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ABSTRACT

While aging-related diseases are often used as proxies for the general aging process in research, they largely
differ in terms of how integral their development is to organismal aging. Hallmarks of aging offer a convenient
conceptual framework to assess the relevance of a disease to the anti-aging narrative. In this review, we
propose hallmark decomposition as a method of measuring the potential of a therapy to translate from a
disease-specific treatment to a general geroprotector. To help other researchers adopt and improve this
methodology, we are releasing a disease scoring system and report the hallmark alignment of 13 aging-related
diseases, among which IPF is the disease most aligned with aging.

The hallmarks of aging: a framework for (compensatory), and integrative processes immediately
understanding disease linked to the aging phenotype. The critics of the aging
hallmarks concept indicate, however, that the aging-
Hallmarks of aging as a concept represent the failure cancer analogy is not complete and some key
of the biologists’ earlier attempts to define a singular distinctions are often overlooked [6]. In particular,
driver of aging. Mechanistic theories explaining genomic instability is the primary cause of all tumors
aging as an evolutionary program or a mitochondrial while its aging analog, cellular damage, is a term that
dysfunction, or any other key source of degeneration is much more open to interpretation and debate [6].
could not explain the aging phenotype in its Another point of criticism is what constitutes a
completeness [1-3]. Hence an alternative was proposed hallmark and how many of them there are. While the
in defining aging as a combination of these various original 2013 publication defined nine processes, the
mechanisms chipping away at an organism as the most recent review of the framework features 12 of
“hallmarks of aging” [4]. them [7-9]. The partition between primary and
secondary aging hallmarks is not as clear as in cancer
A slightly predating concept of the “hallmarks of and the boundary between two hallmarks is often
cancer” suggested that the development of malignant diffused, as is the case with inflammation which can
tumors rests on a set of primary enabling processes, hardly be isolated from other hallmarks [10].
such as somatic mutations, which eventually give way
to emergent, secondary processes that result in the Despite their theoretical drawbacks, the hallmarks of
malignancy’s growth [5]. Similarly, the hallmarks of aging have been widely adopted both in academia and
aging are understood as a triad of primary, antagonistic the biotechnology industry as a framework for their
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practical utility. They offer a language to describe the
proxies of aging used in research. As pointed out by the
late Leonard Hayflick, the undefined terminology is the
bane of biogerontology leading to ‘“communication
failures, erroneous interpretations, and misdirected
decisions” [11, 12]. The hallmarks framework allows
the anti-aging efforts to be more specific in what type of
aging is accelerated or prevented, and thus, provides a
more reliable way to find the applications for the
observed anti-aging effects.

The hallmarks also give us an opportunity to explore
the bidirectional and complex connection between
aging and its manifestations in diseases. While aging
reduces the overall resilience of an organism, certain
pathologies exhibit particularly strong associations with
specific aging hallmarks, making them valuable models
for investigating geroprotective strategies.

This perspective explores how aging-related diseases
(ARDs) can serve as experimental platforms for
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discovering new geroprotective interventions. We place
special emphasis on idiopathic pulmonary fibrosis
(IPF) as an emblematic ARD based on extensive
literature evidence, findings in preclinical and clinical
studies, and a hallmark deconvolution scoring
(Figure 1).

The scoring is based on the hallmark-associated pathway
enrichment in the published targets associated with a
disease (see Methods). We propose to extend the concept
of the hallmarks of aging by making it more practically
inclined and relevant to anti-aging therapeutics. By
deconvoluting the conditions as a sum of aging-related
processes, we suggest a measure of biogerontological
relevance that may be applied to clinical trials and case-
control studies. Furthermore, this measure can make
biogerontology more “empirically progressive” by
serving as a criterion for a therapy’s geroprotector
potential [13]. If the effectiveness of a target, mechanism
of action, or compound increases proportionally with
how relevant a particular setting is to biological aging,
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Figure 1. Heatmap representation of hallmark scores across 13 aging-related diseases (ARDs). Higher numbers mean higher
abundance of hallmark-specific genes among an ARD's targets. Among the scored diseases, type-2 diabetes and idiopathic pulmonary fibrosis
demonstrate the strongest representation across multiple hallmarks, particularly in deregulated nutrient sensing. This analysis reveals
distinct patterns of hallmark involvement across different ARDs, with some hallmarks (mitochondrial dysfunction, chronic inflammation)
broadly represented across multiple conditions, while others (e.g. disabled macroautophagy) show more selective disease associations. NS:
Not Significant at g-value<0.001 after Benjamin-Hochberg correction; mean enrichment scores calculated based on 250 samples of target

genes for each disease; the plot is produced in Plotly 5.23 for Python 3.11.
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then this entity is more likely to also have positive effects
on aging itself, rather than only the indicated disease. In
other words, we suggest that clinical efficacy against
ARDs should be considered a necessary criterion for
validating putative geroprotectors, with IPF representing
a particularly informative testbed due to its strong
association with multiple aging hallmarks.

Mechanistic clustering of ARDs

The hallmarks framework is commonly used to assess
the relevance of a model, a disease, intervention, or a
phenotype to the aging process [14—16]. Pathologies
whose etiology is linked to the hallmark molecular
mechanisms are described as aging-related. Such
diseases are typically non-communicable, characterized
by chronic development, may manifest after a long
asymptomatic period, and often involve progressive
functional decline. Some researchers propose a more
precise definition of an ARD based on epidemiologic
data indicating a higher incidence in older age groups
[17]. But for research purposes, the aging-related status
is most commonly established from a mechanistic
perspective.

Despite the fuzzy definition, some ARDs may be
clustered together based on which hallmarks play the
key role in their development [18]. One such cluster are
inflammatory aging diseases, which include rheumatoid
arthritis, chronic kidney disease, diabetes, inflammatory
bowel disease, and others [19]. These diseases are
characterized by a chronic low-grade inflammation,
immune cell senescence, and dysregulation of innate and
adaptive immune responses. This array of phenomena,
also called “inflammaging”, manifests as elevated levels
of pro-inflammatory cytokines such as IL-1f, IL-6, and
TNF-o, which create a tissue environment conducive to
disease progression [20]. The relationship between
inflammation and aging is complex and bidirectional.
While inflammatory processes contribute to tissue
damage, they may also represent adaptive responses to
accumulating stressors. This duality is exemplified by
centenarians, who paradoxically exhibit elevated levels
of pro-inflammatory cytokines alongside enhanced anti-
inflammatory mechanisms that maintain homeostasis
[21, 22]. The case of IL-6 illustrates this complexity:
while its inhibition shows therapeutic potential in
conditions like rtheumatoid arthritis and potentially IPF,
1L-6 also plays essential roles in tissue regeneration and
metabolism [23].

Another ARD cluster defined based on its driver
hallmark are metabolic diseases, which include non-
alcoholic fatty liver diseases (NAFLD), metabolic
syndrome, atherosclerosis, and diabetes [24, 25].
Deregulated nutrient sensing, particularly insulin

resistance, serves as a central pathogenic mechanism in
all these conditions [26]. This deregulation is closely
linked to other hallmarks, such as mitochondrial

dysfunction, inflammation, and the accumulation
of senescent cells, which collectively exacerbate
metabolic dysfunction [27-29]. These interacting

hallmarks create a complex pathogenic network that
becomes increasingly difficult to disrupt with age.

Anatomical clustering and limitations

While clustering ARDs by predominant hallmarks
provides valuable mechanistic insights, the complex
interplay between these hallmarks reveals the
limitations of such classification. The hallmarks of
aging rarely operate in isolation, blurring the boundaries
between the clusters. An alternative approach to ARD
classification focuses on the primarily affected organ
systems, rather than the underlying mechanisms. This
anatomical perspective yields clusters such as neuro-
degenerative diseases, which encompass conditions like
Alzheimer's disease, Parkinson's disease, and
amyotrophic lateral sclerosis. While these diseases share
the common feature of progressive nervous system
deterioration, they emerge from diverse combinations of
aging hallmarks.

Neurodegenerative diseases exemplify how multiple
aging hallmarks converge to drive pathogenesis. In
Alzheimer's disease, proteostasis failure manifests as -
amyloid plaques and tau neurofibrillary tangles, while
altered intercellular communication disrupts synaptic
function [30]. Mitochondrial dysfunction contributes
through reduced ATP production and elevated reactive
oxygen species in cortical neurons [31]. Cellular
senescence further exacerbates these pathologies, with
senescent astrocytes and microglia releasing pro-
inflammatory factors that accelerate neurodegeneration
[32]. The interplay between these hallmarks creates a
vicious cycle of neuronal damage that ultimately leads
to cognitive decline.

These classification approaches provide useful
frameworks but remain inherently subjective. The
complex molecular networks underlying ARDs resist
simplistic categorization, with most diseases involving
multiple hallmarks across various tissues. This
complexity highlights the need for quantitative methods
to assess the relationship between specific diseases and
aging biology. We propose conceptualizing ARDs along
a spectrum based on their alignment with aging biology.
At one end are conditions only tangentially related to
aging, where age serves primarily as a risk factor rather
than a central pathogenic mechanism. At the other end
are diseases so inextricably linked to aging processes
that they essentially represent accelerated or localized
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manifestations of aging itself. In the following section,
we demonstrate a way to construct such a spectrum to
identify the diseases that would serve as optimal testbeds
for geroprotective interventions.

Aging alignment in pathologies

We propose organizing ARDs based on how aligned
they are with the wider aging process based on their
clinically relevant target genes. We have chosen to
annotate 13 ARDs discussed in detail in [33] to identify
the disease that is the most similar to the aging process.
To achieve this, we scored each disease based on the
participation of disease targets in hallmark-associated
pathways. The score was calculated based on the results
from enrichment analysis of the targets with a hallmark-
annotated version of Gene Ontology Biological
Processes (GO:BP) ontology with an adjustment
rewarding hallmark diversity (see Methods). This
method allowed us to identify the diseases whose
patients were most likely to benefit from geroprotector
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discovery efforts, and conversely, which indications
would make a better testbed for anti-aging research.

From a wider perspective, our scoring reveals distinct
hallmark co-occurrence patterns across ARDs, suggesting
that these aging mechanisms are fundamentally
interconnected with multiple pathological manifestations
(Figure 1). For instance, deregulated nutrient sensing
emerges as the most broadly represented hallmark, with
high scores spanning from metabolic diseases like type 2
diabetes (49.3 out of 100) to fibrotic conditions like IPF
(31.2) and inflammatory disorders like osteoarthritis
(21.9). Such cross-disease hallmark sharing suggests that
therapies addressing metabolic dysfunction could benefit
diverse ARDs beyond their primary indication.

This multi-hallmark principle is exemplified by the
highest-scoring ARDs, which include type 2 diabetes,
IPF, Parkinson's disease, and rheumatoid arthritis (all
>60 out of 100; Figure 2). These diseases demonstrate
substantial involvement across multiple hallmarks
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Figure 2. Quantitative comparison of aging alighment scores across 13 aging-related diseases. The total score represents the
similarity of a pathology to the general aging process, calculated as a weighted sum of partial hallmark scores (see Methods). Type-2
diabetes, idiopathic pulmonary fibrosis, Parkinson’s diseases, and rheumatoid arthritis demonstrate substantially higher alignment with aging
processes compared to other conditions. This analysis supports the hypothesis that IPF is an optimal testbed for geroprotective interventions
due to its strong mechanistic overlap with fundamental aging processes. Bar height represents the mean sampling score, whiskers display the
standard deviation, based on the sampling procedure described in Methods; the plot is produced in Plotly 5.23 for Python 3.11.
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simultaneously:  primarily, deregulated nutrient
sensing, altered intercellular communication, chronic
inflammation, cellular senescence. Consequently,
preclinical interventions addressing such prevalent
hallmarks may achieve superior therapeutic outcomes
across all high-scoring ARDs, making them equally
valuable testbeds for geroprotector discovery. Among
other indications, IPF stands out within due to its rapid
progression and well-defined clinical endpoints,
offering practical advantages for testing anti-aging
interventions.

The scoring also reveals therapeutically underexplored
areas that represent a double-edged strategic
opportunity. While hallmarks like deregulated nutrient
sensing and mitochondrial dysfunction show broad
disease representation with numerous known targets,
others such as telomere attrition and disabled macro-
autophagy, exhibit more sparse associations. This
pattern likely reflects differential target discovery
investment rather than biological irrelevance, as

telomere attrition remains a well-documented
contributor to multiple ARDs [34]. For sparse
hallmarks, fewer known targets imply higher

discovery risk, but also lower competition and
potentially greater impact for successful interventions.
The comparison of hallmarks' contribution across the
ARD spectrum may help drug developers strategically
choose between targeting crowded, well-validated
pathways or exploiting underexplored therapeutic
niches [35].

While some authors express skepticism about the
value of hallmarks in drug discovery, highlighting
issues such as conflating biomarkers and drivers
of aging or individual hallmarks' fuzzy definition
[6, 36, 37], the framework has generated a fruitful
research program that now warrants empirical
validation through intensive clinical testing [38]. To
further this point, some broad anti-aging strategies,
such as senolytics, have been shown to lead to improve
the outcomes in Alzheimer’s disease, ischemic injury,
diabetes and other indications [39-43]. Such evidence
validates the translational potential of hallmark-first
drug development.

We argue that aging biology should be considered
early in the drug design process, rather than addressed
only later through repurposing efforts. The
deconvolution of disease-hallmark interactions
proposes a more flexible and robust alternative to the
disease-centric mode of drug development. The
specific approach presented here should be treated as
one of many possible options for disease-hallmark
annotation, with future improvements possible through
additional data sources and methodological refinements.

Idiopathic pulmonary fibrosis: the archetypal
aging disease

Despite its potential improvements, the presented metric
of an ARD’s alignment with the general aging process
can be used to extract useful insights for anti-aging
therapeutics. More specifically, our method has
identified IPF as one of the top-scoring ARDs, which is
backed by the latest literature describing IPF as an
exemplary convergence of aging biology and clinical
disease [44].

IPF is a chronic, progressive interstitial lung disease
characterized by relentless scarring of lung tissue,
declining pulmonary function, and a life expectancy of 3-
4 years post-diagnosis [45, 46]. While normal aging is
associated with a decline of 13-34 mL/year in the lung’s
forced vital capacity of older adults, in untreated IPF
patients the rate of decline reaches 130-210 mL/year [47,
48]. The existing therapies for IPF are designed to grant
the patients enough time to obtain a lung transplant, the
only treatment that meaningfully extends their lifespan to
6 years post-operation [49, 50]. The severity and the
progression rate of this disease make the lack of
restorative treatments a particularly pressing issue.

The incidence of IPF rises sharply with age, satisfying
the epidemiological definition for ARDs [51]. In
addition, IPF is driven by practically all hallmarks of
aging jointly contributing to its debilitating effects on
the patient [44]. This intersection of clinical urgency
and high aging alignment makes IPF a uniquely
attractive platform for testing anti-aging interventions.

The rich hallmark interaction network sustaining IPF
progression presents multiple attack vectors for an
aging-focused therapy. High genomic instability in
alveolar epithelial cells and fibroblasts is a major
contributor to IPF progression, as shown in a recent
work on the somatic mutation load in IPF patients
[52, 53]. Other studies show that 10-20% of familial IPF
patients carry mutations in telomerase maintenance
genes (TERT, TERC, RTELI), as well as other hazardous
variants in oncogenes (TP53), cytokine (TGF-f, IL-8),
and matrix remodeling (MMPI) genes [54, 55]. The
correlation seen in the mutation landscapes of IPF and
lung cancer has led some authors to hypothesize that
lung cancer and IPF have a shared etiology [54]. In this
context, it is not surprising to see that nintedanib, a drug
approved for IPF treatment in 2014, was originally
discovered as a solid tumor treatment [56].

Other instances of hallmark-aligned pathogenic
processes in IPF include aberrant epigenetic regulation
by histone deacetylases (HDACs), including sirtuins,
that is suspected to contribute to such IPF milestones as
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epithelial cell death and mesenchymal transition,
fibroblast persistence, ECM deposition, and others [57].
Moreover, lung samples from IPF patients showed
higher biological age compared to healthy controls using
four different DNA methylation clocks [58]. Some teams
argue that HDAC-inhibitors used in oncology may be
repurposed to treat IPF [59]. Additionally, some
selective sirtuin activators discussed in longevity
research, such as resveratrol and calorie restriction, may
be able to normalize epigenetic regulation in IPF
[57, 60]. The clinical potential of calorie restriction in
IPF treatment is particularly intriguing due to its status
as a highly validated life extension method [61]. In this
light, the shortage of nutritional studies in IPF patients is
a major setback for both clinical and anti-aging research
[62]. For an in-depth review of other hallmarks
manifesting in IPF, we encourage the reader to read the
recent in-depth review [44].

Anti-aging IPF therapeutics

Anti-IPF  drug development has become a highly
competitive field with over 100 phase-2 and -3 trials
registered over the last 10 years [63]. With this many
clinical programs nearing their resolution, the approval
criteria for new drugs are bound to become stricter.
Novel treatments would be required to hold advantage
over existing standard-of-care options, which implies a
shift from drugs stalling IPF progression to restorative
therapies. This impeding shift stimulates the adoption of
new methodologies and discovery processes, including
Al-assisted approaches [64]. The pressure to innovate has
already led multiple research teams and pharmaceutical
companies to base their drug design strategy on the
concept of aging hallmarks (Table 1) [65].

Some insights from aging research are already
translating into drug development, with several
therapeutic strategies targeting IPF while concurrently
modulating fundamental aging mechanisms. BI-765423
is an anti-IL-11 antibody undergoing a phase-1 trial
(NCT05658107) [66, 67]. This treatment targets an
important participant of the inflammaging process,
whose inhibition has been shown to extend murine
lifespan, counteract senescent transformation in human
cells, and reduce fibroblast activation [68, 69].

Targeting senescence has proven to be a powerful
strategy to integrate anti-aging and anti-IPF treatments
[70]. According to some authors, primary lung
epithelium senescence caused by prolonged cell damage
is the root cause responsible for the onset of IPF [71]. As
they elaborate further, the chemokines secreted by the
senescent epithelium promote secondary senescence in
fibroblasts and myofibroblasts, whose secretome, rich in
MMPI12, IL-6, TGF-p, actively promotes inflammation

and ECM remodeling [72, 73]. The driving role of
senescence in IPF pathogenesis has led to multiple in
vitro, in vivo, and even human pilot experiments
featuring senolytics [74, 75]. The dasatinib+quercitin
intermittent combination is particularly promising due to
three factors: the molecular target similarity to an
approved drug (nintedanib), lack of severe side effects,
and the promising results in the models of other ARDs
[76, 77].

In preclinical mouse models, the ABT-263 (navitoclax)
senolytic inhibits antiapoptotic BCL-2, selectively
inducing apoptosis in profibrotic fibroblasts and reducing
lung collagen deposition [78]. Unity Biotechnology, in
collaboration with the Buck Institute for Research on
Aging, has patented a series of inhibitors of the BCL
protein family, which show promise in treating IPF by
selectively targeting and eliminating senescent cells in
lung tissue, as supported by preclinical screening
data [79]. Although the IPF patent has been abandoned,
Unity Biotechnology continues exploring senolytics’
applications in other fibrotic diseases [80].

Another powerful strategy to combat both aging and
IPF could be preventing senescent cell formation rather
than destroying them with senolytics. A novel phase-2
(NCT05975983) IPF drug candidate, rentosertib, shows
a reduction of senescent cell formation in a replicative
senescence model, which could contribute to its clinical
efficacy [81-83]. Rentosertib’s anti-aging properties
have additionally been validated by a reduction in pro-
inflammatory and pro-fibrotic markers, as detected by
transcriptomic and proteomic screenings [83]. The case
of rentosertib is particularly interesting since it is a
potential restorative drug, leading to a slight increase in
lung volume (+98 ml) over a 12-week period [64]. The
successful application of biomedical Al in its
development has enabled the identification of a
previously overlooked IPF target, TNIK, thus opening a
new direction for both anti-aging and anti-IPF
interventions. Similarly, the geroprotector profile of
SM04646, a Wnt inhibitor that has passed phase-1
trials, needs to be established [84, 85].

TNIK’s role in aging is yet to be fully uncovered but
rentosertib’s example provides a valuable lesson for
other emerging IPF research directions. The autotaxin
pathway has recently been identified as a druggable
IPF target, yet its involvement in aging or any
geroprotective properties remain critically understudied
[86]. Ziritaxestat (GLPG1690) is a novel autotaxin-
targeting IPF drug candidate whose phase-3 trials were
discontinued [87, 88]. This setback, however, does not
mark the target as hopeless and other compounds
affecting the pathway need to be explored as anti-IPF
and anti-aging interventions.
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Telomere attrition is another increasingly popular aging
hallmark in IPF therapeutics. One of the Yamanaka
factors used to rejuvenate cells, KLF4, has been shown
to be a potential new IPF target thanks to its ability to
restore TERT activity and prevent telomere attrition in
lung epithelium [89]. In the same line, a telomerase
activator extracted from the Astragalus herb,
cycloastragenol (GRN510, TA-65), has been shown to
suppress IPF-related damage in murine models [90, 91].
Cycloastragenol has also been shown to lengthen
telomeres in humans, as well as counteract immuno-
senescence, inflammaging, lipid metabolism, and
oxidative stress [92-94]. The rich set of hallmarks this
compound interacts with implies its high potential to
treat multiple ARDs. This hypothesis is confirmed by
the motor function improvements it causes in a
Parkinson’s diseases murine model [95].

As an alternative approach to restore telomerase
activity, gene therapies are being tested in murine
models with promising results [96]. For example,
AAV9-mediated Tert gene therapy has improved lung
function, reduced fibrosis, and alleviated inflammation
in a bleomycin-induced fibrosis model [97]. In humans,
danazol also represents the benefits of telomere
elongation for IPF and some other ARDs, such as
myelofibrosis [98, 99]. However, observational cohort
studies show its lack of effect in lung forced vital
capacity, a key endpoint in IPF studies [100, 101].

Based on this tight connection between aging hallmarks
and IPF, we argue that a sufficiently effective anti-aging
therapy has a high probability of showing clinical
efficacy in IPF treatment. Thus, companies specializing
in aging-oriented drug development may have a
strategic advantage in designing interventions that more
directly address the biological underpinnings of aging in
IPF (Table 1). Conversely, the mechanisms, targets, and
molecules showing promise in IPF models are also
likely to have beneficial activities in a wider aging
context and conditions showing a similar hallmark
signature (Figure 1).

Commercial strategy for anti-IPF drug
development

In this work, we aim to provide evidence for differential
alignment between ARDs and the fundamental
hallmarks of aging and highlight the importance of the
hallmark framework in clinical research. Our analysis
demonstrates that certain ARDs more closely reflect the
cellular aging processes, making them ideal candidates
for testing geroprotective interventions. IPF emerges as
an emblematic aging disease due to its strong
representation across multiple aging hallmarks and
promising findings in clinical programs.

We argue that the etiology of IPF fundamentally mirrors
that of aging itself, with multiple hallmarks interacting
synergistically to drive disease progression. This claim is
backed both by our computational approach and literature
evidence of anti-aging interventions counteracting IPF
[72, 74]. This close alignment makes IPF a perfect
testbed for anti-aging therapeutics, as insights gained
from treating it will undoubtedly inform our approach to
aging and numerous downstream ARDs.

A key implication of this work suggests that interventions
potent enough to address core aging processes should
demonstrate efficacy across multiple ARDs. We propose
that pharmaceutical development should incorporate
hallmark analysis when selecting indications, molecular
targets, and compounds to maximize translational
potential (Figure 3). This approach may significantly
reduce development timelines and increase success rates.

From a strategic perspective, developing an anti-aging
therapy for IPF offers major opportunities for indication
expansion. Compared to the currently dominant
approach of single disease trials, targeting aging
mechanisms may prove a strictly better strategy. The
promising therapeutics explored in IPF (senolytic
combinations, telomerase activators, and epigenetic
modulators) represent approaches that may generalize
across the spectrum of ARDs. Following a successful
trial in IPF, such therapies could be extended to other
fibrotic or aging-related conditions including liver
cirrhosis, chronic kidney disease, atherosclerosis, and
many others sharing the underlying aging mechanisms
[24]. The unification of multiple ARDs under the
umbrella of hallmark-driven diseases offers the
convenience of more informed, and thus, more cost- and
time-efficient drug development pipelines (Table 2).
Recent analyses demonstrate that pharmaceutical
development costs range from $172-515 million per
drug when accounting for direct costs, rising to nearly
$900 million when including capital costs and failures
[102—104]. Notably, phase-3 trials, which constitute the
largest portion of this expenditure at $100-300+ million
per trial, could potentially be streamlined through
targeting common aging mechanisms applicable across
multiple diseases, rather than conducting separate trials
for each age-related condition. But most importantly,
the success in IPF could then accelerate the legislation
of anti-aging trials and attract much needed investment
to the field of biogerontology, thus transforming the
whole landscape of aging research.

To promote the shift toward hallmark-aware drug
development, companies conducting clinical trials should
incorporate ancillary analytics of aging biomarkers in
their studies, as they may be overlooking broader anti-
aging effects of their therapies. For this purpose, aging
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Table 1. Overview of emerging IPF therapeutic strategies that affect hallmarks of aging.

Trials organized by

Drug Mechanism of action (aging hallmark affected) = Current status in trials (country)
BI 765423 [66, 67] Anti-IL-11 antlbody, reduces. fibroblast activation Phase-1 completed Boehringer Ingelheim
(inflammaging) (Germany)

Rentosertib (ISM018_055)

TNIK inhibitor, modulates Wnt/B-catenin
signaling, reducing fibroblast activation and
epithelial senescence (nutrient sensing, ECM

Phase-2a completed,
leads to forced vital
capacity increase,

Insilico Medicine (China,

[33, 64, 83] stiffness, genomic instability, stem cell . - . US, UAE)
. . S identified senomorphic
exhaustion, altered intercellular communication, .
properties
and cellular senescence)
Dasatinib + Quercetin Senolytic combination (cellular senescence) Phase-1 pilot trial in [PF Wake Forest School of
[75,77] enolytic co on {cetluiar senescence completed Medicine (US)
. Apoptosis induction in senescent cells and - Unity Biotechnology

BCL-inhibitors [78] activated fibroblasts (cellular senescence) Preclinical IPF models (Us)

Synthetic androgen that upregulates TERT . University of Queensland
Danazol [98, 100, 101] (telomere attrition) Phase-2 ongoing (Australia)
Telomerase Gene Therapy Gene therapy delivering TERT via AAV to lung Promising result in Telomere Therapeutics
(AAV-TERT) [97] cells (telomere attrition) murine models (Spain)
Ziritaxestat (GLPG1690) . . . . Galapagos NV, Gilead
87, 88] Autotaxin pathway inhibition (unknown) Phase-3 discontinued Sciences (Belgium, US)
Cycloastragenol (GRN510, TERT activator extracted from Astragalus Pilot trials in humans Telomerase Activation
TA-65) [90, 92] (primarily telomere attrition) Sciences (US)

Resveratrol, calorie
restriction... [57]

Sirtuin activation, HDAC inhibition (epigenetic
modulation, nutrient sensing)

Hypothesis formation
stage

Hallmarks of aging play a major role in the onset and development of IPF, making hallmark-focused drug development a
promising strategy. As these drug candidates move along the clinical pipeline, their potential as geroprotectors also increases
due to the similarities IPF and the general aging process share.

Aging Alignment Spectrum

Non-aging
Damage

Organismal
Aging
Other

Diseases

Idiopathic
Pulmonary
Fibrosis

A

Parkinson'’s
Disease

N

Rheumatoid
Arthritis

ﬁ

Primary
Myelofibrosis

|
B

U

Validation Feedback O O O

Therapeutic Strategies

- Senolytics - TNIK inhibitors - Metabolic
- Telomere - Epigentic regulation
activation modulation

Figure 3. Conceptual framework for aging alignment in disease models and therapeutic development. This schematic illustrates
the spectrum of aging-related diseases (ARDs) based on their mechanistic overlap with fundamental aging processes. Based on our
assessment, idiopathic pulmonary fibrosis (IPF) demonstrates the strongest aging alignment. This framework supports a bidirectional
approach to therapeutic development: insights from aging biology inform disease-specific interventions, while clinical efficacy in high-
alignment conditions like IPF provides validation feedback for potential geroprotective strategies. The therapeutic strategies shown
(senolytics, telomere activation, TNIK inhibitors, epigenetic modulation, and metabolic regulation) represent promising approaches that may
translate across multiple ARDs based on their promising results in IPF models and human patients.
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Table 2. Estimated drug development timeline and costs for IPF.

Stage Duration (Years) Estimated cost (USD) Notes

Target Discovery Traditional: 1-3 years; - .

and Validation Al-driven: <1 year $1-10 million Al can compress this phase
~$10-50 million (small

Hit Discovery and  Traditional: 2—4 years; molecules); up to ~$100 Al generative design accelerated discovery to

Lead Optimization

Preclinical

Al-driven: 1-2 years

million with full preclinical

work

~$5—15 million

candidate in ~18 months

Includes Investigational New Drug enabling
studies (Safety and Toxicity;
Pharmacokinetics; Chemistry, manufacturing,

Development 2 years

Phase I Clinical ~1 vear

(Safety) g

Phase II Clinical ~1-2 vears

(Efficacy) !

Phase Il Clinical 2> years (often 1-

(Pivotal) e

trial)

Regulatory Review

and Approval 03713 years

Post-market i
Ongoing

Surveillance

~$5—10 million
~$20-50 million

~$100-300+ million (per

~$2—5 million

Variable ($10-50+ million)

and controls)

Typically involves 50—100 subjects; IPF
studies may use healthy volunteers or patients
100-200 IPF patients; shorter duration than
chronic diseases due to rapid progression
Larger global trials with 500-800 patients;
orphan status may reduce numbers but not
costs
Orphan drug fees may be waived; accelerated
review is possible

Part of life-cycle management

The table summarizes the typical duration, estimated costs, and key considerations across the drug development pipeline for
IPF therapies. Cost estimates are derived from [102-104] and adjusted to reflect the orphan status of IPF. Al-driven
approaches can significantly compress early development phases compared to traditional methods. The high costs of later-
stage clinical trials highlight the potential efficiency gains of targeting common aging mechanisms shared by multiple ARDs
rather than conducting separate development programs for each indication.

clocks serve as a perfect tool thanks to a wide range of
supported data types, interpretability, a long validation
record, and permissive licenses [105—-109].

In conclusion, our hallmark-based analysis and literature
review provide a framework for identifying optimal
disease models for geroprotector discovery. IPF offers a
gateway to broader therapeutic applications across

multiple ARDs, supporting the view that targeting aging
itself represents an efficient drug design strategy.

METHODS

Our study utilized a custom approach to analyze and
compare ARDs by integrating data from multiple
sources (see Figure 4). Disease-associated target genes

1 A disease, decompo-
sed by 11 hallmarks

x11

Ve ™ [ Pathway Overlap

( Open Targets Score

( Hallmark Gene ol D Disease target

\_ Lists i V enrichment with
i hallmark terms

[ Gene Ontology | °

Partial Hallmark Score

A measure of a dis-
Z ease’s alignment with

the aging process

Figure 4. A brief overview of the scoring methodology used to measure a disease's alignment with the general aging process.
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were acquired through the Open Targets Platform
[110], which aggregates evidence of target-disease
associations from scientific literature. Only high-
evidence (target score>0.4) genes were considered in
the enrichment analysis. Out of the genes passing the
threshold, we randomly selected 50 out of top-60 to
calculate the partial hallmark scores and the total
scores. This procedure was repeated 250 times for
each disease to get 95% confidence intervals of the
scores and to derive statistical significance of non-zero
hallmark scores. The distributions of partial hallmark
and total scores are available in Supplementary
Material 1. For partial scores on Figure 1, q-values
were calculated with Benjamin-Hochberg correction to
test the alternative hypothesis that the true hallmark
score is greater than zero. All scores presented in the
figures are normalized relative to the maximal score
achieved in sampling.

For pathway enrichment analysis, we employed the
GO:BP ontology accessed via Enrichr [111]. Each
pathway in the GO:BP was annotated as belonging
to one or more aging hallmarks. Pathway hallmark
assignment was carried out by Al agents enabled with
access to GPT-4 and tools providing access to GO:BP
and NCBI to increase annotation relevance.

The list of hallmarks to map the diseases to is
obtained from [7], except dysbiosis due to its
dependence on non-human targets. We then defined a
metric of a disease’s alignment with each of the eleven
selected hallmarks based on its targets’ enriched
pathways.

Pathway scores Pjq were derived from pathway
enrichment analysis (as implemented in Enrichr), with
all significantly enriched pathways (p-value<0.001)
contributing to the corresponding hallmark partial score.
For a set of enriched pathways E4, the pathway score
was calculated as:

P, = Y. [~log,(p-value)]x N,

PERy 4

. log, (|Rh,d| + 1)
4

x| 1

where R; 4 is the subset of pathways in E,; relevant to
hallmark 4, p-value is the enrichment p-value of
pathway p, and N is a normalization factor accounting
for the uneven distribution of pathways across different
hallmarks.

In the current version the weights are selected
arbitrarily, with a lower weight assigned to the gene list

component due to lower annotation density in the used
gene lists.

Finally, the overall aging score 4, for disease d was
calculated as:

4,= Z B, %D,

heH

where H is the set of all hallmarks and Dy is a diversity
factor that rewards diseases with multiple hallmark
associations rather than a single dominant one:

N
D, =—2x(1+E
r =7 <U+E)

t

with N,. being the number of non-zero hallmark scores,
N; the total number of hallmarks (11), and E, the
normalized entropy of the hallmark score distribution.

The final metric A4 accounts for both the magnitude and
distribution of partial hallmark scores 74, thus
providing a quantitative basis for identifying the
similarities in the aging-related mechanisms underlying
different diseases.

The code for this disease scoring method is written in
Python 3.11 and is available on Github with
demonstration materials: https://github.com/Insilico-
org/disease hallmarks

The proposed methodology is intended as an illustration
of the proposed hallmark decomposition approach to
geroprotector and drug discovery. In the current form
it holds several limitations that need to be elaborated
on in later iterations. The scoring depends on the
available information about target proteins and thus
may undervalue the importance of understudied
hallmarks. Similarly, gene annotation density and the
sources of these annotations may bring in certain
biases.

Abbreviations
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SUPPLEMENTARY MATERIALS

Supplementary Materials

Please browse Full Text version to see the data of Supplementary Materials 1.

Supplementary Material 1. Visualizations of partial hallmark and total aging score distributions for the 13 aging-
related diseases obtained in sampling.
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