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ABSTRACT 
 

Short and long sleep durations have been inconsistently linked to aging and health outcomes, potentially due 
to underexplored nonlinear associations. Using phenotypic and genomic data from the UK Biobank 
(n=442,664), we applied multivariable linear regression, restricted cubic splines, and Mendelian 
randomization (MR) to analyze nonlinear relationships between self-reported sleep duration and biomarkers 
of accelerated aging: PhenoAge acceleration (PhenoAgeAccel), BioAge acceleration (BioAgeAccel), and 
leukocyte telomere length (LTL). Functional annotation analyses were performed to assess potential shared 
biological pathways using epigenomic profiles. Observational analyses supported U-shaped phenotypic 
associations between sleep duration and PhenoAgeAccel/BioAgeAccel, with optimal sleep around 7 h/d. For 
LTL, linear models suggested a U-shape, while spline models indicated an inverted reverse J-pattern. MR 
analyses corroborated the deleterious impacts of insufficient, but not excessive, sleep, by revealing a 
threshold nonlinear relationship between increasing genetically-predicted sleep duration up to 7 h/d and 
lower PhenoAgeAccel/BioAgeAccel, and a linear relationship with longer LTL. Cell-type enrichment analyses 
connected short sleep to BioAgeAccel/LTL through pathways related to muscle maintenance and immune 
function. These findings suggest that extending sleep may mitigate accelerated aging, though further 
research is needed to clarify the underlying biological mechanisms and whether excessive sleep also 
contributes causally to biological aging. 
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INTRODUCTION 
 

Aging affects individuals both personally and societally 

[1]. Recognizing that relying solely on chronological 

age is insufficient to comprehend the internal physio-

logical states nor the inter-individual variation in the 

rate and manner of aging [2], extensive efforts have 

been made to develop measures to capture the under-

lying aging processes at the biological level, also 

termed biological age [3]. These measures involve  

the use of individual or composite biomarkers that 

demonstrate associations with typically chronological 

age or mortality [4]. Of particular interest, clinical-

parameter biological-age algorithms (i.e., PhenoAge [5] 

and BioAge [6]) and telomere length have been 

validated as among the most reliable predictors of aging 

outcomes and hold promise for routine application in 

large populations [7–9]. 

 

While the determinants of the rate of aging are intricate, 

it is possible to moderate the aging process through 

lifestyle interventions that influence metabolic processes. 

As one of these potentials, sleep assumes a significant 

role in daily life and functions as a restorative process 

facilitating both physical and mental recovery [10]. 

Accumulating evidence suggests that deviations from 

normal sleep duration may contribute to the premature 

development and progression of age-related conditions 

[11, 12]. However, the specific impact of insufficient or 

excessive sleep on accelerated biological aging remains 

uncertain [10, 13, 14]. Previous observational studies, 

often limited in scale and focused on linear effects, have 

yielded conflicting findings within specific populations 

[15–22]. Notably, existing studies have predominantly 

relied on binary categorizations of “short” and “long” 

sleep, rather than exploring the potentially diverse 

patterns across the entire duration continuum. A 

comprehensive investigation for potential non-linear 

dose-response relationships may elucidate the need for 

tailored interventions or recommendations across different 

ranges of sleep duration to extend a healthy lifespan and 

mitigate the risks of age-related health outcomes. 

 

The lack of consensus in the existing evidence can  

be attributed, at least in part, to the vulnerability  

of conventional observational studies to residual 

confounding and reverse causality. While these 

limitations can be tackled by implementing  

an experimental study, it is unethical to conduct 

experiment of long-term sleep deprivation to confirm 

its causal effect in accelerating aging. In such case, 

Mendelian randomization (MR) provides an alternative 

means of uncovering the causal nature underlying a 
phenotypic association by using genetic variants 

(randomly distributed at conception) as proxies for 

life-long exposure risks [23]. Recent methodological 

advancements have introduced the doubly ranked 

method, a novel nonlinear MR approach that provides 

more robust stratum-specific estimates compared to 

conventional approaches [24]. Despite these 

developments, few nonlinear MR studies have been 

conducted in the realm of sleep duration and biological 

aging [25, 26]. 

 

Therefore, the present study aimed to provide a 

parametric visualization of the relationship between 

sleep duration and three key markers of biological aging 

status - PhenoAge acceleration, BioAge acceleration, 

and telomere length, utilizing extensive phenotypic and 

genotyping data from the UK Biobank. Multivariable 

regressions and restricted cubic spline analyses were 

first performed to examine phenotypic associations and 

whether phenotypic data support nonlinear effects. 

Linear and non-linear MR were then applied to 

delineate the shape of the causal relationships of 

genetically-predicted sleep duration with biological age 

measurements. Integrating genome-wide association 

study (GWAS) summary statistics and cell-type-specific 

annotations, functional annotation analyses were finally 

undertaken to interrogate potential genetic mechanisms 

relating sleep duration to the aging process. A graphical 

abstract is provided in Figure 1. 

 

MATERIALS AND METHODS 
 

The flowchart of participant selection and overall study 

design is outlined in Figure 2. In general, observational 

and MR analyses were conducted based on individual 

participant data from the UK Biobank, while functional 

annotation analyses were conducted using summary 

statistics from the hitherto largest GWAS of each 

phenotype. All analyses were performed in R (version 

4.1.0) unless otherwise specified, with a two-sided  

P-value of 0.05 used as the threshold for statistical 

significance. 

 

Study participants 

 

Participants were drawn from the UK Biobank, a  

large population-based prospective cohort study  

which recruited more than 500,000 individuals aged 

40-69 years between 2006 and 2010. The study  

protocol is available online (www.ukbiobank.ac.uk/wp-

content/uploads/2011/11/UK-Biobank-Protocol.pdf) and 

more details are published elsewhere [27]. At the initial 

visit, participants completed online questionnaire and 

physical measurements, and their biological samples 

were collected for genotyping and biochemistry tests. In 

our study, we used information on habitual sleep 

duration, biological traits for PhenoAge and BioAge 

construction, telomere length measurements, relevant 

confounding factors, and genetic variants. UK Biobank 

http://www.ukbiobank.ac.uk/wp-content/uploads/2011/11/UK-Biobank-Protocol.pdf
http://www.ukbiobank.ac.uk/wp-content/uploads/2011/11/UK-Biobank-Protocol.pdf
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Figure 1. Graphical abstract. 

 

 
 

Figure 2. Flowchart of participant selection and overall study design. 
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received ethical approval from the North West Multi-

centre Research Ethics Committee and obtained written 

informed consent from all participants. Our study was 

performed under application number 99713. 

 

Self-reported habitual sleep duration 

 

In the UK Biobank, participants’ habitual sleep duration 

was assessed at the baseline assessment via a 

standardized question: “About how many hours sleep 

do you get in every 24 hours? (please include naps)”, 

with responses in hour increment. Following the 

methods of previous studies [28, 29], participants with 

sleep durations below 2 hours or above 12 hours 

(extreme responses) were treated similarly to those who 

did not respond to the question. These participants 

along with those who responded with “Do not know” or 

“Prefer not to answer” were excluded from our analysis. 

 

PhenoAge, BioAge, and age accelerations 

 

We computed two validated biological age predictors, 

PhenoAge [5] and BioAge [6], using two sets of nine 

clinical-based biomarkers involving a total of 12 blood 

chemistry and blood count traits as well as assessments 

of lung function and blood pressure. Details of the 

included biomarkers can be found in Supplementary 

Table 1. Both PhenoAge and BioAge were initially 

trained using data from the third National Health and 

Nutrition Examination Survey (NHANES III), but with 

different objectives. While PhenoAge was derived from 

an algorithm based on multivariate analysis of mortality 

hazards in the reference population to provide an 

estimate of the risk of death, BioAge was computed 

using an algorithm that involved a series of regressions 

of individual biomarkers on chronological age in the 

reference population, aiming to quantify the decline in 

overall system integrity. We applied the previously 

trained algorithms to the UK Biobank biomarker data 

to calculate PhenoAge and BioAge for each 

participant, using the R package “BioAge” [30]. To 

better quantify the differences between participants in 

biological aging, we utilized linear regression models 

to estimate the residual of the computed PhenoAge or 

BioAge after subtracting the effect of chronological 

age. These residuals were referred to as PhenoAge 

acceleration (PhenoAgeAccel) and BioAge acceleration 

(BioAgeAccel), respectively, and served as the primary 

outcomes in our analysis. Any observations with 

missing biomarkers values were excluded. 

 

Leukocyte telomere length 

 
Telomeres are nucleoprotein complexes located at the 

ends of chromosomes that undergo shortening with each 

cell division. The length of telomere has been proposed as 

a biological measure of aging, reflecting the degree of 

cellular senescence and oxidative stress [31]. In this study, 

we focused on telomere length measured in leukocyte 

(LTL), a practical measure correlating well with telomere 

length across different tissues within individuals. In the 

UK Biobank, LTL measurements were ascertained on 

DNA from peripheral blood leukocytes collected at 

baseline assessment using a well-validated multiplex 

qPCR assay [32]. Measurements were reported as a ratio 

of telomere repeat copy number relative to that of a single 

copy gene (T/S ratios), which were then log-transformed 

to obtain a normal distribution (logeLTL). Multiple 

quality checks were applied to control and adjust for 

technical factors, as described elsewhere [32]. To allow 

direct comparison to other studies, we used z-standardized 

logeLTL as our primary outcome. Participants with 

missing LTL measurements were excluded. 

 

Genetic risk score of self-reported sleep duration 

 

Genetic variants used in MR analyses were extracted 

genotypes from the UKB imputation dataset (n = 487,150 

at the time of our study). Detailed information on 

genotyping, imputation, and quality control in the UK 

Biobank has been described previously [33]. We took 85 

independent single-nucleotide polymorphisms (SNPs) 

robustly associated with continuous sleep duration  

(P-value < 5×10−8), obtained by applying PLINK’s 

clumping function [34] (parameters: -clump-r2 0.001 --

clump-kb 1000) to results from the largest published 

GWAS of self-reported habitual sleep duration (n = 

446,118) [35], as our genetic instruments. Details of the 

included SNPs are shown in Supplementary Table 2. 

Following SNP quality control [36], two palindromic 

SNPs (rs17732997 and rs4333549) were detected and 

subsequently excluded. To avoid one-sample bias 

towards confounded observational associations, we 

calculated an unweighted genetic risk score (GRS) by 

directly summing the number of sleep duration-

increasing alleles across the 83 SNPs. Collectively, the 

unweighted GRS explained 6.22% of the genome-wide 

SNP-based heritability of sleep duration, as determined 

by comparing residual variance in linear regression 

models of sleep duration on GRS (F-statistic = 2,239). 

 

GWAS data sources 

 

The largest published GWAS of self-reported habitual 

sleep duration also conducted separate GWAS for short 

(< 7 h/d; n = 106,192 cases) and long (> 8 h/d; n = 

34,184 cases) sleep relative to 7–8 h/d sleep duration  

(n = 305,742 controls) [35]. We retrieved the full sets  

of summary statistics for the three sleep duration 
phenotypes for further functional annotation analyses. 

We also obtained the largest available GWAS of 

PhenoAgeAccel (n = 107,460) [37], BioAgeAccel (n = 
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98,446) [37], and LTL (n = 472,174) [32]. All original 

GWAS analyses were performed using imputed 

genotype data from the UK Biobank, involving only 

participants of European descent. 

 

Statistical analyses 

 

Observational analyses 

Participants of European ancestry (to mirror the genetic 

analyses) with complete (and within range) exposure 

and outcome data were included. Separate multivariable 

linear regression models were employed to assess the 

relationships of continuous sleep duration with 

PhenoAgeAccel, BioAgeAccel, and LTL. In addition to 

the top five genetic principal components (PCs), factors 

previously described as associated with biological age 

measurements were included as covariates, including 

age, sex, educational qualifications (degree, no degree), 

body mass index, smoking history (current, former, or 

never), drinking history (current, former, or never), 

physical activity status (low, moderate, high), histories 

of cardiovascular disease (angina, heart attack, or 

stroke), hypertension, diabetes mellitus, and leucocyte 

count (for LTL as an outcome). 

 

To assess the potential for nonlinear associations, we 

entered the levels of self-reported sleep duration as 

indicator variables, and obtained estimates comparing 

each of < 5 h/d, 5 h/d, 6 h/d, 8 h/d, 9 h/d, and > 9 h/d to 

our chosen reference category of 7 h/d. Restricted cubic 

spline regressions were further employed to model the 

non-linear relationships between continuous sleep 

duration and biological age measurements with four 

knots (located at the 5th, 35th, 65th, and 95th 

percentiles) after adjustments. 

 

Considering the previously observed sex differences in 

biological aging [32, 38] and the age-dependent 

variations in sleep duration [39], all analyses were 

additionally stratified by sex and age (using the median 

age of 58 years as the cutoff point). 

 

Mendelian randomization analyses 

Participants of European ancestry (to avoid population 

stratification) with complete data on sleep duration, 

aging outcomes, and genotypes were further included in 

the MR analyses. We first applied a two-stage method 

to estimate the average causal effect of sleep duration 

on the outcomes. This conventional MR approach tests 

for the presence of a causal relationship, yielding effect 

estimates under a linear modeling framework. In the 

first-stage analysis, we regressed the exposure (sleep 

duration) on the unweighted GRS. In the second stage, 
we regressed the outcomes on the fitted values of the 

exposure from the first stage. The regression models in 

both stages were adjusted with age at baseline, sex, age-

squared, age-by-sex, age-squared-by-sex, the top five 

PCs of ancestry, and genotyping array. 

 

While linear MR was conducted in the overall 

population to estimate averaged causal effects, 

nonlinear MR involves generating strata within the 

study sample and undertaking MR analyses within each 

stratum [40]. We applied the fractional polynomial 

method to examine nonlinearity and used the recently 

developed doubly-ranked stratification approach [24] to 

construct five equal-sized strata of the population. 

Compared to the conventional residual-based method 

[40], the doubly-ranked approach offers increased 

reliability when the genetic effects on the exposure  

vary across the population, or when the exposure 

measurement is coarsened (e.g., self-reported sleep 

duration measured in hourly units) [24]. We first 

stratified all participants into preliminary strata (each 

containing 50 participants) according to the levels of the 

GRS, and then stratified them into final strata based on 

the levels of observed sleep duration within each pre-

stratum. This ensures that the constructed strata are 

uncorrelated with the GRS, while also guaranteeing that 

the average exposure level increases monotonically 

across the strata. 

 

For each final stratum, we calculated a linear MR 

estimate of the causal effect of increasing sleep duration 

using the two-stage method described above. To stabilize 

estimates, we performed a bootstrap averaging approach. 

We randomly removed a small number of participants (n 

= 12) from the analysis and performed the doubly-ranked 

approach using this dataset. We repeated this procedure 

100 times and then combined the estimates using Rubin’s 

rules. To evaluate the presence of a trend in the stratum-

specific estimates, we performed a meta-regression of 

these estimates on the mean value of observed sleep 

duration in each stratum [40, 41], considering a P-value < 

0.05 as evidence supporting nonlinearity. Sex- and age-

stratified MR analyses were also performed. 

 

Two sensitivity analyses were performed. First, we 

incorporated all additional confounding factors included 

in the multivariable regression models into the two-stage 

MR analyses to address potential residual confounding. 

Second, to assess the MR assumption that genetic 

variants influence biological aging solely through sleep 

duration, we recalculated the unweighted GRS after 

disregarding six potential pleiotropic SNPs that 

demonstrated associations (P-value < 5×10−8) with 

phenotypes other than sleep duration, as indicated by the 

GWAS catalog [42], and repeated MR analyses. The 

potential pleiotropic SNPs and their corresponding 
related phenotypes are shown in Supplementary Table 2. 

Given the methods for exploring horizontal pleiotropy in 

one-sample MR can be underpowered in each stratum, 
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we compared the effect estimates derived from 

sensitivity analyses with those obtained from the 

primary analyses to assess the consistency of patterns. 

All MR analyses were performed using the R packages 

“ivreg” and “SUMnlmr”. 

 

Functional annotation analyses 

To elucidate the potential shared biological mechanisms 

underlying the observed relationships between sleep 

duration and biological aging, we conducted functional 

annotation analyses by partitioning the SNP-heritability 

of each phenotype based on cell-type-specific annotations 

and examining their clustering patterns. A total of 396 

annotations from the Roadmap Epigenomics project 

encompassing six histone marks (DNase, H3K27ac, 

H3K36me3, H3K4me1, H3K4me3, and H3K9ac) across 

88 primary cell types or tissues [43] were utilized. These 

annotations were further categorized into nine broad 

groups, including adipose, central nervous system (CNS), 

digestive system, cardiovascular, musculoskeletal and 

connective tissue, immune and blood, liver, pancreas,  

and other. For each phenotype, annotation-specific 

enrichment values were calculated using stratified-LDSC 

[44], which were then transformed into a color scale and 

visualized through hierarchical clustering. FDR-adjusted 

P-value was applied based on the specific numbers of 

comparisons made in each analysis. 

 

Data availability 

 

The data underlying the results presented in the study 

are available to researchers upon application to UK 

Biobank (https://www.ukbiobank.ac.uk/). 

 

Consent to participate 

 

The participants in the UK Biobank study provided 

written informed consent for their data to be used in 

health-related research. As this study analyzes aggregated 

GWAS summary statistics that do not contain any 

personally identifiable information, no additional consent 

for publication is required. 

 

Consent to publish 

 

The participants in the UK Biobank study provided 

written informed consent for their data to be used in 

publications. 

 

RESULTS 
 

Study population 

 

Table 1 summarizes the baseline characteristics of study 

participants included in the observational analyses of 

PhenoAgeAccel (n = 384,490), BioAgeAccel (n = 

317,723), and LTL (n = 442,664). The mean age of 

participants ranged from 56.6 to 56.8 years, and 53.7% 

to 54.2% of participants were women. More detailed 

characteristics of the three partially overlapping groups 

of participants according to self-reported sleep duration 

are presented in Supplementary Tables 3–5. 

 

Linear and nonlinear phenotypic associations 

 

Linear observational analyses revealed significantly 

positive associations between continuous sleep duration 

with both PhenoAgeAccel (β = 0.08 years per additional 

hour of sleep duration, 95%CI = 0.07 to 0.09) and 

BioAgeAccel (β = 0.02 years per additional hour of sleep 

duration, 95%CI = 0.01 to 0.03), but not with LTL (β = 

0.0003 SD change per additional hour of sleep duration, 

95%CI = –0.0024 to 0.0029) (Supplementary Table 6). 

Compared to participants reporting 7 hours of sleep per 

day, those reporting shorter (< 7 h/d) or longer (> 7 h/d) 

sleep durations showed significantly higher Pheno-

AgeAccel and BioAgeAccel, as well as significantly 

shorter LTL (Figure 3). Restricted cubic spline 

regressions also demonstrated U-shaped nonlinear 

associations of sleep duration with PhenoAgeAccel and 

BioAgeAccel, while suggested an inverted reverse  

J-shaped association of sleep duration with LTL 

(Supplementary Figure 1). All spline analyses yielded a 

P-value for nonlinearity below 0.001. 

 

Sex- and age-stratified observational analyses 

demonstrated similar patterns of nonlinear associations, 

despite slightly larger statistical uncertainties 

(Supplementary Table 6 and Supplementary Figure 1). 

Notably, the magnitude of associations was consistently 

higher in men than in women across all outcomes. 

Insufficient sleep exhibited seemingly stronger 

associations with both PhenoAgeAccel and BioAgeAccel 

in younger (< 58 years) compared to older participants (≥ 

58 years). 

 

Linear and nonlinear mendelian randomization 

 

Utilizing 83 SNPs to instrument self-reported sleep 

duration, linear MR within the overall UK Biobank 

population found significant causal associations 

between genetically-predicted sleep duration and 

PhenoAgeAccel (β = –0.31 years per 1 hour increase in 

genetically-predicted sleep duration, 95%CI = –0.50 to 

–0.12), BioAgeAccel (β = –0.38 years per 1 hour 

increase in genetically-predicted sleep duration, 95%CI 

= –0.53 to –0.24), and LTL (β = 0.07 SD change per 1 

hour increase in genetically-predicted sleep duration, 

95%CI = 0.03 to 0.11) (Figure 4). 
 

Stratifying the overall study sample into five  

strata, nonlinear MR demonstrated threshold nonlinear  

https://www.ukbiobank.ac.uk/
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Table 1. Baseline characteristics of UK Biobank participants included in observational analyses. 

Characteristics Analysis of PhenoAgeAccel Analysis of BioAgeAccel Analysis of LTL 

No. of participants 384490 317723 442664 

Sleep duration, h/d 7.16 (1.08) 7.16 (1.06) 7.16 (1.08) 

Age at recruitment, y 56.8 (8.02) 56.6 (8.04) 56.8 (8.03) 

Sex (women), n (%) 206642 (53.7%) 171835 (54.1%) 239936 (54.2%) 

Education    

Degree, n (%) 315151 (82.7%) 263167 (83.5%) 363075 (82.7%) 

No degree, n (%) 66008 (17.3%) 51954 (16.5%) 75785 (17.3%) 

Body mass index, kg/m2 27.4 (4.75) 27.3 (4.67) 27.4 (4.76) 

Smoking status    

Never, n (%) 206510 (53.9%) 172605 (54.5%) 237954 (53.9%) 

Previous, n (%) 136638 (35.7%) 112269 (35.5%) 157078 (35.6%) 

Current, n (%) 40062 (10.5%) 31820 (10.0%) 46137 (10.5%) 

Drinking status    

Never, n (%) 12340 (3.21%) 10002 (3.15%) 14243 (3.22%) 

Previous, n (%) 13271 (3.45%) 10414 (3.28%) 15299 (3.46%) 

Current, n (%) 358575 (93.3%) 297067 (93.6%) 412778 (93.3%) 

IPAQ activity group     

High, n (%) 126921 (40.5%) 106018 (40.9%) 146179 (40.5%) 

Moderate, n (%) 127813 (40.8%) 105833 (40.8%) 147130 (40.8%) 

Low, n (%) 58433 (18.7%) 47654 (18.4%) 67260 (18.7%) 

Leukocyte count, 10^9 cells/Litre / / 6.90 (2.04) 

Major diseases    

Cardiovascular disease, n (%) 22051 (5.74%) 16096 (5.07%) 25440 (5.76%) 

Hypertension, n (%) 103404 (26.9%) 82698 (26.1%) 118845 (26.9%) 

Diabetes mellitus, n (%) 18386 (4.79%) 14409 (4.54%) 21267 (4.81%) 

Components of biological ages    

Lymphocyte (%)  28.7 (7.34) / / 

Mean cell volume (fL)  82.9 (5.25) / / 

Serum glucose (mmol/L)  5.11 (1.21) / / 

Red cell distribution width (%)  13.5 (0.95) / / 

White blood cell count (1000 

cells/uL)  
6.89 (1.93) / / 

Albumin (g/L)  45.2 (2.61) 45.3 (2.59) / 

Creatinine (umol/L)  72.2 (16.2) 72.2 (17.1) / 

C-reactive protein (mg/dL)  0.26 (0.44) 0.25 (0.41) / 

Alkaline phosphatase (U/L) 83.5 (26.1) 83.0 (25.9) / 

FEV1 (L)  / 2.85 (0.80) / 

SBP (mm Hg)  / 138 (18.5) / 

Total Cholesterol (mg/dL)  / 221 (43.9) / 

Glycated hemoglobin (%)  / 3.58 (0.63) / 

Blood urea nitrogen (mg/dL)  / 15.2 (3.82) / 

Biological ages, y    

PhenoAge 50.8 (9.42) / / 

PhenoAge acceleration 0.00 (4.66) / / 

BioAge / 53.9 (8.67) / 

BioAge acceleration / 0.00 (3.31) / 

Z-standardized leucocyte telomere 

length 
/ / -0.01 (0.99) 

Characteristics were presented as mean values (standard deviation) for continuous variables and n (%) for categorical variables. 
PhenoAgeAccel, PhenoAge acceleration; BioAgeAccel, BioAge acceleration; LTL, leucocyte telomere length. 
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relationships for sleep duration with both PhenoAgeAccel 

and BioAgeAccel. We observed a strong inverse causal 

association of increasing genetically-predicted sleep 

duration with PhenoAgeAccel in the lowest strata  

(β = –1.00 years per 1 hour increase in genetically-

predicted sleep duration, 95%CI = –1.48 to –0.51), an 

inverse but slightly weaker association in the second 

lowest stratum (β = –0.68, 95%CI = –1.07 to –0.30), 

whereas no significant association in the other three 

strata with mean observed durations > 7.1 h/d. Similarly, 

the strongest inverse causal association of increasing 

genetically-predicted sleep duration with BioAgeAccel 

was found in the lowest stratum (β = –0.81 years per  

1 hour increase in genetically-predicted sleep duration, 

95%CI = –1.17 to –0.45), followed by the second 

lowest stratum (β = –0.56, 95%CI = –0.88 to –0.24). 

The trends in estimates were significant, as evidenced by 

the significant P-values for nonlinearity for both 

PhenoAgeAccel (P = 3.75×10−5) and BioAgeAccel  

(P = 3.45×10−3) (Figure 4). 

 

Nonlinear MR demonstrated a significant positive 

causal association of increasing genetically-predicted 

sleep duration with LTL in the second highest stratum 

(β = 0.08 SD change per 1 hour increase in genetically-

predicted sleep duration, 95%CI = 0.01 to 0.16). No 

significant association was observed in the other 

duration groups, likely due to lower power arising from 

reduced sample size, nor a significant trend across 

stratum estimates (P = 0.97) (Figure 4). 

 

We found largely consistent results in the sex-stratified 

nonlinear MR analyses of each biological age 

measurement, although some confidence intervals 

included the null (particularly in analyses of LTL) due 

to reduced statistical power. Notably, compared to 

women-specific analyses, men-specific nonlinear MR 

yielded higher effect magnitudes of extremely 

insufficient sleep duration on PhenoAgeAccel (β = –

0.92 vs. β = –0.90) and BioAgeAccel (β = –1.44 vs. β = 

–0.71) (Supplementary Tables 7, 8). Additionally, 

insufficient sleep duration demonstrated stronger effects 

in younger participants compared to older participants 

for PhenoAgeAccel (β = –0.86 vs. β = –0.65), 

BioAgeAccel (β = –0.96 vs. β = –0.72), and LTL (β = 

0.15 vs. β = 0.12) (Supplementary Tables 9, 10). 

 

 
 

Figure 3. Results of multivariable linear regressions of PhenoAge acceleration (PhenoAgeAccel), BioAge acceleration 
(BioAgeAccel), and leukocyte telomere length on sleep duration. Circles denote point estimates. Error bars denote 95% confidence 

intervals. Regression models adjusted for: age at baseline, sex, the top five genetic principal components, educational qualifications, body 
mass index, smoking history, drinking history, physical activity status, leucocyte count (for telomere length as an outcome), and histories of 
cardiovascular diseases, hypertension, and diabetes mellitus. 
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Sensitivity analyses incorporating additional confounders 

or utilizing a reconstructed GRS largely recapitulated the 

primary results (Supplementary Tables 11, 12). 

 

Cell-type-specific heritability enrichments 

 

Functional annotation analyses further revealed 

extensively distributed heritability enrichments for sleep 

duration phenotypes, predominantly in cell types of the 

CNS, as well as in other components related to blood/ 

immune, pancreas, and musculoskeletal/connective 

tissues. Comparing the heritability enrichments between 

sleep duration and biological age measurements, we 

found that both short sleep (< 7 h/d) and LTL were 

significantly enriched in the fetal thymus annotation, a 

component of the blood/immune system. Additionally, 

short sleep showed significant enrichment in the  

fetal muscle leg annotation, while BioAgeAccel 

displayed enrichment in the foreskin fibroblast primary 

cells annotation, both representing components of  

the musculoskeletal/connective system. In contrast, no 

common significant enrichment was identified between 

long sleep (> 8 h/d) and any of the biological aging 

outcomes (Supplementary Figure 2). 

 

DISCUSSION 
 

To the best of our knowledge, this is the first phenotypic 

and genetic analysis that systematically interrogates a 

nonlinear relationship between sleep duration and 

accelerated biological aging. Our observational study 

suggests U-shaped phenotypic associations of sleep 

duration with PhenoAgeAccel and BioAgeAccel and an 

inverted reverse J-shaped phenotypic association of sleep 

duration with LTL, with approximately 7 h/d as the 

optimal sleep duration. A comprehensive GRS-based MR 

study further confirmed the detrimental roles of 

insufficient sleep across all outcomes (in a dose-response 

manner for PhenoAgeAccel and BioAgeAccel),  

while finding no evidence to support deleterious impacts 

of excessive sleep on any of the biological aging 

measurements. 

 

 
 

Figure 4. Mendelian randomization estimates for PhenoAge acceleration (PhenoAgeAccel), BioAge acceleration 
(BioAgeAccel), and leukocyte telomere length in overall population and strata of population defined by residual sleep 
duration. Grey circles denote overall estimates, and blue circles denote stratum estimates. Error bars denote 95% confidence intervals. 
Models adjusted for: age at baseline, sex, the top five genetic principal components, and genotyping array. 
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In utilizing various analytical approaches that designed 

specifically for linear relationships, we found that the 

direction of the effect estimates for sleep duration on 

biological age measurements largely differs when 

comparing the results of linear MR and multivariable 

linear regressions. Such disparity suggests that 

evaluating continuous sleep duration as a whole may 

lead to unreliable findings underscoring the need to 

consider potential nonlinear effects when studying its 

health impact. 

 

PhenoAgeAccel and BioAgeAccel, recognized as the 

best validated measures for biological aging that could 

also be implemented with data available in the UK 

Biobank [6, 9, 45], were designed based on different 

assumptions to capture distinct aspects of the aging 

process. BioAge models biological age as the average 

physiology of an individual with the same age as the 

research subjects [6], while PhenoAge estimates 

biological age as the average physiology of an 

individual with the same risk of death as the research 

subjects [5]. Therefore, the U-shaped relationship 

between sleep duration and PhenoAgeAccel observed in 

our observational study aligns with previous findings 

that a sleep duration of 7 hours represents the optimal 

duration associated with lowest all-cause and other-

cause mortality [46, 47]. However, leveraging robust 

genetic instruments, our nonlinear MR analyses failed 

to confirm a causative role of long sleep duration in 

increasing PhenoAgeAccel, indicating that the observed 

associations are likely due to residual confounding 

or/and reverse causation. Indeed, given long sleep itself 

can be a consequence of underlying health conditions or 

comorbidities, and that accelerated aging may cause 

fatigue or other symptoms that lead to increased sleep 

duration [39], the association between excessive sleep 

and accelerated biological aging may be more 

susceptible to these common limitations inherent in 

conventional observational studies. Notably, such 

disagreement between observational and MR findings 

was consistently observed for PhenoAgeAccel and 

BioAgeAccel, providing reassurance that the 

associations reflect genuine biological aging rather than 

artifacts specific to a particular method of biological age 

measurement. 

 

Previous observational studies have demonstrated a 

detrimental role of both insufficient and excessive sleep 

in PhenoAgeAccel/BioAgeAccel. For example, a study 

involving 615 participants from the Baltimore 

Longitudinal Study of Aging reported significantly 

lower DNA methylation-based PhenoAge among 

individuals sleeping ≤ 6 h/d compared to those sleeping 
> 7 h/d [17]. Another study involving 29,309 

participants from the Korean NHANES V-VI found 

significantly higher metabolism diagnostic parameters-

based BioAgeAccel among individuals who sleep > 8 

h/d compared to those sleeping between 6 to 8 h/d [15]. 

It is important to note that these previous studies, like 

many others investigating sleep duration, employed a 

block classification of “short” and “long” sleep duration 

that imposed a linear relationship between aging and 

more or less sleep around a chosen cut-off (e.g., 6, 7, or 

8 h/d). This approach, coupled with relatively small 

sample sizes, limited their ability to detect the impact of 

different duration patterns or the magnitude of effects 

associated with more extreme sleep durations. Building 

upon previous findings, our work based on triangulated 

evidence supporting that an insufficient sleep duration 

(defined as < 7 h/d) may exert increasingly pronounced 

detrimental effects on accelerated biological aging as 

sleep insufficiency becomes more severe. 

 

While PhenoAge and BioAge aim to capture integrated 

multi-system dysregulation during aging, LTL and its 

natural shortening primarily reflect cellular proliferative 

capacity [31]. To date, epidemiological evidence 

regarding the relationship of sleep duration and 

telomere length has remained highly inconclusive. As 

one of the pioneering studies in this field, an 

investigation involving 4,117 female participants from 

the Nurses’ Health Study reported a positive association 

between sleep duration (9 h/d compared to ≤ 6 h/d) and 

LTL [18]. However, a separate study with 245 women 

reported no significant association [19]. Similar mixed 

results have further been reported in samples of  

both men and women [13, 14], particularly regarding 

long sleep duration, which has been linked to both 

significantly longer [20] and shorter telomere length 

[21]. A previous exploratory study involving 154 

participants indicated a U-shaped association between 

sleep duration and telomere length [22], which was 

recapitulated by our large-scale multivariable linear 

regressions. Nonetheless, stratified MR findings again 

indicate no causative role of excessive sleep in 

shortening LTL. Unlike the nonlinear relationships 

identified for the composite biological age 

measurements, the stratum estimates for LTL were 

more consistent across strata and centered around the 

population-averaged estimate, suggesting a linear effect. 

While such discrepancy may support the notion that 

these measurements capture different hallmarks of 

aging [48], additional investigations are warranted to 

corroborate our findings and provide deeper insights 

into the reasons behind the distinct associations 

observed. 

 

Through the integration of genomics and epigenomics 

data, our study reveals genetic similarities between 
short sleep and BioAgeAccel in the musculoskeletal 

system, as well as between short sleep and LTL in the 

immune system, providing additional evidence for 
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potential shared genetic mechanisms that contribute to 

these causal links. Sleep plays a crucial role in 

connective tissue repair and muscle growth [49], and 

inadequate sleep has been associated with increased 

risks of muscle mass reduction and functional decline 

commonly observed during aging [50]. Moreover, 

laboratory studies have demonstrated that both acute 

and chronic sleep loss can have an impact on a wide 

range of immune function [51]. The immune system is 

intricately connected to telomere shortening, as its 

proper functioning relies on the renewal and clonal 

expansion of T- and B-cell populations [52]. Emerging 

evidence suggests that immune dysfunctions also 

contribute to telomere and telomerase deficiency [52]. 

Taken together, our findings, along with the previous 

research, support the hypothesis that insufficient sleep 

adversely affects the musculoskeletal system and 

immune function, consequently accelerating biological 

aging. To gain a deeper understanding of these 

hypothesized mechanisms, future in-depth experimental 

studies are needed. 

 

A notable strength of our study lies in the comprehensive 

interrogation of potential sex-heterogeneous effects of 

sleep duration on biological aging, revealing that short 

sleep duration accelerates aging more prominently  

in men than women. This finding aligns with prior 

research indicating that men are more susceptible to 

immunosenescence, inflammaging, and higher mortality 

risk at comparable frailty levels [38]. Importantly, while 

prior work reported sex-specific association between 

sleep duration and LTL in men [53], our findings extend 

this by demonstrating that sufficient sleep slows 

biological aging in both sexes. Similarly, our age-

stratified analyses indicate that insufficient sleep 

accelerates biological aging in both younger (< 58 years) 

and older (≥58 years) adults, with a seemingly more 

pronounced effect observed in the younger group. This 

is consistent with evidence that younger individuals 

typically require longer sleep durations and demonstrate 

reduced resilience to acute sleep deprivation compared 

to their older counterparts [54]. Overall, these findings 

emphasize the importance of adequate sleep duration for 

healthy aging across the population, with particular 

attention to the needs of men and younger adults. 

Nevertheless, validation in larger, independent cohorts is 

necessary before these subgroup findings can inform 

clinical recommendations. 

 

Several limitations need to be acknowledged. Our sample 

only comprises individuals of White European ethnic 

background, necessitating future investigations to ensure 

the generalizability of findings across diverse racial or 
ethnic groups. Additionally, the potential presence of a 

healthy volunteer bias within the UK Biobank may 

introduce a null bias, given the anticipated lower age 

accelerations relative to the general UK population. Sleep 

duration was assessed using a single self-administrated 

question in the UK Biobank. However, the potential for 

misclassification error is unlikely to influence our MR 

estimates as sleep duration is measured in 1-hour 

increments [55]. Future studies with objective sleep 

measures are essential to validate our findings. Our study 

specifically examined telomere length measurements in 

leukocytes, and further research is needed to determine 

how well these measurements reflect telomere length in 

other organ tissues. Finally, it is important to recognize 

the cross-sectional design of our observational study and 

approach the interpretation of causality between sleep 

duration and aging with caution. While MR offers some 

potential for causal inference, it relies on several 

assumptions [23] that we have tried to scrutinize, albeit 

residual uncertainty inevitably remains. For example, it 

remains possible that some genetic instruments exert 

direct effects on biological aging, which would violate 

the exclusion restriction assumption. 

 

CONCLUSIONS 
 

Taken together, our study, utilizing extensive phenotypic, 

genomic, and epigenomic data, consistently demonstrates 

a significant association between insufficient sleep 

duration and increased acceleration of biological aging, 

as indicated by PhenoAgeAccel, BioAgeAccel, and LTL 

measurements. Further investigation is needed to 

determine if long sleep is a causal risk factor for 

accelerating biological aging. Findings suggest that 

interventions aimed at addressing insufficient sleep may 

serve as a pathway towards alleviating the burden of 

aging. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Results of restricted cubic spline regressions of PhenoAge acceleration (PhenoAgeAccel), BioAge 
acceleration (BioAgeAccel), and leukocyte telomere length on sleep duration. Models adjusted for, where appropriate, age at 
baseline, sex, the top five genetic principal components, educational qualifications, body mass index, smoking history, drinking history, 
physical activity status, leucocyte count (for telomere length as an outcome), and histories of cardiovascular diseases, hypertension, and 
diabetes mellitus. (A) Combined analysis, (B) Sex-stratified analysis, (C) Age-combined analysis. 
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Supplementary Figure 2. Clustering of cell-type-specific annotation for sleep duration phenotypes and biological age 
measurements over histone marks. Each colored square reflects the z-score, scaled by traits. Red indicates enrichment, blue indicates 

depletion. Deeper color represents stronger magnitude of effects. Asterisks represent statistical significance withstanding correction (FDR-
adjusted P-value < 0.05). (A). DNase, (B). H3K27ac, (C). H3K36me3, (D). H3K4me1, (E). H3K4me3, and (F). H3K9ac. PhenoAgeAccel: PhenoAge 
acceleration; BioAgeAccel: BioAge acceleration; LTL: leucocyte telomere length. 

 

 

 

  



www.aging-us.com 20 AGING 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 6 to 12. 

 

Supplementary Table 1. Full names and field IDs of variables included in the current study. 

Phenotypes Labels in the current study 
Full name in UK Biobank 

data dictionary 
UK Biobank Field ID 

Sleep duration Sleep duration (h/d) Sleep duration 1160 

Components of biological ages FEV1 (L) 
Forced expiratory volume in 1-

second (FEV1) (litres) 
3063 

 SBP (mm Hg) 
Systolic blood pressure, 

automated reading (mm Hg) 
4080 

 Total Cholesterol (mg/dL) Cholesterol (mmol/L) 30690 

 Glycated hemoglobin (%) 
Glycated haemoglobin (HbA1c) 

(mmol/mol) 
30750 

 Blood urea nitrogen (mg/dL) Urea (mmol/L) 30670 

 Lymphocyte (%) Lymphocyte percentage (%) 30180 

 Mean cell volume (fL) 
Mean sphered cell volume 

(femtolitres) 
30270 

 Serum glucose (mmol/L) Glucose (mmol/L) 30740 

 
Red cell distribution width 

(%) 

Red blood cell (erythrocyte) 

distribution width (%) 
30070 

 
White blood cell count (1000 

cells/uL) 

White blood cell (leukocyte) 

count (10^9 cells/Litre) 
30000 

 Albumin (g/L) Albumin (g/L) 30600 

 Creatinine (umol/L) Creatinine (umol/L) 30700 

 C-reactive protein (mg/dL) C-reactive protein (mg/L) 30710 

 Alkaline phosphatase (U/L) Alkaline phosphatase (U/L) 30610 

Leucocyte telomere length Leucocyte telomere length 
Z-standardized leucocyte 

telomere length values (LTL) 
22192 
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Supplementary Table 2. Characteristics on genetic variants used for construction of polygenic risk score of self-
reported sleep duration. 

SNP Chromosome Base pair Effect Allele Reference Allele BETA EAF Pleiotropic phenotypes 

rs915416 1 34731984 C G 0.0192587 0.289947  

rs269054 1 57864304 T A -0.0136431 0.577924  

rs61796569 1 66476437 C T -0.0154442 0.730417  

rs12567114 1 98527951 G A -0.0148307 0.724198  

rs62120041 2 9185564 T C 0.0261113 0.933902  

rs374153 2 40382712 C T 0.0176119 0.158085  

rs2717076 2 58061127 C T -0.0184107 0.372584  

rs75539574 2 58871658 A C -0.0362482 0.914208  

rs72804080 2 59358659 A G -0.0177935 0.850072  

rs7556815 2 114085785 G A -0.0407248 0.780856  

rs12611523 2 139195328 A G 0.0126347 0.545244  

rs35662245 2 147583187 T A -0.0145968 0.661256 Schizophrenia 

rs4538155 2 157040773 C T -0.0129753 0.352574  

rs11885663 2 166944004 C T -0.0162176 0.752191  

rs10173260 2 210377845 T C -0.0128368 0.393765  

rs112230981 3 55879269 A G 0.0315275 0.94984  

rs17732997 3 70470834 C G 0.0129345 0.569098  

rs7644809 3 107564459 T C 0.0130621 0.421606  

rs13088093 3 135838598 T G -0.0162722 0.663683  

rs7616632 3 137031237 T G 0.0132035 0.522135 Intelligence 

rs2192528 4 18327896 A G 0.0133687 0.480065  

rs17427571 4 82254908 A G 0.0138255 0.684313  

rs35531607 4 92533225 T C -0.0128402 0.525917  

rs13109404 4 102896591 T G 0.0312035 0.928024  

rs365663 5 1428883 A G 0.0146291 0.545963  

rs460692 5 3126584 C T 0.0210557 0.137484  

rs56372231 5 102321905 C T -0.0169439 0.665907  

rs180769 5 135615615 T C 0.0127243 0.424698  

rs11567976 5 137654218 C T -0.0128042 0.429092  

rs151014368 5 176751059 G A -0.0160924 0.793742  

rs72838268 6 27021173 A G 0.0167192 0.77265  

rs34556183 6 28584775 A G 0.0169228 0.719606  

rs1633005 6 29764472 C T 0.0174716 0.791845 Sarcoidosis 

rs80193650 6 33464363 A G -0.0168389 0.837534  

rs113113059 6 43160375 T C 0.0161406 0.78  

rs9382445 6 54937974 T C 0.014536 0.62305  

rs2231265 6 89790201 A G -0.014955 0.227711  

rs9345234 6 93162639 A C -0.0130117 0.421984  

rs34731055 7 2106928 C T -0.0194603 0.81911  

rs2079070 7 114126432 C G 0.0175475 0.264613  

rs7806045 7 132610266 T C 0.0147916 0.754703  

rs330088 8 9149746 T C -0.0144687 0.452988  

rs4333549 8 10979561 C G 0.0139369 0.47293  

rs73219758 8 14279446 G A 0.0164012 0.708064  

rs10973207 9 37100525 G T -0.0204339 0.842323  

rs1776776 9 140497072 T C 0.019963 0.873832  

rs12246842 10 21830580 A G 0.0133949 0.459815  

rs10761674 10 64618340 C T 0.0123329 0.477334  

rs11190970 10 103128332 G A 0.015379 0.798661  

rs7915425 10 125016501 T C 0.0190638 0.174682 
Neutropenia, response to 

gemcitabine, pancreatic carcinoma 

rs1517572 11 28829882 A C -0.0146443 0.419464  

rs4592416 11 43800474 A G -0.0146828 0.535593  

rs11039544 11 48173412 G A 0.018389 0.837779  

rs174560 11 61581764 T C -0.0135751 0.685785 
Chronic kidney disease, serum 

metabolite measurement 

rs12791153 11 80685181 A T -0.0235481 0.918911  

rs1553132 11 88297740 A G -0.0145068 0.741567  
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rs1939455 11 101520886 G T 0.0204253 0.879446  

rs1079727 11 113289182 T C -0.0182922 0.842182  

rs7115462 11 113408517 G A -0.0265639 0.92647  

rs1263056 11 116576415 A G 0.0127992 0.519099  

rs7951019 11 118358027 T G -0.0368792 0.967773  

rs3751046 11 122828342 A G -0.0194129 0.853507  

rs34354917 12 38764559 C A 0.0137464 0.710472  

rs11614986 12 110007939 A G 0.016379 0.820952  

rs4767550 12 117951150 A G -0.0143001 0.585862  

rs6575005 14 26954078 T C 0.0155637 0.757854  

rs10483350 14 29816155 A G -0.017369 0.804582  

rs61985058 14 60233841 C T -0.0185938 0.856824  

rs55658675 14 65554638 C T 0.0131415 0.644938  

rs11621908 14 78495761 C T 0.0240951 0.917141  

rs8038326 15 47989799 A G 0.0159204 0.72691  

rs3095508 16 6550400 C A 0.0153518 0.593529  

rs11643715 16 23909538 C G -0.013895 0.709058  

rs9937053 16 53799507 G A 0.0169348 0.576695  

rs8050478 16 56120461 G A 0.0160009 0.500253  

rs7503199 17 8134275 C T 0.0147449 0.734267  

rs205024 17 11227352 C T -0.0138261 0.616265  

rs8072993 17 21335627 T G -0.0174776 0.363492  

rs147114641 17 43581015 C A 0.0159801 0.773722  

rs2696429 17 44335274 G A 0.0168884 0.773626  

rs9895274 17 45539117 C T 0.0133426 0.510408  

rs9903973 17 50571227 C T 0.0127747 0.46702  

rs12607679 18 53059748 T C 0.0201387 0.737717  

rs10421649 19 9942262 T A -0.0132975 0.44303  

rs2072727 20 43538733 T C 0.0132425 0.43617 Chronotype measurement 
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Supplementary Table 3. Descriptive statistics for UK Biobank participants of European ancestry (N = 317,723) 
included in the main analyses of sleep duration and PhenoAge acceleration, according to self-reported sleep 
duration. 

Characteristics All Short sleep, <6 h/d Intermediate sleep, 6-8 h/d Long sleep, >8 h/d 

No. of participants 384,490 19,928 335,202 29,360 

Sleep duration, h/d 7.16 (1.08) 4.76 (0.52) 7.12 (0.73) 9.30 (0.64) 

Age at recruitment, y 56.8 (8.02) 57.2 (7.70) 56.6 (8.03) 58.8 (7.90) 

Sex (women), n (%) 206642 (53.7%) 11162 (56.0%) 179092 (53.4%) 16388 (55.8%) 

Education     

Degree, n (%) 315151 (82.7%) 13978 (71.2%) 279810 (84.2%) 21363 (73.6%) 

No degree, n (%) 66008 (17.3%) 5651 (28.8%) 52683 (15.8%) 7674 (26.4%) 

Body mass index, kg/m2 27.4 (4.75) 28.5 (5.45) 27.3 (4.66) 28.1 (5.09) 

Smoking status     

Never, n (%) 206510 (53.9%) 9732 (49.1%) 182171 (54.5%) 14607 (50.0%) 

Previous, n (%) 136638 (35.7%) 6996 (35.3%) 118480 (35.5%) 11162 (38.2%) 

Current, n (%) 40062 (10.5%) 3094 (15.6%) 33501 (10.0%) 3467 (11.9%) 

Drinking status     

Never, n (%) 12340 (3.21%) 1036 (5.21%) 10017 (2.99%) 1287 (4.39%) 

Previous, n (%) 13271 (3.45%) 1290 (6.49%) 10479 (3.13%) 1502 (5.12%) 

Current, n (%) 358575 (93.3%) 17560 (88.3%) 314470 (93.9%) 26545 (90.5%) 

IPAQ activity group     

High, n (%) 126921 (40.5%) 6218 (41.0%) 111974 (40.8%) 8729 (37.2%) 

Moderate, n (%) 127813 (40.8%) 5507 (36.3%) 112751 (41.1%) 9555 (40.8%) 

Low, n (%) 58433 (18.7%) 3429 (22.6%) 49854 (18.2%) 5150 (22.0%) 

Major diseases     

Cardiovascular disease, n (%) 22051 (5.74%) 1879 (9.45%) 17307 (5.17%) 2865 (9.78%) 

Hypertension, n (%) 103404 (26.9%) 6797 (34.2%) 86839 (25.9%) 9768 (33.3%) 

Diabetes mellitus, n (%) 18386 (4.79%) 1420 (7.16%) 14568 (4.35%) 2398 (8.19%) 

Component of biological age     

Lymphocyte (%) 28.7 (7.34) 28.3 (7.54) 28.7 (7.31) 28.2 (7.56) 

Mean cell volume (fL) 82.9 (5.25) 83.0 (5.52) 82.8 (5.20) 83.2 (5.59) 

Serum glucose (mmol/L) 5.11 (1.21) 5.21 (1.42) 5.10 (1.16) 5.26 (1.51) 

Red cell distribution width (%) 13.5 (0.95) 13.6 (1.08) 13.5 (0.93) 13.6 (1.04) 

White blood cell count (1000 cells/uL) 6.89 (1.93) 7.14 (1.99) 6.85 (1.91) 7.13 (2.11) 

Albumin (g/L) 45.2 (2.61) 45.1 (2.69) 45.3 (2.59) 45.0 (2.67) 

Creatinine (umol/L) 72.2 (16.2) 71.7 (18.3) 72.2 (15.8) 73.3 (19.4) 

C-reactive protein (mg/dL) 0.26 (0.44) 0.32 (0.50) 0.25 (0.42) 0.32 (0.51) 

Alkaline phosphatase (U/L) 83.5 (26.1) 88.2 (30.1) 82.9 (25.6) 86.7 (28.8) 

Biological ages, y     

PhenoAge 50.8 (9.42) 52.0 (9.30) 50.4 (9.34) 53.7 (9.82) 

PhenoAge acceleration 0.00 (4.66) 0.80 (5.39) -0.12 (4.53) 0.87 (5.39) 

Baseline characteristics of UK Biobank participants were presented as mean values (standard deviation) for continuous 
variables and n (%) for categorical variables. 
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Supplementary Table 4. Descriptive statistics for UK Biobank participants of European ancestry (N = 317,723) 
included in the main analyses of sleep duration and BioAge acceleration, according to self-reported sleep 
duration. 

Characteristics All Short sleep, <6 h/d Intermediate sleep, 6-8 h/d Long sleep, >8 h/d 

No. of participants 317,723 15,821 278,440 23,462 

Sleep duration, h/d 7.16 (1.06) 4.78 (0.51) 7.12 (0.73) 9.28 (0.62) 

Age at recruitment, y 56.6 (8.04) 57.0 (7.76) 56.4 (8.04) 58.7 (7.97) 

Sex (women), n (%) 171835 (54.1%) 8961 (56.6%) 149596 (53.7%) 13278 (56.6%) 

Education     

Degree, n (%) 263167 (83.5%) 11368 (72.8%) 234480 (84.9%) 17319 (74.6%) 

No degree, n (%) 51954 (16.5%) 4238 (27.2%) 41827 (15.1%) 5889 (25.4%) 

Body mass index, kg/m2 27.3 (4.67) 28.4 (5.29) 27.2 (4.59) 27.9 (5.00) 

Smoking status     

Never, n (%) 172605 (54.5%) 7923 (50.4%) 152827 (55.1%) 11855 (50.7%) 

Previous, n (%) 112269 (35.5%) 5575 (35.4%) 97811 (35.2%) 8883 (38.0%) 

Current, n (%) 31820 (10.0%) 2236 (14.2%) 26954 (9.71%) 2630 (11.3%) 

Drinking status     

Never, n (%) 10002 (3.15%) 788 (4.99%) 8216 (2.95%) 998 (4.26%) 

Previous, n (%) 10414 (3.28%) 956 (6.06%) 8336 (3.00%) 1122 (4.79%) 

Current, n (%) 297067 (93.6%) 14040 (89.0%) 261702 (94.1%) 21325 (91.0%) 

IPAQ activity group     

High, n (%) 106018 (40.9%) 5080 (41.9%) 93744 (41.0%) 7194 (38.3%) 

Moderate, n (%) 105833 (40.8%) 4414 (36.4%) 93756 (41.0%) 7663 (40.8%) 

Low, n (%) 47654 (18.4%) 2623 (21.6%) 41091 (18.0%) 3940 (21.0%) 

Major diseases     

Cardiovascular disease, n (%) 16096 (5.07%) 1260 (7.98%) 12804 (4.60%) 2032 (8.68%) 

Hypertension, n (%) 82698 (26.1%) 5178 (32.8%) 69991 (25.2%) 7529 (32.2%) 

Diabetes mellitus, n (%) 14409 (4.54%) 1044 (6.63%) 11570 (4.16%) 1795 (7.67%) 

Component of biological age     

FEV1 (L) 2.85 (0.80) 2.71 (0.81) 2.87 (0.80) 2.68 (0.75) 

SBP (mm Hg) 138 (18.5) 138 (18.3) 138 (18.4) 139 (19.0) 

Total Cholesterol (mg/dL) 221 (43.9) 222 (45.5) 221 (43.5) 220 (47.1) 

Glycated hemoglobin (%) 3.58 (0.63) 3.67 (0.72) 3.57 (0.61) 3.67 (0.76) 

Blood urea nitrogen (mg/dL) 15.2 (3.82) 15.2 (4.10) 15.1 (3.76) 15.5 (4.27) 

Albumin (g/L) 45.3 (2.59) 45.2 (2.66) 45.3 (2.58) 45.1 (2.65) 

Creatinine (umol/L) 72.2 (17.1) 71.5 (18.8) 72.2 (16.4) 73.3 (23.7) 

C-reactive protein (mg/dL) 0.25 (0.41) 0.30 (0.46) 0.24 (0.40) 0.30 (0.48) 

Alkaline phosphatase (U/L) 83.0 (25.9) 87.4 (29.5) 82.5 (25.4) 85.9 (28.3) 

Biological ages, y     

BioAge 53.9 (8.67) 54.9 (8.36) 53.7 (8.65) 56.5 (8.59) 

BioAge acceleration 0.00 (3.31) 0.61 (3.47) -0.08 (3.28) 0.49 (3.49) 

Baseline characteristics of UK Biobank participants were presented as mean values (standard deviation) for continuous 
variables and n (%) for categorical variables. 

  



www.aging-us.com 25 AGING 

Supplementary Table 5. Descriptive statistics for UK Biobank participants of European ancestry (N = 442,664) 
included in the main analyses of sleep duration and telomere length, according to self-reported sleep duration. 

Characteristics All Short sleep, <6 h/d Intermediate sleep, 6-8 h/d Long sleep, >8 h/d 

No. of participants 442,664 23,030 385,786 33,848 

Sleep duration, h/d 7.16 (1.08) 4.76 (0.52) 7.12 (0.73) 9.30 (0.64) 

Age at recruitment, y 56.8 (8.03) 57.2 (7.71) 56.6 (8.03) 58.8 (7.90) 

Sex (women), n (%) 239936 (54.2%) 12977 (56.3%) 207921 (53.9%) 19038 (56.2%) 

Education     

Degree, n (%) 363075 (82.7%) 16186 (71.3%) 322253 (84.2%) 24636 (73.6%) 

No degree, n (%) 75785 (17.3%) 6501 (28.7%) 60436 (15.8%) 8848 (26.4%) 

Body mass index, kg/m2 27.4 (4.76) 28.5 (5.47) 27.3 (4.67) 28.1 (5.13) 

Smoking status     

Never, n (%) 237954 (53.9%) 11218 (49.0%) 209880 (54.6%) 16856 (50.0%) 

Previous, n (%) 157078 (35.6%) 8075 (35.3%) 136152 (35.4%) 12851 (38.1%) 

Current, n (%) 46137 (10.5%) 3611 (15.8%) 38519 (10.0%) 4007 (11.9%) 

Drinking status     

Never, n (%) 14243 (3.22%) 1204 (5.24%) 11541 (2.99%) 1498 (4.43%) 

Previous, n (%) 15299 (3.46%) 1496 (6.51%) 12062 (3.13%) 1741 (5.15%) 

Current, n (%) 412778 (93.3%) 20280 (88.3%) 361920 (93.9%) 30578 (90.4%) 

IPAQ activity group     

High, n (%) 146179 (40.5%) 7155 (40.9%) 128972 (40.8%) 10052 (37.3%) 

Moderate, n (%) 147130 (40.8%) 6340 (36.3%) 129825 (41.1%) 10965 (40.7%) 

Low, n (%) 67260 (18.7%) 3989 (22.8%) 57324 (18.1%) 5947 (22.1%) 

Major diseases     

Cardiovascular disease, n (%) 25440 (5.76%) 2207 (9.61%) 19903 (5.17%) 3330 (9.86%) 

Hypertension, n (%) 118845 (26.9%) 7889 (34.3%) 99691 (25.9%) 11265 (33.4%) 

Diabetes mellitus, n (%) 21267 (4.81%) 1667 (7.27%) 16815 (4.37%) 2785 (8.25%) 

White blood cell (leukocyte) count, 10^9 cells/Litre 6.90 (2.04) 7.15 (1.98) 6.86 (2.03) 7.14 (2.21) 

Z-standardized leucocyte telomere length values -0.01 (0.99) -0.07 (0.98) -0.01 (0.99) -0.09 (1.01) 

Baseline characteristics of UK Biobank participants were presented as mean values (standard deviation) for continuous 
variables and n (%) for categorical variables. 
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Supplementary Table 6. Results of multivariable linear regressions of PhenoAge acceleration (PhenoAgeAccel), 
BioAge acceleration (BioAgeAccel), and leukocyte telomere length on sleep duration. 

 

Supplementary Table 7. Mendelian randomization estimates for PhenoAge acceleration (PhenoAgeAccel), 
BioAge acceleration (BioAgeAccel), and leukocyte telomere length in overall population and strata of 
population defined by residual sleep duration among UK biobank men participants. 

 

Supplementary Table 8. Mendelian randomization estimates for PhenoAge acceleration (PhenoAgeAccel), 
BioAge acceleration (BioAgeAccel), and leukocyte telomere length in overall population and strata of 
population defined by residual sleep duration among UK biobank women participants. 

 

Supplementary Table 9. Mendelian randomization estimates for PhenoAge acceleration (PhenoAgeAccel), 
BioAge acceleration (BioAgeAccel), and leukocyte telomere length in overall population and strata of 
population defined by residual sleep duration among younger (age < 58 years) UK biobank participants. 

 

Supplementary Table 10. Mendelian randomization estimates for PhenoAge acceleration (PhenoAgeAccel), 
BioAge acceleration (BioAgeAccel), and leukocyte telomere length in overall population and strata of 
population defined by residual sleep duration among older (age >= 58 years) UK Biobank participants. 

 

Supplementary Table 11. Mendelian randomization estimates for PhenoAge acceleration (PhenoAgeAccel), 
BioAge acceleration (BioAgeAccel), and leukocyte telomere length in overall population and strata of 
population defined by residual sleep duration after adjusting for additional confounders. 

 

Supplementary Table 12. Mendelian randomization estimates for PhenoAge acceleration (PhenoAgeAccel), 
BioAge acceleration (BioAgeAccel), and leukocyte telomere length in overall population and strata of 
population defined by residual sleep duration after excluding potential pleiotropic variants from the genetic 
risk score. 


