprotective interventions 
due to its strong mechanistic overlap with fundamental aging processes. Bar height represents the mean sampling score, whiskers display the 
standard deviation, based on the sampling procedure described in Methods; the plot is produced in Plotly 5.23 for Python 3.11. 
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simultaneously: primarily, deregulated nutrient 

sensing, altered intercellular communication, chronic 

inflammation, cellular senescence. Consequently, 

preclinical interventions addressing such prevalent 

hallmarks may achieve superior therapeutic outcomes 

across all high-scoring ARDs, making them equally 

valuable testbeds for geroprotector discovery. Among 

other indications, IPF stands out within due to its rapid 

progression and well-defined clinical endpoints, 

offering practical advantages for testing anti-aging 

interventions. 

 

The scoring also reveals therapeutically underexplored 

areas that represent a double-edged strategic 

opportunity. While hallmarks like deregulated nutrient 

sensing and mitochondrial dysfunction show broad 

disease representation with numerous known targets, 

others such as telomere attrition and disabled macro-

autophagy, exhibit more sparse associations. This 

pattern likely reflects differential target discovery 

investment rather than biological irrelevance, as 

telomere attrition remains a well-documented 

contributor to multiple ARDs [34]. For sparse 

hallmarks, fewer known targets imply higher 

discovery risk, but also lower competition and 

potentially greater impact for successful interventions. 

The comparison of hallmarks' contribution across the 

ARD spectrum may help drug developers strategically 

choose between targeting crowded, well-validated 

pathways or exploiting underexplored therapeutic 

niches [35]. 

 

While some authors express skepticism about the 

value of hallmarks in drug discovery, highlighting 

issues such as conflating biomarkers and drivers  

of aging or individual hallmarks' fuzzy definition  

[6, 36, 37], the framework has generated a fruitful 

research program that now warrants empirical 

validation through intensive clinical testing [38]. To 

further this point, some broad anti-aging strategies, 

such as senolytics, have been shown to lead to improve 

the outcomes in Alzheimer’s disease, ischemic injury, 

diabetes and other indications [39–43]. Such evidence 

validates the translational potential of hallmark-first 

drug development. 

 

We argue that aging biology should be considered 

early in the drug design process, rather than addressed 

only later through repurposing efforts. The 

deconvolution of disease-hallmark interactions 

proposes a more flexible and robust alternative to the 

disease-centric mode of drug development. The 

specific approach presented here should be treated as 

one of many possible options for disease-hallmark 

annotation, with future improvements possible through 

additional data sources and methodological refinements. 

Idiopathic pulmonary fibrosis: the archetypal 

aging disease 
 

Despite its potential improvements, the presented metric 

of an ARD’s alignment with the general aging process 

can be used to extract useful insights for anti-aging 

therapeutics. More specifically, our method has 

identified IPF as one of the top-scoring ARDs, which is 

backed by the latest literature describing IPF as an 

exemplary convergence of aging biology and clinical 

disease [44]. 

 

IPF is a chronic, progressive interstitial lung disease 

characterized by relentless scarring of lung tissue, 

declining pulmonary function, and a life expectancy of 3-

4 years post-diagnosis [45, 46]. While normal aging is 

associated with a decline of 13-34 mL/year in the lung’s 

forced vital capacity of older adults, in untreated IPF 

patients the rate of decline reaches 130-210 mL/year [47, 

48]. The existing therapies for IPF are designed to grant 

the patients enough time to obtain a lung transplant, the 

only treatment that meaningfully extends their lifespan to 

6 years post-operation [49, 50]. The severity and the 

progression rate of this disease make the lack of 

restorative treatments a particularly pressing issue. 

 

The incidence of IPF rises sharply with age, satisfying 

the epidemiological definition for ARDs [51]. In 

addition, IPF is driven by practically all hallmarks of 

aging jointly contributing to its debilitating effects on 

the patient [44]. This intersection of clinical urgency 

and high aging alignment makes IPF a uniquely 

attractive platform for testing anti-aging interventions. 

 

The rich hallmark interaction network sustaining IPF 

progression presents multiple attack vectors for an 

aging-focused therapy. High genomic instability in 

alveolar epithelial cells and fibroblasts is a major 

contributor to IPF progression, as shown in a recent 

work on the somatic mutation load in IPF patients  

[52, 53]. Other studies show that 10-20% of familial IPF 

patients carry mutations in telomerase maintenance 

genes (TERT, TERC, RTEL1), as well as other hazardous 

variants in oncogenes (TP53), cytokine (TGF-β, IL-8), 

and matrix remodeling (MMP1) genes [54, 55]. The 

correlation seen in the mutation landscapes of IPF and 

lung cancer has led some authors to hypothesize that 

lung cancer and IPF have a shared etiology [54]. In this 

context, it is not surprising to see that nintedanib, a drug 

approved for IPF treatment in 2014, was originally 

discovered as a solid tumor treatment [56]. 

 

Other instances of hallmark-aligned pathogenic 
processes in IPF include aberrant epigenetic regulation 

by histone deacetylases (HDACs), including sirtuins, 

that is suspected to contribute to such IPF milestones as 
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epithelial cell death and mesenchymal transition, 

fibroblast persistence, ECM deposition, and others [57]. 

Moreover, lung samples from IPF patients showed 

higher biological age compared to healthy controls using 

four different DNA methylation clocks [58]. Some teams 

argue that HDAC-inhibitors used in oncology may be 

repurposed to treat IPF [59]. Additionally, some 

selective sirtuin activators discussed in longevity 

research, such as resveratrol and calorie restriction, may 

be able to normalize epigenetic regulation in IPF  

[57, 60]. The clinical potential of calorie restriction in 

IPF treatment is particularly intriguing due to its status 

as a highly validated life extension method [61]. In this 

light, the shortage of nutritional studies in IPF patients is 

a major setback for both clinical and anti-aging research 

[62]. For an in-depth review of other hallmarks 

manifesting in IPF, we encourage the reader to read the 

recent in-depth review [44]. 

 

Anti-aging IPF therapeutics 
 

Anti-IPF drug development has become a highly 

competitive field with over 100 phase-2 and -3 trials 

registered over the last 10 years [63]. With this many 

clinical programs nearing their resolution, the approval 

criteria for new drugs are bound to become stricter. 

Novel treatments would be required to hold advantage 

over existing standard-of-care options, which implies a 

shift from drugs stalling IPF progression to restorative 

therapies. This impeding shift stimulates the adoption of 

new methodologies and discovery processes, including 

AI-assisted approaches [64]. The pressure to innovate has 

already led multiple research teams and pharmaceutical 

companies to base their drug design strategy on the 

concept of aging hallmarks (Table 1) [65]. 

 

Some insights from aging research are already 

translating into drug development, with several 

therapeutic strategies targeting IPF while concurrently 

modulating fundamental aging mechanisms. BI-765423 

is an anti-IL-11 antibody undergoing a phase-1 trial 

(NCT05658107) [66, 67]. This treatment targets an 

important participant of the inflammaging process, 

whose inhibition has been shown to extend murine 

lifespan, counteract senescent transformation in human 

cells, and reduce fibroblast activation [68, 69]. 

 

Targeting senescence has proven to be a powerful 

strategy to integrate anti-aging and anti-IPF treatments 

[70]. According to some authors, primary lung 

epithelium senescence caused by prolonged cell damage 

is the root cause responsible for the onset of IPF [71]. As 

they elaborate further, the chemokines secreted by the 

senescent epithelium promote secondary senescence in 

fibroblasts and myofibroblasts, whose secretome, rich in 

MMP12, IL-6, TGF-β, actively promotes inflammation 

and ECM remodeling [72, 73]. The driving role of 

senescence in IPF pathogenesis has led to multiple in 

vitro, in vivo, and even human pilot experiments 

featuring senolytics [74, 75]. The dasatinib+quercitin 

intermittent combination is particularly promising due to 

three factors: the molecular target similarity to an 

approved drug (nintedanib), lack of severe side effects, 

and the promising results in the models of other ARDs 

[76, 77]. 

 

In preclinical mouse models, the ABT-263 (navitoclax) 

senolytic inhibits antiapoptotic BCL-2, selectively 

inducing apoptosis in profibrotic fibroblasts and reducing 

lung collagen deposition [78]. Unity Biotechnology, in 

collaboration with the Buck Institute for Research on 

Aging, has patented a series of inhibitors of the BCL 

protein family, which show promise in treating IPF by 

selectively targeting and eliminating senescent cells in 

lung tissue, as supported by preclinical screening  

data [79]. Although the IPF patent has been abandoned, 

Unity Biotechnology continues exploring senolytics’ 

applications in other fibrotic diseases [80]. 

 

Another powerful strategy to combat both aging and 

IPF could be preventing senescent cell formation rather 

than destroying them with senolytics. A novel phase-2 

(NCT05975983) IPF drug candidate, rentosertib, shows 

a reduction of senescent cell formation in a replicative 

senescence model, which could contribute to its clinical 

efficacy [81–83]. Rentosertib’s anti-aging properties 

have additionally been validated by a reduction in pro-

inflammatory and pro-fibrotic markers, as detected by 

transcriptomic and proteomic screenings [83]. The case 

of rentosertib is particularly interesting since it is a 

potential restorative drug, leading to a slight increase in 

lung volume (+98 ml) over a 12-week period [64]. The 

successful application of biomedical AI in its 

development has enabled the identification of a 

previously overlooked IPF target, TNIK, thus opening a 

new direction for both anti-aging and anti-IPF 

interventions. Similarly, the geroprotector profile of 

SM04646, a Wnt inhibitor that has passed phase-1 

trials, needs to be established [84, 85]. 

 

TNIK’s role in aging is yet to be fully uncovered but 

rentosertib’s example provides a valuable lesson for 

other emerging IPF research directions. The autotaxin 

pathway has recently been identified as a druggable  

IPF target, yet its involvement in aging or any 

geroprotective properties remain critically understudied 

[86]. Ziritaxestat (GLPG1690) is a novel autotaxin-

targeting IPF drug candidate whose phase-3 trials were 

discontinued [87, 88]. This setback, however, does not 
mark the target as hopeless and other compounds 

affecting the pathway need to be explored as anti-IPF 

and anti-aging interventions. 
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Telomere attrition is another increasingly popular aging 

hallmark in IPF therapeutics. One of the Yamanaka 

factors used to rejuvenate cells, KLF4, has been shown 

to be a potential new IPF target thanks to its ability to 

restore TERT activity and prevent telomere attrition in 

lung epithelium [89]. In the same line, a telomerase 

activator extracted from the Astragalus herb, 

cycloastragenol (GRN510, TA-65), has been shown to 

suppress IPF-related damage in murine models [90, 91]. 

Cycloastragenol has also been shown to lengthen 

telomeres in humans, as well as counteract immuno-

senescence, inflammaging, lipid metabolism, and 

oxidative stress [92–94]. The rich set of hallmarks this 

compound interacts with implies its high potential to 

treat multiple ARDs. This hypothesis is confirmed by 

the motor function improvements it causes in a 

Parkinson’s diseases murine model [95]. 

 

As an alternative approach to restore telomerase 

activity, gene therapies are being tested in murine 

models with promising results [96]. For example, 

AAV9-mediated Tert gene therapy has improved lung 

function, reduced fibrosis, and alleviated inflammation 

in a bleomycin-induced fibrosis model [97]. In humans, 

danazol also represents the benefits of telomere 

elongation for IPF and some other ARDs, such as 

myelofibrosis [98, 99]. However, observational cohort 

studies show its lack of effect in lung forced vital 

capacity, a key endpoint in IPF studies [100, 101]. 

 

Based on this tight connection between aging hallmarks 

and IPF, we argue that a sufficiently effective anti-aging 

therapy has a high probability of showing clinical 

efficacy in IPF treatment. Thus, companies specializing 

in aging-oriented drug development may have a 

strategic advantage in designing interventions that more 

directly address the biological underpinnings of aging in 

IPF (Table 1). Conversely, the mechanisms, targets, and 

molecules showing promise in IPF models are also 

likely to have beneficial activities in a wider aging 

context and conditions showing a similar hallmark 

signature (Figure 1). 
 

Commercial strategy for anti-IPF drug 

development 
 

In this work, we aim to provide evidence for differential 

alignment between ARDs and the fundamental 

hallmarks of aging and highlight the importance of the 

hallmark framework in clinical research. Our analysis 

demonstrates that certain ARDs more closely reflect the 

cellular aging processes, making them ideal candidates 

for testing geroprotective interventions. IPF emerges as 
an emblematic aging disease due to its strong 

representation across multiple aging hallmarks and 

promising findings in clinical programs. 

We argue that the etiology of IPF fundamentally mirrors 

that of aging itself, with multiple hallmarks interacting 

synergistically to drive disease progression. This claim is 

backed both by our computational approach and literature 

evidence of anti-aging interventions counteracting IPF 

[72, 74]. This close alignment makes IPF a perfect 

testbed for anti-aging therapeutics, as insights gained 

from treating it will undoubtedly inform our approach to 

aging and numerous downstream ARDs. 

 

A key implication of this work suggests that interventions 

potent enough to address core aging processes should 

demonstrate efficacy across multiple ARDs. We propose 

that pharmaceutical development should incorporate 

hallmark analysis when selecting indications, molecular 

targets, and compounds to maximize translational 

potential (Figure 3). This approach may significantly 

reduce development timelines and increase success rates. 

 

From a strategic perspective, developing an anti-aging 

therapy for IPF offers major opportunities for indication 

expansion. Compared to the currently dominant 

approach of single disease trials, targeting aging 

mechanisms may prove a strictly better strategy. The 

promising therapeutics explored in IPF (senolytic 

combinations, telomerase activators, and epigenetic 

modulators) represent approaches that may generalize 

across the spectrum of ARDs. Following a successful 

trial in IPF, such therapies could be extended to other 

fibrotic or aging-related conditions including liver 

cirrhosis, chronic kidney disease, atherosclerosis, and 

many others sharing the underlying aging mechanisms 

[24]. The unification of multiple ARDs under the 

umbrella of hallmark-driven diseases offers the 

convenience of more informed, and thus, more cost- and 

time-efficient drug development pipelines (Table 2). 

Recent analyses demonstrate that pharmaceutical 

development costs range from $172-515 million per 

drug when accounting for direct costs, rising to nearly 

$900 million when including capital costs and failures 

[102–104]. Notably, phase-3 trials, which constitute the 

largest portion of this expenditure at $100-300+ million 

per trial, could potentially be streamlined through 

targeting common aging mechanisms applicable across 

multiple diseases, rather than conducting separate trials 

for each age-related condition. But most importantly, 

the success in IPF could then accelerate the legislation 

of anti-aging trials and attract much needed investment 

to the field of biogerontology, thus transforming the 

whole landscape of aging research. 

 

To promote the shift toward hallmark-aware drug 

development, companies conducting clinical trials should 
incorporate ancillary analytics of aging biomarkers in 

their studies, as they may be overlooking broader anti-

aging effects of their therapies. For this purpose, aging 
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Table 1. Overview of emerging IPF therapeutic strategies that affect hallmarks of aging.  

Drug Mechanism of action (aging hallmark affected) Current status in trials 
Trials organized by 

(country) 

BI 765423 [66, 67] 
Anti-IL-11 antibody, reduces fibroblast activation 

(inflammaging) 
Phase-1 completed 

Boehringer Ingelheim 

(Germany) 

Rentosertib (ISM018_055)  

[33, 64, 83] 

TNIK inhibitor, modulates Wnt/β-catenin 

signaling, reducing fibroblast activation and 

epithelial senescence (nutrient sensing, ECM 

stiffness, genomic instability, stem cell 

exhaustion, altered intercellular communication, 

and cellular senescence) 

Phase-2a completed, 

leads to forced vital 

capacity increase, 

identified senomorphic 

properties 

Insilico Medicine (China, 

US, UAE) 

Dasatinib + Quercetin  

[75, 77] 
Senolytic combination (cellular senescence) 

Phase-1 pilot trial in IPF 

completed 

Wake Forest School of 

Medicine (US) 

BCL-inhibitors [78] 
Apoptosis induction in senescent cells and 

activated fibroblasts (cellular senescence) 
Preclinical IPF models 

Unity Biotechnology 

(US) 

Danazol [98, 100, 101] 
Synthetic androgen that upregulates TERT 

(telomere attrition) 
Phase-2 ongoing 

University of Queensland 

(Australia) 

Telomerase Gene Therapy 

(AAV-TERT) [97] 

Gene therapy delivering TERT via AAV to lung 

cells (telomere attrition) 

Promising result in 

murine models 

Telomere Therapeutics 

(Spain) 

Ziritaxestat (GLPG1690) 

[87, 88] 
Autotaxin pathway inhibition (unknown) Phase-3 discontinued 

Galapagos NV, Gilead 

Sciences (Belgium, US) 

Cycloastragenol (GRN510, 

TA-65) [90, 92] 

TERT activator extracted from Astragalus 

(primarily telomere attrition) 
Pilot trials in humans 

Telomerase Activation 

Sciences (US) 

Resveratrol, calorie 

restriction… [57] 

Sirtuin activation, HDAC inhibition (epigenetic 

modulation, nutrient sensing) 

Hypothesis formation 

stage 
- 

Hallmarks of aging play a major role in the onset and development of IPF, making hallmark-focused drug development a 
promising strategy. As these drug candidates move along the clinical pipeline, their potential as geroprotectors also increases 
due to the similarities IPF and the general aging process share. 

 

 
 

Figure 3. Conceptual framework for aging alignment in disease models and therapeutic development. This schematic illustrates 

the spectrum of aging-related diseases (ARDs) based on their mechanistic overlap with fundamental aging processes. Based on our 
assessment, idiopathic pulmonary fibrosis (IPF) demonstrates the strongest aging alignment. This framework supports a bidirectional 
approach to therapeutic development: insights from aging biology inform disease-specific interventions, while clinical efficacy in high-
alignment conditions like IPF provides validation feedback for potential geroprotective strategies. The therapeutic strategies shown 
(senolytics, telomere activation, TNIK inhibitors, epigenetic modulation, and metabolic regulation) represent promising approaches that may 
translate across multiple ARDs based on their promising results in IPF models and human patients. 
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Table 2. Estimated drug development timeline and costs for IPF. 

Stage Duration (Years) Estimated cost (USD) Notes 

Target Discovery 

and Validation 

Traditional: 1–3 years; 

AI-driven: <1 year 
~$1–10 million AI can compress this phase 

Hit Discovery and 

Lead Optimization 

Traditional: 2–4 years; 

AI-driven: 1–2 years 

~$10–50 million (small 

molecules); up to ~$100 

million with full preclinical 

work 

AI generative design accelerated discovery to 

candidate in ~18 months 

Preclinical 

Development 
1–2 years ~$5–15 million 

Includes Investigational New Drug enabling 

studies (Safety and Toxicity; 

Pharmacokinetics; Chemistry, manufacturing, 

and controls) 

Phase I Clinical 

(Safety) 
~1 year ~$5–10 million 

Typically involves 50–100 subjects; IPF 

studies may use healthy volunteers or patients 

Phase II Clinical 

(Efficacy) 
~1–2 years ~$20–50 million 

100–200 IPF patients; shorter duration than 

chronic diseases due to rapid progression 

Phase III Clinical 

(Pivotal) 

2–3 years (often 1-

year treatment per 

trial) 

~$100–300+ million (per 

trial) 

Larger global trials with 500–800 patients; 

orphan status may reduce numbers but not 

costs 

Regulatory Review 

and Approval 
0.5–1.5 years ~$2–5 million 

Orphan drug fees may be waived; accelerated 

review is possible 

Post-market 

Surveillance 
Ongoing Variable ($10–50+ million) Part of life-cycle management 

The table summarizes the typical duration, estimated costs, and key considerations across the drug development pipeline for 
IPF therapies. Cost estimates are derived from [102–104] and adjusted to reflect the orphan status of IPF. AI-driven 
approaches can significantly compress early development phases compared to traditional methods. The high costs of later-
stage clinical trials highlight the potential efficiency gains of targeting common aging mechanisms shared by multiple ARDs 
rather than conducting separate development programs for each indication. 

 

clocks serve as a perfect tool thanks to a wide range of 

supported data types, interpretability, a long validation 

record, and permissive licenses [105–109]. 

 

In conclusion, our hallmark-based analysis and literature 

review provide a framework for identifying optimal 

disease models for geroprotector discovery. IPF offers a 

gateway to broader therapeutic applications across 

multiple ARDs, supporting the view that targeting aging 

itself represents an efficient drug design strategy. 

 

METHODS 
 

Our study utilized a custom approach to analyze and 

compare ARDs by integrating data from multiple 

sources (see Figure 4). Disease-associated target genes 

 

 
 

Figure 4. A brief overview of the scoring methodology used to measure a disease's alignment with the general aging process. 
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were acquired through the Open Targets Platform 

[110], which aggregates evidence of target-disease 

associations from scientific literature. Only high-

evidence (target score>0.4) genes were considered in 

the enrichment analysis. Out of the genes passing the 

threshold, we randomly selected 50 out of top-60 to 

calculate the partial hallmark scores and the total 

scores. This procedure was repeated 250 times for 

each disease to get 95% confidence intervals of the 

scores and to derive statistical significance of non-zero 

hallmark scores. The distributions of partial hallmark 

and total scores are available in Supplementary 

Material 1. For partial scores on Figure 1, q-values 

were calculated with Benjamin-Hochberg correction to 

test the alternative hypothesis that the true hallmark 

score is greater than zero. All scores presented in the 

figures are normalized relative to the maximal score 

achieved in sampling. 

 

For pathway enrichment analysis, we employed the 

GO:BP ontology accessed via Enrichr [111]. Each 

pathway in the GO:BP was annotated as belonging  

to one or more aging hallmarks. Pathway hallmark 

assignment was carried out by AI agents enabled with 

access to GPT-4 and tools providing access to GO:BP 

and NCBI to increase annotation relevance. 

 

The list of hallmarks to map the diseases to is  

obtained from [7], except dysbiosis due to its 

dependence on non-human targets. We then defined a 

metric of a disease’s alignment with each of the eleven 

selected hallmarks based on its targets’ enriched 

pathways. 

 

Pathway scores Ph,d were derived from pathway 

enrichment analysis (as implemented in Enrichr), with 

all significantly enriched pathways (p-value<0.001) 

contributing to the corresponding hallmark partial score. 

For a set of enriched pathways Ed, the pathway score 

was calculated as: 

 

( )
,

, 10

2 ,

[ log ( - )]

log 1
1

4



= − 

 +
  +
 
 


h d

h d h

p R

h d

P p value N

R  

 
where Rh,d is the subset of pathways in Ed relevant to 

hallmark h, p-value is the enrichment p-value of 

pathway p, and Nh is a normalization factor accounting 

for the uneven distribution of pathways across different 

hallmarks.  

 

In the current version the weights are selected 

arbitrarily, with a lower weight assigned to the gene list 

component due to lower annotation density in the used 

gene lists. 

 

Finally, the overall aging score Ad for disease d was 

calculated as: 

 

,



= d h d f

h H

A P D  

 

where H is the set of all hallmarks and Df is a diversity 

factor that rewards diseases with multiple hallmark 

associations rather than a single dominant one: 

 

(1 )=  +nz

f n

t

N
D E

N
 

 

with Nnz being the number of non-zero hallmark scores, 

Nt the total number of hallmarks (11), and En the 

normalized entropy of the hallmark score distribution. 

 

The final metric Ad accounts for both the magnitude and 

distribution of partial hallmark scores Th,d, thus 

providing a quantitative basis for identifying the 

similarities in the aging-related mechanisms underlying 

different diseases. 

 
The code for this disease scoring method is written in 

Python 3.11 and is available on Github with 

demonstration materials: https://github.com/Insilico-

org/disease_hallmarks 

 
The proposed methodology is intended as an illustration 

of the proposed hallmark decomposition approach to 

geroprotector and drug discovery. In the current form 

it holds several limitations that need to be elaborated 

on in later iterations. The scoring depends on the 

available information about target proteins and thus 

may undervalue the importance of understudied 

hallmarks. Similarly, gene annotation density and the 

sources of these annotations may bring in certain 

biases. 
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Supplementary Material 1. Visualizations of partial hallmark and total aging score distributions for the 13 aging-
related diseases obtained in sampling. 
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