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ABSTRACT

Animal lifespan studies are foundational to developing interventions against the biological aging process. In recent
years, there has been rising interest in characterizing the effects of longevity therapeutics on health span. Frailty
indexes, originally developed to assess clinical frailty in aging humans, have shown promise as measurements of
biological age and have been adopted for use in rodent aging biology. This Perspective looks at the current state
of rodent frailty indexes and how they are implemented. The differences in frailty parameters used to calculate
these indexes have led to inconsistencies between studies defining frailty. In this Perspective, we have highlighted
those differences and made recommendations for implementing protocols for frailty index measurement.

INTRODUCTION index (FI). In humans, frailty is a clinical syndrome
characterized by a decline in physiological resilience and
Biological aging is the accumulation of damage to the increased vulnerability to adverse health outcomes,
cellular and molecular functional units of tissues over particularly in the elderly [5]. As a population ages, there
time, leading to breakdowns of physiological systems, is an increase in frailty, especially over the age of 65,
age-related disease, and, ultimately, mortality [1]. This with a significant correlation between frailty, mortality,
process, combined with the global population under- and hospitalization being evidenced [6, 7]. Hence,
going a demographic transition in which a rising researchers have constructed practical and objective
percentage is living into historically advanced ages, measures of frailty to manage and test new interventions
motivates the search for therapies that would intervene against the syndrome. The frailty index is a quantitative,
in the biological aging process and thus delay, multidimensional approach that evaluates an individual’s
decelerate, or reverse multiple manifestations of age- level of frailty based on the accumulation of health
related ill health [2]. deficits [8]. Subsequent research has shown that Fls are
robust predictors of mortality in humans, even in people
The cornerstone test for longevity therapeutics in animal early in middle age who are not colloquially “frail”
models is the lifespan study, emphasizing maximum [9, 10] and similar deficit-based constructs respond to
lifespan [3, 4]. However, potential treatments should putative longevity interventions in humans [10-13].
also increase the time spent in good health, motivating
interest in developing quantitative metrics for health More recently, rodent FIs have been developed on
span. One approach to this metric is the rodent frailty principles like the human originals, using a panel of
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physical and/or clinical parameters to measure frailty.
However, developing FIs in rodents is not straight-
forward. Researchers have adopted different approaches
by varying the types and numbers of parameters to be
included in the FI and cut-off points that classify an
animal as frail. This variation results in each study
having a different operational definition of frailty,
which reduces the ability to compare findings across
studies, thereby impeding progress toward longevity
therapeutics. Even in humans, where sample sizes are
larger and clinical data for FI construction is broader
and more robust, different frailty instruments vary in
which patients they identify as frail and are challenging
to implement in clinical settings [14].

This Perspective highlights these differences and
compares rodent and human frailty index scores. We
summarise the published strategies for implementing
frailty indexes, discuss their strengths and weaknesses,
and implement a frailty index based on physical
performance with our young and old mice. The
Perspective concludes by making recommendations
regarding FI use for studies of aging, age-related
disease, and longevity therapeutics.

MATERIALS AND METHODS
Animals

Young (3-4 months), middle-aged (18 months), and old
(28 months), mainly male C57BL/6 mice, were
acquired from Charles River Laboratories (Wilmington,
MA, USA) (n = 3-7 per group). Young 3-month-old
(n=5) mice were all male, 4-month-old mice included
two males and two females, 18-month-old (n=5) were
all male, and 28-month-old (n=4) were three males and
one female. Mice were housed in a vivarium with ad
libitum access to food (Teklad Global Soy protein-free,
Envigo) and water (Aquavive Water, Innovive Inc).
Cages were changed every 1-2 weeks depending on the
number per cage, and documents were maintained under
national and local regulations. All animal experiments
in this study are approved by the Lifespan Research
Institute IACUC committee following the “Guide for
the Care and Use of Laboratory Animals” prepared by
the Institute for Laboratory Animal Research, National
Academy of Sciences.

Grip strength

C57BL/6 mice were used to establish baseline grip
strength using the Grip Strength Meter (47200, Ugo
Basile®). The mice were held by the mid-base of the
tail, allowing their front paws to grip the bar. Once
gripped, the mice were pulled back steadily, keeping
them horizontal. The flat bar was used to measure the

highest forelimb grip strength of the mice. To account
for weight increases in older mice, results were
normalised to weight. Each mouse was tested 4 times.
The weakest measurement was removed and the
average of the remaining scores was calculated.

Open field testing

C57BL/6 mice were used to establish a baseline
of mobility and behavior using open-field testing
(Noldus Ethovision XT 17.5). Two arenas side by
side (50x50cm) were set up with Basler GenlCam
(acA1300-60, Basler) above. Arena settings were
utilized to establish each arena's scale (50cm) and center
and periphery. The periphery is defined as the
outermost 10cm on either side of the center (30cm) of
the arena. Each mouse began the experiment in the
bottom left corner and was recorded for 10 minutes.
Video analysis software (Ethovision XT 17.5) was used
to track the mice using the center body point and
calculate the total distance moved, percent of time spent
in movement, average velocity, body elongation, and
mobility. Between each trial, 70% ethanol was used to
clean the arena to remove scent marks, and a 10-minute
wait period was used to allow ethanol evaporation.

Measures used to construct the frailty index (FI)

The factors from open-field testing used to comprise the
frailty index are previously described [15, 16]. They
include the total distance moved (tracked by center-
point over 10 minutes in cm), the maximum distance
between two consecutive points in the tracks in cm
(available in trial statistics of distance moved in the
Ethovision analysis profile), total duration of movement
(s), proportion of time spent moving (%), meander
(change in direction per unit distance moved measured
in degrees/cm from 0°-180°), average velocity (cm/s),
rearing frequency (occurrence/time), and weight (g).
For both studies, the duration of the open-field test was
10 minutes.

Frailty index cutoff points

The young, middle-aged, and old mice required
reference values to determine frailty levels. For these,
we included our 3-4-month-old mice and the reference
values from two previous reports, which were in one
case males aged 5 months (n = 5) [15], and in the other
males and females aged 13.5 months (n=3 per sex)
[16]. When using reference values from 3-month-old
male mice, all females from our cohort were removed.
For each mouse, each factor of the FI was compared to
the reference values. The frailty scores were applied if
the measured score differed from the reference by at
least 1SD (Standard Deviation). They were graded as
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follows: less than 1SD scored 0; values differed by + 1
SD scored 0.25; values that differed by = 2 SD scored
0.5; values differed by + 3SD scored 0.75; values that
differed by more than 3SD scored maximum frailty of
1. The sum of these scores for each factor was divided
by the number of parameters (8) to produce a total
frailty score for each mouse [16].

Statistics

GraphPad Prism V10.1.0 software was used to perform
statistical analysis. A two-way ANOVA analysis was
used to see if two or more independent variables
affected the dependent variable (multiple age groups in
frailty scores or grip strength). To be considered
statistically significant, the P-value must be < 0.05 and
was quantified in the following order. * =p < 0.05, ** p
=< 0.01, *** = p <0.001, **** = p <0.0001. For each
experiment and each condition, n > 3.

Study selection process

A rigorous literature review with a range of keywords
was used to search peer-reviewed journals: frailty,
frailty index, aging, mice, longevity, healthspan, rodents,
and phenotype. Databases searched included PubMed,
EBSCOhost, Google Scholar, and Loughborough
University Ex Libris. Only original research articles
were included in the criteria, literature reviews and other
article types were excluded. Only frailty indexes based
on rodents were included with human frailty indexes
excluded. This method provided 18 peer-reviewed
articles published between 2012 and 2023. Other papers
were identified but not included as this Perspective
focuses on frailty indexes that are novel, modified, or
further validate established versions [15-32].

RESULTS

All FIs included in this review provide a numeric score
indicating the level of frailty present, but their
respective methods differ significantly (Supplementary
Table 1). When choosing which established FI to
implement, one must examine what cutoff point to
utilize, what reference values to use if a scaled frailty
score is desired or the cohort is small, the equipment
available, and the factors to include. For instance,
scoring systems may rely on quantifying physical
performance (13/18 studies) [15, 16, 19, 22-26, 28, 29,
31-33] or clinical observations (13/18 studies) [15, 16,
18-22, 25, 27, 29-32], with several articles using both
[15, 16, 19, 22, 25, 29, 31, 32]. Those measuring
physical fitness are modelled on Fried et al., 2001, who
created a human frailty index measuring four key
factors: weakness, slowness, low activity, and poor
endurance [34].

The contents of the FlIs vary significantly, depending on
whether clinical observations or physical outputs are
measured. For instance, those focusing on physical
measurements have fewer items in their FI (4-5 items
(7/18 studies) [17, 22-24, 26, 28, 31] or 8 items (4/18
studies)) [15, 16, 29, 32], whereas those using clinical
observations measured 23-34 items (12/18 studies)
[15, 16, 18-21, 25, 27, 29-32]. Additionally, there is
variation in the cutoff points used to determine whether
a subject is frail and to what extent. This includes 0.8SD
from a reference point or the lowest 20% of a cohort
(718 studies) [22-24, 26, 28, 29, 31], 1.5SD (4/18
studies) [17, 23, 27, 31], a staggered cutoff point of 1, 2,
3, 3+SD (9/18 studies) [15, 16, 18-21, 25, 27, 30], or
visual determination of 0 = not frail, 0.5 = mildly frail,
and 1 = frail (9/18 studies) [15, 18-21, 27, 29, 30, 32].
The cohort mean is often utilized as the reference point.
But if a staggered cutoff point is used, a reference value
is required from a control subject group. If the cohort
mean-SD is used as the cut-off point, the frailty scoring
is binary, either not frail = 0 or frail = 1. 0. When
multiple cut-off points are used (1, 2, 3, 3+SD), then
frailty is scored in a gradient (0, 0.25, 0.5, 0.75, 1).

While human frailty is the basis for rodent FlIs, how to
compare data from rodent FIs to equivalent effects if
translated to humans is not clear. One approach is to
compare deficits among animals and humans of similar
biological age. Various investigators have developed
systematic methods of equating biological age between
mice and humans, including development, epigenetic
age clocks, gene expression patterns, disease onset ages,
median and maximum lifespan proportions, and/or the
trajectory of the survival curve [35-38]. As a result,
several studies [15-17, 20-22, 26, 27] have linked their
rodent analysis to quantitative human data, whereas
others make no direct comparison (Supplementary
Table 1) [18, 19, 23-25, 28-32].

Those making such comparisons often use deficit
accumulation as the key metric (natural log of FI vs.
age) after normalizing human and mouse data sets
to 90% mortality values or comparing the equivalent
ages of the two species. The problem with using
corresponding ages is the inconsistency across the
literature in what age cutoffs are considered equivalent.
Liu et al. identified 9% of 27-28-month-old mice as
frail, consistent with frailty levels in 80-year-old
humans [17]. While Baumann et al. found all mice frail
at 32 months of age but compared this to 60+ years in
humans, where 5-10% of 60-69-year-olds or 26-65% of
85+-year-olds are frail [26]. Another publication
suggests that a 32-month-old mouse is equivalent to a
109-year-old human [35]. Kane et al. observed 16-44%
of 23-month-old mice as frail depending on the FI index
used, while humans aged 65+ years showed a 22-32%
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frailty range using comparable indexes [22]. Two FIs
quantified different animals of the same age group as
frail [22]. Furthermore, another study compared three
FIs in a group of 24-month-old males and found
inconsistency between which mice were frail [31].

Like the heterogeneity of mouse data, the lack of a
universally agreed standard of human frailty scoring
ensures that the reference ages for the percentage of the
population identified as frail at a given age will also
be inconsistent. The difficulty in making precise
comparisons is evident, though the underlying fact of
deficit accumulation increasing with age remains.
Developing a simplified approach for FI calculations in
murine models and humans is essential for standardizing
assessments, improving reproducibility, and validating
medical interventions for their translational potential for
human aging and frailty management.

We strived to provide recommendations for implement-
ing FI in murine models with commonly available
equipment and inform our analysis of the challenges in
doing so. To this end, we scored our mice on the 8-item
FI developed and implemented in the literature, as
it suited the available equipment and allowed frailty
to be measured as a gradient [15, 16]. To score the
mice in our study, we utilized the reference values
from these studies. It is clear from this implementation
that the reference ranges in these studies are not
consistent, and further work will be required to develop
reproducible reference ranges. However, our data are
underpowered and are intended for illustrative purposes
only and should not be used to draw independent
conclusions. As the reference values of one study had
both sexes, and our cohort did too, we matched them by
sex [16]. Notably, the other reference value cohort was
female, and most of our subjects were male [15].
However, the 3-4-month-old mice in this study are
younger than those used to establish the reference
values [15, 16].

Sex as a biological variable in FIs is an important
consideration, as there is a known difference between
male and female frailty onset and progression. In
humans, females show higher frailty index scores in all
ages compared to males [39]. For aging studies in mice
in this Perspective, males are predominantly used
(10/18 studies) [17, 18, 20-24, 26, 31, 32] with both
sexes (5/18 studies) [16, 19, 25, 27, 29] and females
(3/18 studies) [15, 28, 30] used significantly less. One
study measuring both sexes found males to have higher
frailty scores in an Alzheimer’s model [29]. Another
found that in C57BL/6 mice the frailty index
implemented altered which sex had the higher frailty
score [27]. Therefore, with the key role sex can play in
frailty, it is preferred to separate the age groups by sex.

Using the first set of published reference values, the 8-
item FI yielded frailty scores of 0.37/1 for our 3-4-
month-old mice, 0.52/1 for our 18-month-old mice, and
0.66/1 for our 28-month-old mice (Figure 1A) [16]. The
second published reference values (averages of trial
1+2) yielded scores for the 3-4-month-old mice as
0.26/1, 18 months as 0.46/1, and 28 months as 0.48/1
frailty scores (Figure 1A—1i) [15]. In both reference
sets, the frailty scores among the 3—4-month-old
animals were notably high. The parameters responsible
for scoring young mice as frail were the maximum
distance post inactivity, meander, and movement
duration, which affected this group's overall frailty
score.

High scores in movement duration in our young mice
may be due to differences in acclimatization protocols.
Parks et al. allowed 5 days of testing in the arena, using
the last 2 days for assessment [16]. We acclimatized the
mice to the testing room but not the arena for an hour
before data collection, as open field testing depends on
the inherent explorative nature of mice. The meander
can also be measured differently, either as a relative or
absolute meander, using Ethovision video software
analysis (version 17.0.1). It can also be calculated from
either the body point or the head direction. The maximal
distance post-inactivity could also benefit from further
clarification on how it is precisely measured; for
example, how inactivity was defined and what body
point was measured.

Based on these potential sources of discrepancy, we
recommend each lab use its own reference mice to limit
variability. When we did this using our 3-month-old mice
to establish the reference values, the overall frailty scores
in mice aged 18-28 months were much lower than the
reference values that were used from similarly aged mice
from published literature (0.03/1 [16] and 0.22/1 [15],
respectively (Figure 1Aii)). Most studies (12/18) have
used C57BL/6 mice to assess new FIs or modify existing
FIs. Therefore, if using a different mouse strain or a
transgenic or disease model, identifying the baseline of a
lab’s rodent population is even more critical. We
recommend using each mouse as its reference point for
longitudinal studies, strengthening the analysis without
increasing the workload, as the cost is often a significant
factor for in vivo studies involving aged subjects,
especially longitudinal studies. A common strategy for
anti-aging interventions is to collect baseline data before
and after treatment.

One challenge when creating reference values from a
group of young mice is inherent variation within the
group. If the reference group variation is significant,
some of the frailty parameters in test mice may not
reach a score of 1. One strategy to circumvent this is to
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reduce diversity in the reference value group. For
example, Antoch et al. excluded animals if their scores
exceeded the mean by more than one SD [25].
However, inclusion or exclusion of the outliers in small
sample sizes risks creating non-representative values.
Using each mouse as its reference point can also
circumvent this potential issue. Similarly, to ascertain if
a treatment can improve frailty we suggest scoring the
same mice before treatment and utilizing that as
individual reference values, instead of comparing the
FIs of an aged, treated group with young, untreated
mice as commonly done in rodent aging studies.

Similar to 4-5 item Fls, we included grip strength to
characterize the physical health of the mice further. Due
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to equipment limitations, we were unable to fully
implement the 4-5 item FI, which required an inverted
cling-grip test, a rotarod, and voluntary wheel running
cages. In grip strength scores normalized by weight, the
3- to 4-month-old mice had the highest average score,
with 18- and 28-month-old mice having lower scores
accordingly. However, the difference between 18 and
28 months was not statistically significant due to a
single animal’s exceptionally high score (Figure 1B).
Using individual mice as their comparators in
longitudinal assessments could help identify any
increases or decreases in performance. Normalization
by weight is imperfect because it does not account for
the changes in muscle mass and fat between young and
old mice, as older mice tend to gain fat and lose muscle
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Figure 1. Analysis of the frailty phenotype in 3-4, 18, and 28-month-old C57BL/6 mice. (A) Frailty index scores implemented using
Parks et al., 2012 reference values. (A—i) Frailty index scores implemented using Whitehead et al., 2014 reference values. (A—ii) Frailty index
scores using our own 3—4-month-old mice as reference values. (B) Grip strength (average forelimb parallel bar score) is normalized to weight
for 3-4, 18, and 28-month-old mice. P-values < 0.05 (*), < 0.01 (**), <0.001 (***), < 0.0001 (****) were calculated using one-way ANOVA for
three or more independent groups or unpaired t-tests for just two independent groups. Columns represent the mean with error bars + SD.
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mass. To address this, body composition measurements
would be preferable, although they require specialized
and expensive equipment.

One limitation of this study is the low number of
animals per group, which limits the results for animals
of a given age, as some recommend a minimum of 20
animals per sex to measure physiological changes.
However, this Perspective may be helpful in frailty-
scoring selections for small-scale studies with limited
subjects.

Open-field testing (OFT) or automated video testing
simplifies frailty measurements when the methods are
clearly defined and well-documented. Furthermore,
it eliminates errors introduced by limited inter-rater
reliability, a well-recognized problem in clinical
observation FIs, as user input is minimal [18, 20]. To
determine the most significant factors from OFT to
include, an independent study is necessary to identify
which parameters best predict mortality. For instance,
investigators could make periodic measurements of the
various OFT parameters (e.g., every 3 months) with a
significant sample size until death, and then assess each
factor to determine its weight in predicting mortality
compared to an established FI.

The reason for this extensive independent study is the
components of the current indexes. For instance, 8 item
FIs include the total distance (cm), velocity (cm/s), and
movement duration (s and %). Therefore, 4/8 factors
measure closely related physiological traits, giving
movement great weight in this index. Although walking
speed is a well-established mortality indicator and
predictor of surgical outcomes in humans, assigning
movement-related variables half the overall score in a
rodent FI will likely overweight the index [6, 7].
Principal component analysis should be applied to
reduce the number of variables and choose those that
are both highly predictive of mortality and (amongst
those that fall within the same principal component)
most convenient for implementation. One study
prioritized a diversity of health-related physiological
systems over a single key physiological trait, alongside
quantitative parameters without visual scoring, while
maintaining minimal invasiveness [25]. For future
additions to FIs, one study measured gait speed in the
cage and on the wheel in C57BL/6 mice and found it
correlated with age and the manual frailty index [32].

Further development of frailty indices could improve
their accuracy. Quantitative and automated measures
would help further reduce inter-rater reliability concerns
and experimenter bias, and in turn lab-to-lab variation.
measurements such as bone density, measured non-
invasively by micro-CT, have been proven to show

differences in murine age, especially in cranio-facial
bones [40—42]. However, this technique comes with a
significant cost. Changes in eating behaviour, such as
food dropping, reduced consumption, or altered eating
patterns, serve as another quantitative measure observed
in aging mice for future frailty indices [43, 44].

Aging also affects the circadian rhythm and feeding
patterns in mice, as caloric restriction and feeding
during the active phase of the circadian rhythm resulted
in extended healthspan and lifespan [45]. One study in
this Perspective identified an age-related change in the
circadian distribution of wheel running, suggesting the
inclusion of the circadian rhythm in frailty indices is
warranted [32]. Evidence in humans corroborates the
significant changes in the circadian rhythm with age,
potentially offering additional translational evidence for
future frailty indices [46]. To assess the age-related
decline in cognitive function, namely spatial learning
and memory, a Barnes-Maze test could be implemented.
One group developed a cognitive frailty index (CoFT) to
assess various parameters of the Barnes-Maze test in
over 400 C57BL/6 mice [47]. While no sex-related
differences were observed, an increase in CoFI scores
with advancing age and a strong association with
mortality were evident [45, 32, 46].

Another aspect is olfactory tests, which measure the
loss of smell evident in aged C57BL/6 mice, where the
loss of odor discrimination was among the earliest
biomarkers compared to cognitive and motor function
tests [48]. Olfactory tests have been included in a mouse
Social Frailty Index (mSFI), which also analyses urine
marking, social interactions, and nest building [49].
Interestingly, sex differences were observed, with
females exhibiting lower mSFI scores compared to
males, which correlates with data from physical indices.
The application of a physical and cognitive/social frailty
index could provide greater insight into the holistic
effect of any anti-aging intervention.

CONCLUSION

Studies discussed in this Perspective offer a variety of
approaches to measuring frailty. We recommend that
investigators carefully consider what aspects of frailty
to include in their analyses instead of fully adopting the
published scoring systems. It is preferable to avoid
including and giving equal weight to multiple
parameters that measure closely related physiological
traits, such as multiple parameters related to movement.
In addition, it is best to use automated measurements
where possible to avoid experimenter bias and inter-
rater variations. As there is substantial variation even
between mice of the same strain, it is optimal to
measure baseline frailty in each animal and to track
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changes over time in response to treatment and during
physiological aging, especially in a small sample size.
Doing so accounts for variability in baseline values. It
increases sensitivity in detecting subsequent changes
while reducing the chances of false positives, resulting
in a more reliable measurement of physical health in
aging rodents and the effects of longevity therapeutic
candidates.
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Supplementary Table 1. Summary of frailty index studies.
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