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INTRODUCTION 
 

Biological aging is the accumulation of damage to the 

cellular and molecular functional units of tissues over 

time, leading to breakdowns of physiological systems, 

age-related disease, and, ultimately, mortality [1]. This 

process, combined with the global population under-

going a demographic transition in which a rising 

percentage is living into historically advanced ages, 

motivates the search for therapies that would intervene 

in the biological aging process and thus delay, 

decelerate, or reverse multiple manifestations of age-

related ill health [2]. 

 

The cornerstone test for longevity therapeutics in animal 

models is the lifespan study, emphasizing maximum 

lifespan [3, 4]. However, potential treatments should 

also increase the time spent in good health, motivating 

interest in developing quantitative metrics for health 

span. One approach to this metric is the rodent frailty 

index (FI). In humans, frailty is a clinical syndrome 

characterized by a decline in physiological resilience and 

increased vulnerability to adverse health outcomes, 

particularly in the elderly [5]. As a population ages, there 

is an increase in frailty, especially over the age of 65, 

with a significant correlation between frailty, mortality, 

and hospitalization being evidenced [6, 7]. Hence, 

researchers have constructed practical and objective 

measures of frailty to manage and test new interventions 

against the syndrome. The frailty index is a quantitative, 

multidimensional approach that evaluates an individual’s 

level of frailty based on the accumulation of health 

deficits [8]. Subsequent research has shown that FIs are 

robust predictors of mortality in humans, even in people 

early in middle age who are not colloquially “frail”  

[9, 10] and similar deficit-based constructs respond to 

putative longevity interventions in humans [10–13]. 

 

More recently, rodent FIs have been developed on 

principles like the human originals, using a panel of 
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ABSTRACT 
 

Animal lifespan studies are foundational to developing interventions against the biological aging process. In recent 
years, there has been rising interest in characterizing the effects of longevity therapeutics on health span. Frailty 
indexes, originally developed to assess clinical frailty in aging humans, have shown promise as measurements of 
biological age and have been adopted for use in rodent aging biology. This Perspective looks at the current state 
of rodent frailty indexes and how they are implemented. The differences in frailty parameters used to calculate 
these indexes have led to inconsistencies between studies defining frailty. In this Perspective, we have highlighted 
those differences and made recommendations for implementing protocols for frailty index measurement. 
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physical and/or clinical parameters to measure frailty. 

However, developing FIs in rodents is not straight-

forward. Researchers have adopted different approaches 

by varying the types and numbers of parameters to be 

included in the FI and cut-off points that classify an 

animal as frail. This variation results in each study 

having a different operational definition of frailty, 

which reduces the ability to compare findings across 

studies, thereby impeding progress toward longevity 

therapeutics. Even in humans, where sample sizes are 

larger and clinical data for FI construction is broader 

and more robust, different frailty instruments vary in 

which patients they identify as frail and are challenging 

to implement in clinical settings [14]. 

 

This Perspective highlights these differences and 

compares rodent and human frailty index scores. We 

summarise the published strategies for implementing 

frailty indexes, discuss their strengths and weaknesses, 

and implement a frailty index based on physical 

performance with our young and old mice. The 

Perspective concludes by making recommendations 

regarding FI use for studies of aging, age-related 

disease, and longevity therapeutics. 

 

MATERIALS AND METHODS 
 

Animals 

 

Young (3-4 months), middle-aged (18 months), and old 

(28 months), mainly male C57BL/6 mice, were 

acquired from Charles River Laboratories (Wilmington, 

MA, USA) (n = 3-7 per group). Young 3-month-old 

(n=5) mice were all male, 4-month-old mice included 

two males and two females, 18-month-old (n=5) were 

all male, and 28-month-old (n=4) were three males and 

one female. Mice were housed in a vivarium with ad 

libitum access to food (Teklad Global Soy protein-free, 

Envigo) and water (Aquavive Water, Innovive Inc). 

Cages were changed every 1-2 weeks depending on the 

number per cage, and documents were maintained under 

national and local regulations. All animal experiments 

in this study are approved by the Lifespan Research 

Institute IACUC committee following the “Guide for 

the Care and Use of Laboratory Animals” prepared by 

the Institute for Laboratory Animal Research, National 

Academy of Sciences. 

 

Grip strength 

 

C57BL/6 mice were used to establish baseline grip 

strength using the Grip Strength Meter (47200, Ugo 

Basile®). The mice were held by the mid-base of the 

tail, allowing their front paws to grip the bar. Once 

gripped, the mice were pulled back steadily, keeping 

them horizontal. The flat bar was used to measure the 

highest forelimb grip strength of the mice. To account 

for weight increases in older mice, results were 

normalised to weight. Each mouse was tested 4 times. 

The weakest measurement was removed and the 

average of the remaining scores was calculated. 

 

Open field testing 

 

C57BL/6 mice were used to establish a baseline  

of mobility and behavior using open-field testing 

(Noldus Ethovision XT 17.5). Two arenas side by  

side (50x50cm) were set up with Basler GenICam 

(acA1300-60, Basler) above. Arena settings were 

utilized to establish each arena's scale (50cm) and center 

and periphery. The periphery is defined as the 

outermost 10cm on either side of the center (30cm) of 

the arena. Each mouse began the experiment in the 

bottom left corner and was recorded for 10 minutes. 

Video analysis software (Ethovision XT 17.5) was used 

to track the mice using the center body point and 

calculate the total distance moved, percent of time spent 

in movement, average velocity, body elongation, and 

mobility. Between each trial, 70% ethanol was used to 

clean the arena to remove scent marks, and a 10-minute 

wait period was used to allow ethanol evaporation. 

 

Measures used to construct the frailty index (FI) 

 

The factors from open-field testing used to comprise the 

frailty index are previously described [15, 16]. They 

include the total distance moved (tracked by center-

point over 10 minutes in cm), the maximum distance 

between two consecutive points in the tracks in cm 

(available in trial statistics of distance moved in the 

Ethovision analysis profile), total duration of movement 

(s), proportion of time spent moving (%), meander 

(change in direction per unit distance moved measured 

in degrees/cm from 0°-180°), average velocity (cm/s), 

rearing frequency (occurrence/time), and weight (g). 

For both studies, the duration of the open-field test was 

10 minutes. 

 

Frailty index cutoff points 

 

The young, middle-aged, and old mice required 

reference values to determine frailty levels. For these, 

we included our 3-4-month-old mice and the reference 

values from two previous reports, which were in one 

case males aged 5 months (n = 5) [15], and in the other 

males and females aged 13.5 months (n=3 per sex) 

[16]. When using reference values from 3-month-old 

male mice, all females from our cohort were removed. 

For each mouse, each factor of the FI was compared to 
the reference values. The frailty scores were applied if 

the measured score differed from the reference by at 

least 1SD (Standard Deviation). They were graded as 
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follows: less than 1SD scored 0; values differed by ± 1 

SD scored 0.25; values that differed by ± 2 SD scored 

0.5; values differed by ± 3SD scored 0.75; values that 

differed by more than 3SD scored maximum frailty of 

1. The sum of these scores for each factor was divided 

by the number of parameters (8) to produce a total 

frailty score for each mouse [16]. 

 

Statistics 

 

GraphPad Prism V10.1.0 software was used to perform 

statistical analysis. A two-way ANOVA analysis was 

used to see if two or more independent variables 

affected the dependent variable (multiple age groups in 

frailty scores or grip strength). To be considered 

statistically significant, the P-value must be ≤ 0.05 and 

was quantified in the following order. * = p ≤ 0.05, ** p 

= ≤ 0.01, *** = p ≤0.001, **** = p ≤0.0001. For each 

experiment and each condition, n ≥ 3. 

 

Study selection process 

 

A rigorous literature review with a range of keywords 

was used to search peer-reviewed journals: frailty,  

frailty index, aging, mice, longevity, healthspan, rodents, 

and phenotype. Databases searched included PubMed, 

EBSCOhost, Google Scholar, and Loughborough 

University Ex Libris. Only original research articles 

were included in the criteria, literature reviews and other 

article types were excluded. Only frailty indexes based 

on rodents were included with human frailty indexes 

excluded. This method provided 18 peer-reviewed 

articles published between 2012 and 2023. Other papers 

were identified but not included as this Perspective 

focuses on frailty indexes that are novel, modified, or 

further validate established versions [15–32]. 

 

RESULTS 
 

All FIs included in this review provide a numeric score 

indicating the level of frailty present, but their 

respective methods differ significantly (Supplementary 

Table 1). When choosing which established FI to 

implement, one must examine what cutoff point to 

utilize, what reference values to use if a scaled frailty 

score is desired or the cohort is small, the equipment 

available, and the factors to include. For instance, 

scoring systems may rely on quantifying physical 

performance (13/18 studies) [15, 16, 19, 22–26, 28, 29, 

31–33] or clinical observations (13/18 studies) [15, 16, 

18–22, 25, 27, 29–32], with several articles using both 

[15, 16, 19, 22, 25, 29, 31, 32]. Those measuring 

physical fitness are modelled on Fried et al., 2001, who 

created a human frailty index measuring four key 

factors: weakness, slowness, low activity, and poor 

endurance [34]. 

The contents of the FIs vary significantly, depending on 

whether clinical observations or physical outputs are 

measured. For instance, those focusing on physical 

measurements have fewer items in their FI (4-5 items 

(7/18 studies) [17, 22–24, 26, 28, 31] or 8 items (4/18 

studies)) [15, 16, 29, 32], whereas those using clinical 

observations measured 23-34 items (12/18 studies)  

[15, 16, 18–21, 25, 27, 29–32]. Additionally, there is 

variation in the cutoff points used to determine whether 

a subject is frail and to what extent. This includes 0.8SD 

from a reference point or the lowest 20% of a cohort 

(7/18 studies) [22–24, 26, 28, 29, 31], 1.5SD (4/18 

studies) [17, 23, 27, 31], a staggered cutoff point of 1, 2, 

3, 3+SD (9/18 studies) [15, 16, 18–21, 25, 27, 30], or 

visual determination of 0 = not frail, 0.5 = mildly frail, 

and 1 = frail (9/18 studies) [15, 18–21, 27, 29, 30, 32]. 

The cohort mean is often utilized as the reference point. 

But if a staggered cutoff point is used, a reference value 

is required from a control subject group. If the cohort 

mean-SD is used as the cut-off point, the frailty scoring 

is binary, either not frail = 0 or frail = 1. 0. When 

multiple cut-off points are used (1, 2, 3, 3+SD), then 

frailty is scored in a gradient (0, 0.25, 0.5, 0.75, 1). 

 

While human frailty is the basis for rodent FIs, how to 

compare data from rodent FIs to equivalent effects if 

translated to humans is not clear. One approach is to 

compare deficits among animals and humans of similar 

biological age. Various investigators have developed 

systematic methods of equating biological age between 

mice and humans, including development, epigenetic 

age clocks, gene expression patterns, disease onset ages, 

median and maximum lifespan proportions, and/or the 

trajectory of the survival curve [35–38]. As a result, 

several studies [15–17, 20–22, 26, 27] have linked their 

rodent analysis to quantitative human data, whereas 

others make no direct comparison (Supplementary 

Table 1) [18, 19, 23–25, 28–32]. 

 

Those making such comparisons often use deficit 

accumulation as the key metric (natural log of FI vs. 

age) after normalizing human and mouse data sets  

to 90% mortality values or comparing the equivalent 

ages of the two species. The problem with using 

corresponding ages is the inconsistency across the 

literature in what age cutoffs are considered equivalent. 

Liu et al. identified 9% of 27-28-month-old mice as 

frail, consistent with frailty levels in 80-year-old 

humans [17]. While Baumann et al. found all mice frail 

at 32 months of age but compared this to 60+ years in 

humans, where 5-10% of 60-69-year-olds or 26-65% of 

85+-year-olds are frail [26]. Another publication 

suggests that a 32-month-old mouse is equivalent to a 
109-year-old human [35]. Kane et al. observed 16-44% 

of 23-month-old mice as frail depending on the FI index 

used, while humans aged 65+ years showed a 22-32% 
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frailty range using comparable indexes [22]. Two FIs 

quantified different animals of the same age group as 

frail [22]. Furthermore, another study compared three 

FIs in a group of 24-month-old males and found 

inconsistency between which mice were frail [31]. 

 

Like the heterogeneity of mouse data, the lack of a 

universally agreed standard of human frailty scoring 

ensures that the reference ages for the percentage of the 

population identified as frail at a given age will also  

be inconsistent. The difficulty in making precise 

comparisons is evident, though the underlying fact of 

deficit accumulation increasing with age remains. 

Developing a simplified approach for FI calculations in 

murine models and humans is essential for standardizing 

assessments, improving reproducibility, and validating 

medical interventions for their translational potential for 

human aging and frailty management. 

 

We strived to provide recommendations for implement-

ing FI in murine models with commonly available 

equipment and inform our analysis of the challenges in 

doing so. To this end, we scored our mice on the 8-item 

FI developed and implemented in the literature, as  

it suited the available equipment and allowed frailty 

 to be measured as a gradient [15, 16]. To score the 

mice in our study, we utilized the reference values 

from these studies. It is clear from this implementation 

that the reference ranges in these studies are not 

consistent, and further work will be required to develop 

reproducible reference ranges. However, our data are 

underpowered and are intended for illustrative purposes 

only and should not be used to draw independent 

conclusions. As the reference values of one study had 

both sexes, and our cohort did too, we matched them by 

sex [16]. Notably, the other reference value cohort was 

female, and most of our subjects were male [15]. 

However, the 3-4-month-old mice in this study are 

younger than those used to establish the reference 

values [15, 16]. 

 

Sex as a biological variable in FIs is an important 

consideration, as there is a known difference between 

male and female frailty onset and progression. In 

humans, females show higher frailty index scores in all 

ages compared to males [39]. For aging studies in mice 

in this Perspective, males are predominantly used 

(10/18 studies) [17, 18, 20–24, 26, 31, 32] with both 

sexes (5/18 studies) [16, 19, 25, 27, 29] and females 

(3/18 studies) [15, 28, 30] used significantly less. One 

study measuring both sexes found males to have higher 

frailty scores in an Alzheimer’s model [29]. Another 

found that in C57BL/6 mice the frailty index 
implemented altered which sex had the higher frailty 

score [27]. Therefore, with the key role sex can play in 

frailty, it is preferred to separate the age groups by sex. 

Using the first set of published reference values, the 8-

item FI yielded frailty scores of 0.37/1 for our 3-4-

month-old mice, 0.52/1 for our 18-month-old mice, and 

0.66/1 for our 28-month-old mice (Figure 1A) [16]. The 

second published reference values (averages of trial 

1+2) yielded scores for the 3-4-month-old mice as 

0.26/1, 18 months as 0.46/1, and 28 months as 0.48/1 

frailty scores (Figure 1A–1i) [15]. In both reference 

sets, the frailty scores among the 3–4-month-old 

animals were notably high. The parameters responsible 

for scoring young mice as frail were the maximum 

distance post inactivity, meander, and movement 

duration, which affected this group's overall frailty 

score. 

 

High scores in movement duration in our young mice 

may be due to differences in acclimatization protocols. 

Parks et al. allowed 5 days of testing in the arena, using 

the last 2 days for assessment [16]. We acclimatized the 

mice to the testing room but not the arena for an hour 

before data collection, as open field testing depends on 

the inherent explorative nature of mice. The meander 

can also be measured differently, either as a relative or 

absolute meander, using Ethovision video software 

analysis (version 17.0.1). It can also be calculated from 

either the body point or the head direction. The maximal 

distance post-inactivity could also benefit from further 

clarification on how it is precisely measured; for 

example, how inactivity was defined and what body 

point was measured. 

 

Based on these potential sources of discrepancy, we 

recommend each lab use its own reference mice to limit 

variability. When we did this using our 3-month-old mice 

to establish the reference values, the overall frailty scores 

in mice aged 18-28 months were much lower than the 

reference values that were used from similarly aged mice 

from published literature (0.03/1 [16] and 0.22/1 [15], 

respectively (Figure 1Aii)). Most studies (12/18) have 

used C57BL/6 mice to assess new FIs or modify existing 

FIs. Therefore, if using a different mouse strain or a 

transgenic or disease model, identifying the baseline of a 

lab’s rodent population is even more critical. We 

recommend using each mouse as its reference point for 

longitudinal studies, strengthening the analysis without 

increasing the workload, as the cost is often a significant 

factor for in vivo studies involving aged subjects, 

especially longitudinal studies. A common strategy for 

anti-aging interventions is to collect baseline data before 

and after treatment. 

 

One challenge when creating reference values from a 

group of young mice is inherent variation within the 
group. If the reference group variation is significant, 

some of the frailty parameters in test mice may not 

reach a score of 1. One strategy to circumvent this is to 
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reduce diversity in the reference value group. For 

example, Antoch et al. excluded animals if their scores 

exceeded the mean by more than one SD [25]. 

However, inclusion or exclusion of the outliers in small 

sample sizes risks creating non-representative values. 

Using each mouse as its reference point can also 

circumvent this potential issue. Similarly, to ascertain if 

a treatment can improve frailty we suggest scoring the 

same mice before treatment and utilizing that as 

individual reference values, instead of comparing the 

FIs of an aged, treated group with young, untreated 

mice as commonly done in rodent aging studies. 

 

Similar to 4-5 item FIs, we included grip strength to 

characterize the physical health of the mice further. Due 

to equipment limitations, we were unable to fully 

implement the 4-5 item FI, which required an inverted 

cling-grip test, a rotarod, and voluntary wheel running 

cages. In grip strength scores normalized by weight, the 

3- to 4-month-old mice had the highest average score, 

with 18- and 28-month-old mice having lower scores 

accordingly. However, the difference between 18 and 

28 months was not statistically significant due to a 

single animal’s exceptionally high score (Figure 1B). 

Using individual mice as their comparators in 

longitudinal assessments could help identify any 

increases or decreases in performance. Normalization 

by weight is imperfect because it does not account for 

the changes in muscle mass and fat between young and 

old mice, as older mice tend to gain fat and lose muscle 

 

 
 

Figure 1. Analysis of the frailty phenotype in 3-4, 18, and 28-month-old C57BL/6 mice. (A) Frailty index scores implemented using 

Parks et al., 2012 reference values. (A–i) Frailty index scores implemented using Whitehead et al., 2014 reference values. (A–ii) Frailty index 
scores using our own 3–4-month-old mice as reference values. (B) Grip strength (average forelimb parallel bar score) is normalized to weight 
for 3-4, 18, and 28-month-old mice. P-values ≤ 0.05 (*), ≤ 0.01 (**), ≤ 0.001 (***), ≤ 0.0001 (****) were calculated using one-way ANOVA for 
three or more independent groups or unpaired t-tests for just two independent groups. Columns represent the mean with error bars ± SD. 
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mass. To address this, body composition measurements 

would be preferable, although they require specialized 

and expensive equipment. 

 

One limitation of this study is the low number of 

animals per group, which limits the results for animals 

of a given age, as some recommend a minimum of 20 

animals per sex to measure physiological changes. 

However, this Perspective may be helpful in frailty-

scoring selections for small-scale studies with limited 

subjects. 

 

Open-field testing (OFT) or automated video testing 

simplifies frailty measurements when the methods are 

clearly defined and well-documented. Furthermore,  

it eliminates errors introduced by limited inter-rater 

reliability, a well-recognized problem in clinical 

observation FIs, as user input is minimal [18, 20]. To 

determine the most significant factors from OFT to 

include, an independent study is necessary to identify 

which parameters best predict mortality. For instance, 

investigators could make periodic measurements of the 

various OFT parameters (e.g., every 3 months) with a 

significant sample size until death, and then assess each 

factor to determine its weight in predicting mortality 

compared to an established FI. 

 

The reason for this extensive independent study is the 

components of the current indexes. For instance, 8 item 

FIs include the total distance (cm), velocity (cm/s), and 

movement duration (s and %). Therefore, 4/8 factors 

measure closely related physiological traits, giving 

movement great weight in this index. Although walking 

speed is a well-established mortality indicator and 

predictor of surgical outcomes in humans, assigning 

movement-related variables half the overall score in a 

rodent FI will likely overweight the index [6, 7]. 

Principal component analysis should be applied to 

reduce the number of variables and choose those that 

are both highly predictive of mortality and (amongst 

those that fall within the same principal component) 

most convenient for implementation. One study 

prioritized a diversity of health-related physiological 

systems over a single key physiological trait, alongside 

quantitative parameters without visual scoring, while 

maintaining minimal invasiveness [25]. For future 

additions to FIs, one study measured gait speed in the 

cage and on the wheel in C57BL/6 mice and found it 

correlated with age and the manual frailty index [32]. 

 

Further development of frailty indices could improve 

their accuracy. Quantitative and automated measures 

would help further reduce inter-rater reliability concerns 
and experimenter bias, and in turn lab-to-lab variation. 

measurements such as bone density, measured non-

invasively by micro-CT, have been proven to show 

differences in murine age, especially in cranio-facial 

bones [40–42]. However, this technique comes with a 

significant cost. Changes in eating behaviour, such as 

food dropping, reduced consumption, or altered eating 

patterns, serve as another quantitative measure observed 

in aging mice for future frailty indices [43, 44]. 

 

Aging also affects the circadian rhythm and feeding 

patterns in mice, as caloric restriction and feeding 

during the active phase of the circadian rhythm resulted 

in extended healthspan and lifespan [45]. One study in 

this Perspective identified an age-related change in the 

circadian distribution of wheel running, suggesting the 

inclusion of the circadian rhythm in frailty indices is 

warranted [32]. Evidence in humans corroborates the 

significant changes in the circadian rhythm with age, 

potentially offering additional translational evidence for 

future frailty indices [46]. To assess the age-related 

decline in cognitive function, namely spatial learning 

and memory, a Barnes-Maze test could be implemented. 

One group developed a cognitive frailty index (CoFI) to 

assess various parameters of the Barnes-Maze test in 

over 400 C57BL/6 mice [47]. While no sex-related 

differences were observed, an increase in CoFI scores 

with advancing age and a strong association with 

mortality were evident [45, 32, 46]. 

 

Another aspect is olfactory tests, which measure the 

loss of smell evident in aged C57BL/6 mice, where the 

loss of odor discrimination was among the earliest 

biomarkers compared to cognitive and motor function 

tests [48]. Olfactory tests have been included in a mouse 

Social Frailty Index (mSFI), which also analyses urine 

marking, social interactions, and nest building [49]. 

Interestingly, sex differences were observed, with 

females exhibiting lower mSFI scores compared to 

males, which correlates with data from physical indices. 

The application of a physical and cognitive/social frailty 

index could provide greater insight into the holistic 

effect of any anti-aging intervention. 

 

CONCLUSION 
 

Studies discussed in this Perspective offer a variety of 

approaches to measuring frailty. We recommend that 

investigators carefully consider what aspects of frailty 

to include in their analyses instead of fully adopting the 

published scoring systems. It is preferable to avoid 

including and giving equal weight to multiple 

parameters that measure closely related physiological 

traits, such as multiple parameters related to movement. 

In addition, it is best to use automated measurements 

where possible to avoid experimenter bias and inter-

rater variations. As there is substantial variation even 

between mice of the same strain, it is optimal to 

measure baseline frailty in each animal and to track 
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changes over time in response to treatment and during 

physiological aging, especially in a small sample size. 

Doing so accounts for variability in baseline values. It 

increases sensitivity in detecting subsequent changes 

while reducing the chances of false positives, resulting 

in a more reliable measurement of physical health in 

aging rodents and the effects of longevity therapeutic 

candidates. 
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