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ABSTRACT

Hutchinson-Gilford progeria syndrome (HGPS) is a rare and fatal disorder that causes premature aging, affecting
approximately one in 4-8 million births. Most cases result from a mutation in the lamin A/C (LMNA) gene,
leading to the production of progerin, an aberrant lamin A variant that disrupts nuclear architecture and alters
gene expression, including microRNA (miRNA) deregulation. This study aimed to investigate the molecular
mechanisms underlying HGPS and aging using global miRNA sequencing to identify key deregulated miRNAs.
Both miR-145 and miR-27b were significantly altered in HGPS. Functional experiments further revealed their
crucial role in adipogenesis. Downregulation of these miRNAs in HGPS cells enhanced adipocyte differentiation,
whereas their upregulation in control cells suppressed this process. These findings indicate that elevated levels
of miR-145-5p and miR-27b-3p impair adipogenesis, providing mechanistic insights into HGPS pathophysiology
and highlight new potential therapeutic avenues for both HGPS and metabolic disorders.

INTRODUCTION precursor of lamin A undergoes post-transcriptional
modifications, including farnesylation of the C-terminal
The Hutchinson-Gilford progeria syndrome (HGPS, cysteine in the CAAX motif (where C is cysteine, A is
OMIM #176670) is a rare autosomal dominant, and fatal an aliphatic amino acid, and X is any amino acid),
genetic disorder, affecting approximately one in 4-8 proteolytic cleavage of the AAX residues, carboxyl-
million births worldwide, with equal prevalence across methylation of the farnesylated cysteine, and finally
sexes and races [1, 2]. At birth, children with HGPS removal of 14 terminal amino acids by a zinc
appear phenotypically normal, but within the first year, metalloenzyme STE24 (ZMPSTE24) [10-12]. However,
characteristic features emerge, including growth in HGPS, the G608G mutation creates a cryptic splice
impairment, failure to thrive, lipodystrophy, alopecia, site in exon 11, leading to the loss of the ZMPSTE24
arthritis, and accelerated aging [2-5]. Patients typically cleavage site and the production of progerin,
succumb to severe atherosclerosis by the age of 14.6 a permanently farnesylated prelamin A variant.
years [6]. The accumulation of progerin disrupts the nuclear
architecture, resulting in nuclear blebbing and cellular
HGPS is most exclusively (18 of 20 classical cases) dysfunction, including telomere shortening, impaired
caused by a de novo point mutation in the lamin A/C DNA repair, mitochondrial dysfunction, oxidative stress,
(LMNA) gene (c.1824C>T, p.G608G) [7]. Lamin A, a and premature cellular senescence [13—15].
key structural component of the nuclear lamina, plays a
crucial role in maintaining nuclear integrity and genome Current therapeutic strategies for HGPS focus on
organization [8, 9]. In normal cells, prelamin A, the correcting the mutation, reducing progerin levels, or
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mitigating its downstream effects [16]. One promising
approach targets the overactivated Janus kinase-signal
transducer and activator of transcription (JAK-STAT)
signaling pathway, which contribute to progerin
induced inflammation and cellular dysfunction [17, 18].
Lonafarnib, a farnesyltransferase inhibitor (FTI) and the
only US Food and Drug Administration-approved
treatment for HGPS, reduces progerin toxicity by
preventing prelamin A farnesylation, thereby improving
nuclear architecture, cardiovascular function, and
extending lifespan to approximately 17-19.5 years
[19-23].

Despite these advancements, a crucial yet understudied
aspect of HGPS is the disruption of adipose tissue
homeostasis [24]. Adipose tissue, essential for energy
storage, thermogenesis, and metabolic regulation, also
secretes adipokines and cytokines [25, 26]. In patients
with HGPS, adipose tissue deficiency contributes
to metabolic dysregulation and cardiovascular
complications [26, 27]. Defective adipogenesis,
characterized by impaired adipocyte differentiation,
disrupted lipid droplet formation, and defective
triglyceride transport, underlies lipodystrophy in HGPS
[28]. Key transcription factors, including peroxisome
proliferator-activated receptor gamma (PPARy) and
CCAAT/enhancer-binding protein alpha (C/EBPa) [29],
regulate the expression of essential genes, such as fatty
acid binding protein 4 (FABP4) and lipoprotein lipase
(LPL) both of which are important for mature
adipocytes function [30, 31].

Dysregulated microRNAs (miRNAs) play a crucial
role in adipogenesis [32]. Progerin-induced hetero-
chromatin loss activates normally silent chromatin
regions, leading to transcriptional dysregulation,
including alteration in major regulatory factors [33,
34]. Additionally, aberrant expression of RNA
polymerase II further disrupts miRNA homeostasis, as
this enzyme transcribes primary miRNA (pri-miRNA)
transcripts [35, 36]. MiRNAs, the small non-coding
RNAs ranging from 19 to 25 nucleotides in length, act
as post-transcriptional regulators of gene expression
[37].

This study aimed to investigate the molecular
mechanisms underlying HGPS and aging using global
miRNA sequencing. Cellular aging was assessed based
on replicative senescence, characterized by a
progressive decline in proliferative capacity, and
quantified as the proportion of senescent cells relative to
the Hayflick limit [38, 39]. Specifically, we examined
miR-145-5p and miR-27b-3p, which are dysregulated in
HGPS, to elucidate their roles in the adipogenic
pathway. Our findings provide critical insights into
disease pathogenesis and highlight potential therapeutic

targets for mitigating metabolic complications
associated with HGPS.
RESULTS

Genome-wide miRNA sequencing reveals distinct
miRNA signatures in normal and premature aging

To elucidate the molecular mechanisms underlying
HGPS and normal aging, we performed global miRNA
sequencing to identify differentially expressed miRNAs
associated with both normal and premature aging. We
conducted single-end sequencing (50 bp reads) on
control cell strains (GM01651, GM01652, GM03349)
and HGPS cell strains (HGADFN003, HGADFN127,
HGADFN178), all carrying a heterozygous ¢.1824C>T
(p.Gly608Gly) mutation in LMNA exon 11. This
analysis was performed on both young (<5%
senescence, Figure 1A) and older passages (15-20%
senescence, Figure 1B).

A total of 66 significantly deregulated miRNAs were
identified (Figure 1C) across six major comparisons:
normal aging (control old vs. control young); premature
aging (HGPS old vs. HGPS young); early molecular
changes (young HGPS vs. young control); advanced
cellular changes (old HGPS vs. old control); aging and
disease progression (old HGPS vs. young control);
premature versus normal aging (young HGPS vs. old
control). Several miRNAs exhibited differential
expression across multiple comparisons, suggesting
their potential regulatory roles in both normal and
accelerated aging (see Supplementary Table 1).

Additionally, we identified 37 differentially expressed
miRNAs in four key comparisons (Table 1): normal
aging (control old vs. control young); premature aging
(HGPS old vs. HGPS young); early molecular changes
(young HGPS vs. young control); and late-stages of
cellular aging (old HGPS vs. old control). These
differentially expressed miRNAs were further analyzed
using Ingenuity Pathway Analysis (IPA) software,
(https://apps.ingenuity.com) to identify experimentally
validated gene targets and associated canonical
pathways (Supplementary Figure 1).

miRNA signature in normal and HGPS aging

On comparing late passages (old) control cells with 15 to
20% senescence to early-passages (young) control cells
with <5§% senescence, we identified three differentially
expressed miRNAs: miR-34a-5p, miR-664a-3p, and
miR-92a-3p (Table 1). Using the IPA microRNA target
filter tool, we identified experimentally validated targets
for miR-34a-5p and miR-92a-3p (Supplementary Figure
1A, 1B). miR-34a-5p (log 2-fold change [log2FC]: 0.9)
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was upregulated in old control cells and was associated
with  cellular senescence, apoptosis, and tissue
regeneration, suggesting a pro-aging role (Supplementary
Table 2). In contrast, miR-92a-3p (log2FC: -0.9) was
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(Supplementary Table 2).
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Figure 1. Genome-wide sequencing of miRNAs in control and HGPS fibroblasts across cellular ages. (A) Representative SA-B-
galactosidase-stained cells (10x magnification; scale bar 100 um) show control fibroblasts at young passages with < 5% senescence and
(B) old passages with 15-20% senescence. (C) A total of 66 significantly deregulated miRNAs were identified across six comparisons (control
old vs. control young; HGPS old vs. HGPS young; young HGPS vs. young control; old HGPS vs. old control; old HGPS vs. young control; young

HGPS vs. old control). Genome-wide miRNA profiles were generated from control cell strains (GM01651, GM01652, GM03349) and HGPS cell
strains (HGADFN0OO3, HGADFN127, HGADFN178) at <5% and 15-20% senescence. (Also see Supplementary Table 1).
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Table 1. Differentially expressed miRNAs between normal and HGPS fibroblasts across cellular ages.

Control old vs. control young

HGPS old vs. HGPS young

Young HGPS vs. young control Old HGPS vs. old control

log2FC p-value qg-value 1og2FC  p-value q-value 1log2FC  p-value q-value 1log2FC p-value q-value

1 hsa-miR-126-3p 0,6 5,2E-01  1,0E+00 34 1,27E-04  7,32E-03 -0,8 3,52E-01 9,88E-01 2,0 2,32E-02  3,13E-01

2 hsa-miR-126-5p 0,3 7,0E-01  1,0E+00 39 6,04E-06  4,85E-04 -1,5 8,15E-02  8,20E-01 2,1 1,50E-02 2,44E-01
3 hsa-miR-342-3p 0,2 3,7E-01  1,0E+00 1,0 1,77E-04  9,53E-03 -0,7 7,98E-03  2,30E-01 0,1 8,05E-01 9,72E-01
4 hsa-miR-200b-3p 0,5 7,6E-01  1,0E+00 59 6,79E-04  3,16E-02 -1,3 4,67E-01  9,88E-01 4,1 1,70E-02  2,60E-01
5 hsa-miR-142-5p -3,2 2,1E-02  6,1E-01 7,0 8,38E-07  7,80E-05 -3,5 1,41E-02  3,16E-01 6,7 1,58E-06 2,02E-04

6 hsa-miR-200a-3p 0,4 7,2E-01  1,0E+00 5,8 1,00E-06  8,44E-05 -0,9 4,35E-01  9,88E-01 4.4 1,29E-04 6,01E-03
7 hsa-miR-1-3p -0,2 89E-01  1,0E+00 1,6 2,44E-01  9,99E-01 5,6 1,16E-04  8,74E-03 7.4 6,82E-07 9,97E-05

8 hsa-miR-143-3p -0,1 8,3E-01  1,0E+00 -0,1 8,95E-01  9,99E-01 2,1 9,63E-04  5,79E-02 2,2 7,20E-04 2,38E-02

9 hsa-miR-145-3p 0,0 9,6E-01  1,0E+00 0,5 2,56E-01  9,99E-01 1,7 9,60E-05  8,74E-03 2,3 3,67E-07 7,50E-05
10  hsa-miR-181a-2-3p 0,1 7,2E-01  1,0E+00 0,4 2,28E-01  9,99E-01 1,1 8,59E-04  5,49E-02 1.4 3,16E-05 1,70E-03
11 hsa-miR-195-5p 0,7 2,2E-01  1,0E+00 1,5 1,01E-02  3,44E-01 -2,6 1,16E-05  1,69E-03 -1,8  2,63E-03 6,11E-02
12 hsa-miR-199b-5p 0,4 3,0E-01  1,0E+00 0,4 2,45E-01 9,99E-01 -1,8 1,48E-07 7,56E-05 -1,7  3,05E-07 7,50E-05
13 hsa-miR-497-5p 0,4 4,5E-01  1,0E+00 1,2 3,70E-02  8,64E-01 -2,6 6,06E-06  1,24E-03 -1,8  2,03E-03 5,19E-02
14 hsa-miR-486-3p 3,1 4,0E-02  8,5E-01 1,1 4,11E-01  9,99E-01 4,6 1,91E-03  9,30E-02 2,6 5,54E-02 5,11E-01
15 hsa-miR-27b-3p 0,2 4,1E-01  1,0E+00 -0,1 6,82E-01  9,99E-01 0,9 1,26E-03  7,18E-02 0,6 4,66E-02 4,56E-01
16 hsa-miR-34a-5p 0,9 1,16E-03  7,44E-02 0,3 2,49E-01  9,99E-01 -0,6 2,45E-02  3,92E-01 -1,2 1,61E-05 1,17E-03
17 hsa-miR-664a-3p 1,0 4,49E-04 3,53E-02 0,6 6,46E-02  9,99E-01 -0,5 9,07E-02  8,74E-01 -1,0  2,18E-03 5,30E-02
18 hsa-miR-92a-3p -0,9  6,38E-05 7,08E-03 0,0 8,86E-01  9,99E-01 0,1 6,92E-01 9,88E-01 0,9 2,48E-05 1,49E-03
19 hsa-miR-1246 -1,1  431E-01 1,00E+00 1,1 4,02E-01  9,99E-01 32 1,56E-02  3,21E-01 5.4 1,45E-04 6,46E-03
20  hsa-miR-129-2-3p 0,7 3,95E-01 1,00E+00 0,1 8,92E-01  9,99E-01 -1,9 1,63E-02  3,21E-01 -2,5  2,29E-03 5,46E-02
21 hsa-miR-143-5p -0,3  6,44E-01 1,00E+00 -0,1 9,23E-01  9,99E-01 1,6 6,17E-03  2,04E-01 1,8 1,93E-03 5,05E-02
22 hsa-miR-146a-5p -1,5  7,19E-02  1,00E+00 1,6 6,67E-02  9,99E-01 0,7 4,25E-01  9,88E-01 3,8 1,02E-05 8,68E-04
23 hsa-miR-181b-5p -0,2  5,25E-01 1,00E+00 0,0 9,15E-01  9,99E-01 0,9 8,10E-03  2,30E-01 1,1 1,57E-03 4,33E-02
24 hsa-miR-193b-3p 0,4 1,67E-01  1,00E+00 0,1 741E-01  9,99E-01 -0,8 4,96E-03  1,85E-01 -1,2  1,26E-04 6,01E-03
25 hsa-miR-204-5p 0,3 9,40E-01 1,00E+00 2,9 3,45E-01 9,99E-01 6,8 3,64E-02 4,83E-01 9,5 3,55E-03 7,73E-02
26 hsa-miR-21-3p -0,8  1,09E-02 4,44E-01 -0,2 4,68E-01  9,99E-01 0,4 1,75E-01  9,88E-01 1,0 1,53E-03 4,33E-02
27 hsa-miR-29¢-5p 0,1 8,41E-01 1,00E+00 -1,0 2,34E-01 9,99E-01 -1,2 7,84E-02  8,10E-01 -2,3  3,18E-03 7,09E-02
28 hsa-miR-31-3p 0,1 7,09E-01  1,00E+00 -0,2 6,10E-01  9,99E-01 -1,1 4,72E-03  1,85E-01 -14  248E-04 9,78E-03
29 hsa-miR-31-5p 0,0 8,84E-01 1,00E+00 -0,4 1,29E-01  9,99E-01 -0,5 4,25E-02  5,30E-01 -0,9  6,92E-04 2,36E-02
30 hsa-miR-335-3p -1,6  3,66E-02 831E-01 -0,6 4,15E-01  9,99E-01 1,8 1,66E-02  3,21E-01 2,7 2,93E-04 1,11E-02
31 hsa-miR-335-5p -0,6  3,91E-01 1,00E+00 -0,3 7,27E-01  9,99E-01 1,9 8,98E-03  2,30E-01 2,3 2,11E-03 5,27E-02
32 hsa-miR-374b-5p 0,6 2,08E-02  6,13E-01 0,4 1,24E-01  9,99E-01 -0,5 2,55E-02 4,01E-01 -0,7  4,45E-03 9,48E-02
33 hsa-miR-378a-3p -1,0  3,00E-02 7,70E-01 -0,3 4,49E-01  9,99E-01 1,2 4,49E-03  1,84E-01 1,9 3,87E-05 1,98E-03
34 hsa-miR-486-5p -0,2  7,51E-01 1,00E+00 1,7 1,17E-02  3,76E-01 1,1 9,59E-02  9,00E-01 3,0 6,98E-06 6,49E-04
35 hsa-miR-542-3p -0,5  4,86E-02 9,38E-01 -0,1 5,98E-01  9,99E-01 0,4 1,27E-01  9,88E-01 0,8 3,19E-03 7,09E-02
36 hsa-miR-770-5p 0,3 5,22E-01 1,00E+00 -1,1 8,48E-02  9,99E-01 -0,7 2,02E-01 9,88E-01 -2,2  6,77E-04 2,36E-02
37 hsa-miR-9-5p 0,4 8,65E-01 1,00E+00 59 2,96E-03 1,12E-01 0,8 6,97E-01  9,88E-01 6,4 1,44E-03 4,33E-02

A total of 37 significantly differentially expressed miRNAs were identified in four main comparisons: control old vs. control
young; HGPS old vs. HGPS young; young HGPS vs. young control; old HGPS vs. old control; including log2FoldChange (log2FC),
p-value, and g-value, with distinct miRNA sets (bold, respective color). Genome-wide miRNA profiles were identified from
control (GM01651, GM01652, GM03349) and HGPS cell strains (HGADFNOO3, HGADFN127, HGADFN178) at <5% and 15-20%
senescence. A comprehensive list of all 66 significantly deregulated miRNAs across six comparisons is detailed in

Supplementary Table 1.

On comparing old HGPS cells (15-20% senescence) to
young HGPS cells (<5% senescence), we identified
six differentially expressed miRNAs: miR-126-3p,
miR-126-5p, miR-342-3p, miR-200a-3p, miR-200b-
3p, and miR-142-5p (Table 1). Pathway analysis of
experimentally validated targets using Ingenuity

canonical pathways revealed two distinct miRNA
clusters associated with aging. The first cluster,
consisting of miR-200a and miR-200b, was linked to
epithelial-mesenchymal transition (EMT), -cellular
senescence, and fibrosis [40] (Supplementary Figure
1C). The second cluster, comprising miR-126a-3p and
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miRNA-126a-5p, was associated with vascular
homeostasis and identified as a key regulator of
premature aging [41, 42] (Supplementary Figure 1D
and Supplementary Table 2).

miRNA signature of early molecular changes in
HGPS

A comparison between young HGPS cells and young
control cells (both <5% senescence) identified nine
differentially expressed miRNAs (Table 1). Among
them, miR-1-3p (log2FC: 5.6) and miR-143-3p (log2FC:
2.1) were significantly upregulated, whereas miR-199a-
5p (log2FC: -1.8), miR-27b-3p (log2FC: 0.9), miR-497-
5p (log2FC: -2.6), and miR-195-5p (log2FC: -2.6) were
downregulated (Table 1). Pathway analysis indicated that
these miRNAs are involved in apoptosis, growth factor
signaling, epigenetic regulation, and cell cycle control.
Disruptions in these critical pathways likely contribute to
the accelerated cellular aging in HGPS, highlighting the
early onset of molecular alterations in the disease
(Supplementary Figure 1E and Supplementary Table 2).

miRNA signature of premature aging in HGPS

A comparison between late-passage (old) HGPS and
late-passage (old) control cells, both exhibiting 15-20%
senescence, identified 31 differentially expressed
miRNAs (Table 1). Analysis of shared and
experimentally validated targets identified distinct
miRNA clusters associated with apoptosis, cell cycle
progression, and tissue homeostasis. These findings
suggest that dysregulation of these miRNAs contributes
to the accelerated aging phenotype observed in HGPS
(Supplementary Figure 1F and Supplementary Table 2).

Consistent miRNA alterations in HGPS

A comparative analysis between young (early-) and old
(late-passage) HGPS cells showed consistent
dysregulation. Specifically, miR-1-3p, miR-143-3p,
miR-145-3p, and miR-181a-2-3p were consistently
upregulated, whereas miR-195-5p, 199b-5p, and miR-
497-5p were downregulated relative to controls (Table
1). The miR-143/145 and the miR-195/497 clusters
exhibited coordinated expression patterns [43],
suggesting a shared regulatory mechanism that may
amplify their effects on gene expression and cellular
processes [44]. The miR-195-5p and miR-497-5p,
which share identical seed sequences and are clustered
on chromosome 17 [45], were markedly downregulated
in young HGPS cells (log2FC: -2.6) and moderately
downregulated in older HGPS cells (log2FC: -1.8)
(Table 1). This suppression may be attributed to
elevated NF-«xB activity, which is known to repress the
miR-195/497 expression [46]. This finding aligns with

previous reports of heightened NF-kB activation in
HGPS cells [47, 48].

Conversely, miR-143 and miR-145, co-transcribed from
chromosome 5 [49], were significantly upregulated in
both young (miR-143 log2FC: 2.1; miR-145 log2FC:
1.7) and old HGPS cell (miR-143 log2FC: 2.2; miR-145
log2FC: 2.3), (Table 1). This cluster is involved in
the regulation of cell proliferation, apoptosis, and
differentiation [50, 51] and is highly expressed in
vascular smooth muscle cells [49], where it is essential
for maintaining vascular function [52, 53]. Dys-
regulation of miR-143/145 may contribute to the
vascular pathology of HGPS, including atherosclerosis,
a leading cause of mortality in HGPS [52, 53].
Additionally, given its involvement in insulin signaling,
the deregulation of the miR-143/145 cluster may
contribute to metabolism dysfunctions and impaired
adipogenesis observed in HGPS [54].

miRNAs drive early HGPS changes

Although several miRNAs exhibit overlapping changes
in HGPS, miR-486-3p (1og2FC: 4.6) and miR-27b-3p
(log2FC: 0.9) play distinct roles in early disease
pathogenesis (Table 1). miRNA-486-3p, which targets
the androgen receptor (AR), is markedly upregulated and
has been implicated in promoting premature senescence
in HGPS [55, 56] (Supplementary Figure 1G). In
contrast, miR-27b-3p influences cellular metabolism by
regulating prohibitin (PHB1), peroxisome proliferator-
activated receptor gamma (PPARY), retinoid X receptor
alpha (RXRA), and fatty acid synthase (FASN),
highlighting it as a strong candidate whose deregulation
in HGPS may contribute to impaired adipogenesis
[57-60] (Supplementary Figure 1H).

Adipocyte differentiation is impaired in HGPS

Genome-wide miRNA sequencing identified an
upregulation of miR-145 and miR-27b in HGPS
fibroblasts, with downstream target analysis indicating
their potential contribution to impaired adipogenesis
(Table 1). To investigate this, we developed an ex vivo
adipogenesis model using skin-derived precursor (SKP)
cells isolated from primary human fibroblast cultures
using the low-pH stress method [61]. To minimize the
confounding effects of cellular senescence, we used
early-passage cultures (<5% senescence) (Figure 1A
and Supplementary Table 3) [62]. Dissociated SKP
spheroids were cultured in adipocyte differentiation
medium for 12 days, following established protocols
[63] (Figure 2A). SKPs differentiated under this
protocol first acquire a preadipocyte phenotype,
expressing canonical white adipogenic transcription
factors such as PPARy, C/EBPa, and FABP4, as shown
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by Budel et al. [63]. Although full maturation into
unilocular lipid-droplet-containing white adipocytes is
rarely achieved in vitro, the protocol is widely used to
model early white adipogenesis. Further investigation,
including UCP1 profiling, would be required to
formally exclude beige adipocyte features.

On day 12, Bodipy staining showed significantly
reduced lipid droplet formation in HGPS cultures
compared to controls, with only 28% of HGPS cells
differentiating into adipocytes, compared to 49% of
control cells (Figures 2B-2D). The Bodipy-positive
area in HGPS cultures was 35%, nearly half of that
observed in the control groups (60%), consistent with
previous findings that indicate impaired adipocyte
differentiation in HGPS [62, 63].

To further investigate the impaired adipogenesis in
HGPS, we analyzed the expression of PPARy, a key
adipogenic transcription factor [64—68]. Western
blotting showed consistently lower PPARy expression
in HGPS cells throughout differentiation (Figure 2E,
2F). Lamin A/C immunoblots showed a distinct
progerin band in HGPS samples at days 3, 6, 9, and 12,
with increasing intensity over time, confirming
progressive progerin accumulation and its involvement
in HGPS pathology (Figure 2E and Supplementary
Figure 2). Moreover, the late adipogenic marker FABP4
[24] exhibited delayed and reduced expression in HGPS
cells with significantly lower protein levels from day 9
to day 12, compared to controls (Figure 2G).

We further analyzed the expression patterns of miR-
145-5p and miR-27b-3p and adipogenesis markers
(C/EBPa, PPARy, and FABP4) during the 12-day
differentiation period (Figures 2H-2L). Notably, miR-
145-5p and miR-27b-3p were significantly upregulated
in HGPS cells as early as day 3, reaching 12-fold and
13-fold increases, respectively by day 12, whereas
control cells showed no significant change (Figure 2H,
2I). This elevated miRNA expression corresponded
with suppressed mRNA levels of key adipogenic
markers. Specifically, C/EBPa mRNA expression was
significantly lower in HGPS cells than in controls on
days 9 and 12 (Figure 2J), whereas PPARy mRNA
levels increased similarly in both HGPS and control
cells from day 3 to day 6 (2.2-fold), with consistently
lower expression in HGPS cells throughout the
differentiation (Figure 2K). The late adipogenesis
marker FABP4 exhibited a strong upregulation in
control cells at day 9 (10.1-fold compared to day 6)
and day 12 (2-fold compared to day 9), whereas HGPS
cells maintained significantly lower expression (Figure
2L). These findings confirm that the upregulation of
miR-145-5p and miR-27b-3p negatively affects
adipogenesis, providing a mechanistic link between

miRNA dysregulation and the impaired adipogenic
capacity observed in HGPS.

Deregulated miR-145a-5p and miR-27b-3p in
adipogenic differentiation of white adipose tissue
(WAT) in LmnaC609G/G609G mjce

Progerin expression in the HGPS mouse model is
associated with lipodystrophic features and metabolic
dysfunction, mirroring those observed in patients with
HGPS [69, 70]. To determine whether elevated miR-145-
Sp and miR-27b-3p expression correlate with reduced
expression of key adipogenic markers (C/EBPa, PPARY,
and FABP4), we analyzed WAT from Lmna®@609G/G609G
mice and compared it to age-matched wild-type mice
using qRT-PCR (Figure 3) [71].

Both miR-145a-5p and miR-27b-3p were significantly
upregulated in the WAT of Lmna®0090/G609G mijce,
exhibiting 7- and 4-fold increases, respectively (Figure
3A, 3B). This upregulation was accompanied by a
marked downregulation of C/EBPa, PPARy, and
FABP4, in HGPS mice relative to wild-type controls
(Figures 3C-3E). These findings suggest that miRNA
dysregulation contributes to lipodystrophy in HGPS,
indicating that miR-145-5p and miR-27b-3p modulation
could act as potential therapeutic targets for restoring
adipogenesis.

miR-145-5p and miR-27b-3p inhibition enhances
adipogenic differentiation in HGPS

To determine whether downregulating miR-145-5p
and miR-27b-3p could improve adipogenic potential,
we transfected HGPS SKPs with 10 nM miR-145-5p
and/or miR-27b-3p inhibitors every 3 days during
differentiation (Figure 4). Subsequently, we assessed
miRNA levels and target mRNA expression using
gRT-PCR (Figure 4A—4H).

Inhibitor transfection led to a significant reduction
in miR-145-5p and miR-27b-3p levels throughout
differentiation (Figures 4A, 4B). miR-145-5p inhibition
alone or in combination with miR-27b-3p demonstrated
greater suppression than miR-27b-3p inhibition alone,
suggesting a potential interaction between the two
miRNAs.

Insulin receptor substrate 1 (IRS1) levels were
significantly elevated following miR-145-5p inhibition,
with the highest increase on day 9 (Figure 4C). KLF4,
an early adipogenesis marker [72], was significantly
upregulated on day 3 across all inhibitor treatments,
with the strongest effect observed with the combination
treatment (Figure 4D). Furthermore, KLF5 mRNA
showed non-significant increasing trend, specifically
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following miR-145-5p inhibition (Figure 4E).
Prohibiting (PHB) mRNA also displayed a modest
increase on days 3 and 6 under miR-27b-3p inhibition,
indicating a supportive role in early differentiation
(Figure 4F). PPARy, a key adipogenic transcription
factor [59], was significantly upregulated on days 6, 9,
and 12 with the strongest effect observed following the
combination treatment (Figure 4G). Expression of LPL,
a mature adipocyte marker, increased under both
miRNA inhibitor conditions, particularly with miR-27b-
3p inhibition (Figure 4H).

Bodipy staining on day 12 confirmed enhanced
adipocyte differentiation, revealing increased lipid
droplets formation (Figure 4I). The Bodipy-positive
area increased from 29% in controls to 34% with miR-
145-5p inhibition, 33% with miR-27b-3p inhibition, and
36% with combined treatment (Figure 4J). The number
of Bodipy-positive cells also increased significantly,
reaching 32% with miR-145-5p inhibition, 31%
with miR-27b-3p, and 30% with combined treatment
(Figure 4K). These findings demonstrate that inhibition
of miR-145-5p and miR-27b-3p enhances adipogenic

>
w

differentiation, supporting the role of these miRNAs as
suppressors of adipocyte maturation.

miR-145-5p and miR-27b-3p mimics
adipogenic differentiation in control cells

suppress

To further validate the role of miR-145-5p and miR-
27b-3p in impaired adipogenesis observed in HGPS,
control SKPs were transfected with 5 nM miR-145-5p
and/or miR-27b-3p mimics every 3 days (Figure 5). The
effects on miRNA levels and adipogenic markers were
assessed through qRT-PCR (Figure SA—5H).

Both mimics significantly increased miRNA levels,
with miR-27b-3p showing a 1000-fold increase
compared to 300-fold for miR-145-5p (Figures 5A, 5B).
IRS1 levels were significantly reduced as early as day 3,
with a more pronounced decrease following miR-145-
S5p mimic treatment (Figure 5C). KLF4 expression was
markedly suppressed on days 3, 6, and 9 by both
miRNA mimics, indicating a strong inhibitory effect on
early adipogenesis (Figure 5D). KLF5 levels were
significantly reduced by the miR-145-5p mimic on day 9,
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Figure 3. Deregulated mmu-miR-145a-5p and mmu-miR-27b-3p levels, along with deregulated adipogenic differentiation
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Figure 4. miR-145-5p and miR-27b-3p inhibitors enhance adipogenic differentiation in HGPS cells. HGPS cell strains
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5p inhibitor (145 (In)), 10 nM hsa-miR-27b-3p inhibitor (27b (In)) and a combination of 10 nM hsa-miR-145-5p inhibitor and 10 nM hsa-miR-
27b-3p inhibitor (Combi (In)); qPCR analysis was performed for miR-145-5p (A), and miR-27b-3p (B), both normalized to U6, as well as for
IRS1 (C), KLF4 (D), KLF5 (E), PHB (F), PPARy (G) and LPL (H) all normalized to GAPDH. (I) Bodipy staining (green) of lipid droplets on day 12 of
differentiation with representative images (40x magnification; scale bar: 20 um). DAPI was used as a counterstain. (J) Quantification of the
percentage of Bodipy-positive area normalized to the total number of DAPI area. (K) Quantification of the percentage of Bodipy-positive cells
normalized to the total number of DAPI-positive cells. (A—-H) Values are presented as mean + SD (n=3); p > 0.05; * p < 0.05; ** p < 0.01;
**% p <0.001; **** p < 0.0001; two-way ANOVA with Tukey’s multiple comparison test. (J, K) Values are presented as the mean + SD (n=3);
p >0.05; * p<0.05; ** p<0.01; *** p <0.001; **** p <0.0001; Ordinary one-way ANOVA with Dunnett’s multiple comparison test.
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Figure 5. miR-145-5p and miR-27b-3p mimic suppress adipogenic differentiation in control cells. Control cell strains (GM05565,
GMO05757, GM01651) were transfected with 5 nM miR-145-5p or miR-27b-3p mimics on days 0, 3, 6, and 9 during SKP-to-adipocyte
differentiation. The treatment groups include 5 nM negative control mimic (NC (M)), 5 nM hsa-miR-145-5p mimic (145 (M)) and 5 nM hsa-
miR-27b-3p mimic (27b (M)); gPCR analysis was performed for miR-145-5p (A), and miR-27b-3p (B) both normalized to U6 as well as for IRS1
(C), KLF4 (D), KLF5 (E), PHB (F), PPARy (G) and LPL (H) all normalized to GAPDH. (l) Bodipy staining (green) of lipid droplets on day 12 of
differentiation with representative images (40x magnification; scale bar: 20 um). DAPI was used as a counterstain. (J) Quantification of the
percentage of the Bodipy-positive area normalized to the DAPI area. (K) Quantification of the percentage of Bodipy-positive cells normalized
to the total number of DAPI-positive cells. (A—H) Values are presented as the mean £ SD (n=3); p > 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001;
*E*X p < 0.0001; two-way ANOVA with Tukey’s multiple comparison test. (J, K) Values are presented as the mean = SD (n=3); p > 0.05;
*p <0.05; ** p<0.01; *** p<0.001; **** p <0.0001; Ordinary one-way ANOVA with Dunnett’s multiple comparison test.
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whereas miR-27b-3p showed no substantial effect
(Figure SE). PHB levels were significantly down-
regulated by the miR-27b-3p mimic on days 6 and 9,
whereas the miRNA-145-5p mimic exhibited a milder
effect (Figure 5F). PPARy expression was suppressed
by both miRNA mimics on days 6, 9, and 12,
demonstrating their inhibitory role in adipogenic
differentiation (Figure 5G). Similarly, LPL expression
was reduced by approximately 50% following both
treatments, with significant downregulation observed on
days 6, 9, and 12 (Figure SH).

Bodipy staining on day 12 confirmed impaired
adipogenesis (Figure 5I), with the Bodipy-positive
area decreasing from 53% in controls to 41% in miR-
145-5p mimic-treated cells and 40% in miR-27b-3p
mimic-treated cells (Figure 5J). The percentage of
Bodipy-positive cells also declined, decreasing
from 45% in control cells to 37% with miR-145-5p
and 35% with miR-27b-3p (Figure 5K). Overall, these
findings indicate that overexpression of miR-145-5p
and miR-27b-3p significantly inhibits adipogenic
differentiation by suppressing early and late
adipogenic markers and reducing lipid droplet
formation, further supporting their role as negative
regulators of adipogenesis.

Proposed model: miR-145 and miR-27b as key
regulators of adipogenesis in HGPS

Adipocyte differentiation is a highly complex process
involving multiple signaling and protein interactions
(Figure 6). In HGPS, miR-145-5p and miR-27b-3p are
abnormally upregulated, indicating their suppressive
role in adipogenesis.

As illustrated in Figure 6 [73—80], miR-145-5p disrupts
early and late stages of adipogenesis by suppressing
IRS-1 expression, reducing protein kinase B (Akt)
phosphorylation [78], and downregulating key
adipogenic transcription factors, including C/EBPa and
PPARy [79]. Additionally, miR-145-5p inhibits KLF4
and KLF5. KLF4 not only promotes differentiation but
also regulates the cell cycle and apoptosis [74]. In the
adipogenic pathway, KLF4 activates C/EBP, which in
synergy with KLF5, enhances PPARy activation
[75, 76]. Meanwhile, miR-27b-3p targets and inhibits
PPARy, PHB and LPL while indirectly downregulating
C/EBPa levels [80]. PHB, a key regulator of
adipogenesis, is involved in the phosphoinositide 3-
kinase (PI3K)/Akt phosphorylation cascade [77].
The upregulation of miR-145-5p and miR-27b-3p in
HGPS disrupts normal adipocyte formation, potentially
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Marker of early
adipogenesis

miR-145-5p

miR-27b-3p
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Figure 6. Integrative model of miR-145-5p and miR-27b in adipogenesis: insights from literature and this study. Adipogenic
proteins are categorized into inducers, early and late markers, and mature adipocyte markers. miR-145-5p and miR-27b-3p impair
adipogenesis by targeting key adipogenic markers, disrupting normal differentiation. This graphic used the following studies: [73—80].
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contributing to the characteristic
observed in patients with HGPS.

lipodystrophy

DISCUSSION

The findings comprehensively explored the molecular
mechanisms underlying HGPS. Despite advancements
in treatments, including the use of lonafarnib, an FTI,
certain pathological features persist as symptoms. One
such unresolved issue is lipodystrophy, characterized by
subcutaneous fat loss [20]. Since adipose tissue is vital
for energy storage and thermoregulation, its depletion
leads to metabolic disturbances and an increased risk of
cardiovascular disease, a leading cause of mortality in
HGPS [24-26, 28].

This study utilized global miRNA sequencing to
compare miRNA expression profiles between fibro-
blasts derived from patients with HGPS and control
fibroblasts across different stages of the cellular aging
process. Our findings reveal distinct miRNA
deregulation patterns in HGPS, affecting key cellular
processes central to premature aging. To our
knowledge, this is the first study to integrate miRNA
profiling across both young and aged HGPS and control
cell strains, focusing on replicative senescence at
various cell passage numbers, reflecting the decline in
proliferative capacity [38, 39]. This approach provides
critical insights into replicative senescence as a driver of
accelerated aging in HGPS. Previously, only one study
conducted miRNA expression profiling in HGPS human
fibroblasts, where progerin accumulation at increasing
passage numbers was presumed to contribute to cellular

aging [81].

In the present study, we identified 66 significantly
dysregulated miRNAs, including miR-34a-5p, miR-92a-
3p, miR-126a, miR-200a, and miR-200b, which
regulate target pathways involved in cell cycle control,
apoptosis, oxidative stress, and autophagy, all of which
are crucial in both normal aging and HGPS pathology
[82, 83]. Although, our study also highlights the miR-
195/497 and 143/145 clusters, which have been
implicated in aging and disease progression [52, 84,
85]. Furthermore, miR-27b-3p and miR-145-5p were
found to be upregulated in HGPS fibroblasts, and
subsequent target analysis suggests their potential
involvement in adipose tissue depletion, a hallmark of
HGPS [4, 86, 87].

To investigate the connection between miR-145 and
miR-27b dysregulation and impaired adipogenesis, we
used a multipotent SKP model, which express lamin
A/C, and is highly relevant for HGPS studies [61, 62,
88-91]. Our findings showed a significant reduction in
adipocyte differentiation in HGPS derived SKPs

compared to control SKPs, indicating severe
impairment in the adipogenic process [62, 63]. This
study uniquely establishes a link between miRNA
regulation and functional adipogenesis, an area that
remains underexplored in HGPS research.

Our in-depth analysis showed that miR-145-5p and
miR-27b-3p were upregulated in HGPS cells throughout
adipogenesis, correlating with the downregulation of
key adipogenic transcription factors and markers,
including C/EBPa, PPARy, and FABP4. Notably,
similar expression changes in both miRNAs and
adipogenic markers were observed in WAT of the
Lmna®6096/6609G - moyuse model [71, 92], a well-
established HGPS model. These findings strongly
support the association between miRNA dysregulation
and lipodystrophy in HGPS [93].

Recent studies further support our findings. Caliskan et
al. [94]. identified insulin-like growth factor-binding
protein 2 (IGFBP2) as a biomarker in progeria, with
miR-27b-3p predicted to target IGFBP2, aligning with
our results on miRNA dysregulation and lipodystrophy
in HGPS [94]. Moreover, the neural-specific miR-9 has
demonstrated protective effects against progerin
accumulation, indicating that tissue-specific miRNAs
play a role in HGPS pathology [95]. Additionally, miR-
29b2/c deficiency has been shown to induce a progeria-
like phenotype with adipose tissue reduction,
reinforcing the role of miRNAs in adipogenesis and
aging [96]. Furthermore, anti-miR-59 treatment in an
HGPS mouse model improved adipose tissue
maintenance and extended lifespan, supporting the
therapeutic potential of miRNA modulation, consistent
with our findings on the inhibition of miR-145-5p
and miR-27b-3p [97]. Manakanatas et al. showed
that miR-34a-5p modulates cellular senescence in
progerin-expressing endothelial cells, contributing to
cardiovascular pathology via the senescence-associated
secretory phenotype (SASP), highlighting the systemic
impact of miRNA dysregulation in HGPS [98].

This study provides the first evidence of miR-145-5p
and miR-27b-3p as essential regulators of adipogenesis,
particularly in HGPS. Inhibition of these miRNAs in
HGPS cells enhanced adipogenic differentiation, as
indicated by increased expression of IRS1, KLF4,
KLF5, PPARYy, and LPL. This was accompanied by an
increase in lipid accumulation, as assessed using Bodipy
staining. Conversely, miR-145-5p and miR-27b-3p
overexpression in control cells suppressed adipogenesis,
leading to reduction in key adipogenic markers and lipid
accumulation. A limitation of our study is that miRNA
deregulation in HGPS is linked to chromatin remodeling
changes caused by the aberrant accumulation of progerin
hat disrupts nuclear lamina structure and function [33].
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Progerin is known to induce chromatin reorganization,
including loss of heterochromatin and widespread
changes in gene expression. Modulating miR-145 and
miR-27b levels may therefore not only affect adipogenic
gene networks directly but also influence chromatin
accessibility and nuclear lamina integrity, thereby
indirectly impacting differentiation [99, 100]. Further-
more, both miRNAs likely regulate additional targets
beyond classical adipogenic factors that could contribute
to changes in nuclear architecture and epigenetic
regulation. These broader effects may play a role in the
impaired differentiation phenotype and warrant further
investigation.

Overall, this study provides the first comprehensive
miRNA profiling of HGPS and control fibroblasts
across different stages of cellular senescence. The
findings highlight miRNA-145-5p and miRNA-27b-3p
as potential therapeutic targets to address adipose
tissue defects and premature aging in HGPS. Future
research should explore miR-145 and miR-27b’s roles
in metabolic disorders such as obesity and diabetes
[101-103]. Long-term objectives include the
identification of pharmacological compounds capable
of modulating these miRNAs, potentially paving the
way for novel therapeutic strategies to mitigate
metabolic complications associated with HGPS.

MATERIALS AND METHODS
Cell lines

Primary human normal dermal fibroblasts were
purchased from the Coriell Institute for Medical
Research (Camden, NJ, USA). Primary dermal
fibroblasts from patients with HGPS carrying the
heterozygous LMNA G608G mutation, were purchased
from The Progeria Research Foundation Cell and Tissue
Bank (http://www.progeriaresearch.org). The following
primary human dermal fibroblast cell strains were used
in this study: Control cell strains GM01651 (13-year-old
female), GM01652 (11-year-old female), GM03349 (10-
year-old male), GMO05757 (7-year-old male) and
GMO05565 (3-year-old male), all without mutations;
HGPS fibroblast strains: HGADFNO0O03 (2-year-old
male), HGADFN127 (3-year-old female), HGADFN164
(4-year old female) and HGADFNI178 (6-year-old
female, all carrying a heterozygous LMNA ¢.1824C>T
(p.Gly608Gly) mutation in exon 11.

Mouse model

Transgenic Lmna®®% mice, which phenotypically
model HGPS were generously provided by Carlos-
Lopes Otin (University of Oviedo, Spain). As
previously described [92], all breeding and housing

procedures adhered to the Bavarian state regulations
and the Animal Welfare Act. This study was approved
by the State of Bavaria’s authority (Regierung von
Oberbayern, Germany; TVA-ID: 55.2-2532.Vet 01-19-
72). The colony was established via embryo transfer
under specific pathogen-free (SPF) conditions. To
prevent inbreeding, at least five distinct breeding lines
were maintained. Mice were housed under controlled
conditions (21-22° C, 50% humidity) with species-
appropriate enrichment and were provided standard
chow (PS RM-H, V1534; ssniff Spezialdidten GmbH,
Soest, Germany). For maintenance breeding, Lmna*"*
females were paired with Lmna®%%"* males aged 8 to
20 weeks. Homozygous LmnaG6®@/G609G mice were
transferred to SPF-grade facilities with equivalent
environmental conditions for experimental procedures.
To prevent hypothermia, they were provided extra
bedding and co-housed with at least one Lmna™*
littermate. Water-soaked chow was provided from 8§
weeks of age. For this study, we used female Lmna*/*
and homozygous Lmna®0@/G609G mice at the age of 100
-120 days.

Cell culture

All cells were cultured as monocultures in 10 cm cell
culture dishes (Sarstedt, 832472) under standard culture
conditions. Cells were grown in high-glucose
Dulbecco’s Modified Eagle Medium (DMEM; Thermo
Fisher-Gibco, Waltham, MA, USA, D6429, containing
4.5 g/L glucose), supplemented with 15% fetal bovine
serum (FBS; Thermo Fisher-Gibco, 10270106), 1% L-
glutamine (Thermo Fisher-Gibco, 25030081), 1%
penicillin-streptomycin (Thermo Fisher-Gibco,
1514022), and 0.5% gentamicin (Thermo Fisher-Gibco,
15710049) in a cell incubator (Binder, Tuttlingen,
Germany, 9140-0046) at 37° C and 5% CO,. For sub-
culturing, cells were first washed with phosphate-
buffered saline (PBS; Sigma-Aldrich, D8537),
trypsinized using 2 mL trypsin-EDTA (trypsin-
ethylenediaminetetraacetic acid, Thermo Fisher-Gibco,
25200-056), and distributed into new dishes after
stopping the reaction. The culture medium was changed
every 2-3 days. Monocultures with a degree of
senescence level of < 5% were classified as young,
whereas those with > 15% senescence were considered
old. For SKP isolation, the cells were used at 80%
confluence and a senescence of 5%. The levels of
replicative senescence used in experiments are detailed
in Supplementary Table 3.

Senescence associated B-galactosidase assay
Senescence was evaluated in control and HGPS

fibroblast cultures at each subculture using the
senescence-associated P-galactosidase assay (SA-B-Gal)
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as previously described by Dimri et al. (1995) [104].
Cells were first washed with PBS for 5 min and then
fixed at room temperature for 5 min using a fixation
solution containing 0.2% glutaraldehyde (Sigma-
Aldrich, St. Louis, MO, USA, G5882) and 2%
formaldehyde (Sigma-Aldrich, 104003). After fixation,
cells were washed twice with PBS for 5 min and
subsequently incubated overnight at 37° C in absence
of CO, with an SA-B-Gal staining solution. This
solution contained 5 mM potassium ferricyanide (III)
(Merck KGaA, 104973, Darmstadt, Germany), 5 mM
potassium ferrocyanide (II) (Sigma-Aldrich, P9387), 2
mM  magnesium chloride (MgCl,, Sigma-Aldrich,
M-1028), 150 mM sodium chloride (NaCl, Sigma-
Aldrich, 14 310166), 0.5 mg/mL 5-bromo-4-chloro-3-
indolyl-p-D-galactopyranoside (X-gal, Sigma-Aldrich,
3117073001), and 40 mM citrate/sodium phosphate
buffer (pH 6.0). At least 1000 cells were counted per
sample, and cells exhibiting blue staining were classified
as senescent.

Genotyping

Genetic material was extracted from earmark punches
collected at weaning using a homemade DNA extraction
kit (10XStandard reaction buffer with MgCl, [Biotools
B&M Labs, SA, P0098], DNA Polymerase [Biotools
B&M Labs, SA, P0116], dNTP MIX [Biotools B&M
Labs, SA, P0066]) [92]. The extraction was performed
using the Mixing Block MB-102 (BIOER, Hangzhou,
China) at 95° C. PCR was performed using previously
published primers: DNA-Mm-Lmna forward, 5'-
GGTTCCCACTGCAGCGGCTC-3', and DNA-Mm-
Lmna reverse, 5-GGACCCCACTCCC-TTGGGCT-3
[71]. Amplification followed a previously described
protocol [105] using the ICycler PCR System (Bio-Rad
iCycler 1Q™), with initial denaturation at 94° C for 10
min followed by 35 cycles at 94° C for 1 min, 64° C for 1
min, and 72° C for 1 min, with a final extension at 72° C
for 7 min.

White adipose tissue (WAT) harvesting

Experimental Lmna®®%/6%0% mice and age-matched
Lmna'* controls were euthanized by cervical dis-
location under 5% isoflurane anesthesia and perfused
with 20 mL PBS (Sigma Aldrich, St. Louis, MO, USA).
WAT was collected for RNA isolation, immediately
frozen in liquid nitrogen, and stored at -80° C until

further processing.
RNA extraction and purification
Cells were washed with PBS, trypsinized with trypsin-

EDTA, and collected after stopping the reaction with a
medium containing 15% FBS. Collected cells were

centrifuged at room temperature for 5 min at 1200 rpm,
and the cell pellets were frozen in liquid nitrogen after
removing the supernatant. Total RNA, including
microRNAs from pelleted cells or mouse WAT tissue,
was isolated using the miRNeasy Mini Kit protocol
(Qiagen, 217004). Briefly, collected cell pellets or
mouse WAT were lysed and homogenized using 700 pl
QIAzol lysis reagent, and the homogenate was
incubated for 5 min at room temperature (RT).
Thereafter, 140 pl Chloroform was added, mixed well,
and incubated at RT for 3 min before centrifuging at
12000x g for 15 min at 4° C. The upper aqueous phase
was transferred to a new collection tube, and 1.5
volumes of 100% ethanol were added. The solution was
mixed thoroughly, transferred into a RNeasy® Mini
column with a collection tube, and centrifuged at 8000x
g for 1 min at 4° C. The column was washed once with
700 pl RWT buffer and twice with 500 ul RPE buffer.
Each washing step included centrifugation at 8000x g
for 1 min at 4° C. After a final washing step, the column
was centrifuged at 8000x g for 2 min at 4° C, and
completely dried by transferring it to a new collection
tube and centrifuging at 13000x g for 1 min at 4° C.
RNA was eluted by adding 30 pL RNase-free water and
centrifuged at 8000x g for 1 min at 4° C. RNA
concentration measurements were performed using 1
mM Tires buffer, pH 7,0 (T1503, Sigma), whereas
quality control was performed using 1 mM Tris buffer,
pH 7.5 (T1503, Sigma). The quantity and quality of
isolated RNA were measured by using a NanoDrop
spectrophotometer (NanoDrop ND-1000 V3. 8.1,
Thermo Fisher). RNA samples with 260/280nm
absorbance ratio between 1.9 and 2.1 were considered
to be of good purity.

Sequencing

For global miRNA sequencing, both young and old
passage cells were selected from each of the following
cell strains. Young passage (Supplementary Table 3)
included P14 to P18 for control and P11 to P15 for
HGPS with relative senescence <5%. Old passages
(Supplementary Table 3) included P22 to P26 for
control and P15 to P23 for HGPS with senescence
between 15 and 20%. The control cell strains included
GMO01651 (13-year-old female), GM01652 (11-year-old
female) and GM03349 (10-year-old male), all without
mutations, and HGPS cell strains included
HGADFNO0O03 (2-year-old male), HGADFN127 (3-year-
old female) and HGADFN178 (6-year-old female) all
carrying heterozygous c.1824C >T (p.Gly608Gly)
mutation in LMNA Exon 11. Total RNA, including
miRNAs, was isolated from these cells and assessed for
total RNA concentration and purity as described above.
RNA integrity was evaluated by loading at least 200 ng
of RNA onto a denaturing agarose gel. Total RNA was
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extracted using a Trizol reagent (Invitrogen, Carlsbad,
CA, USA), and its quality and quantity were analyzed
using a Bioanalyzer 2100 (Agilent, Santa Clara, CA,
USA) ensuring an RNA integrity number >7.0.
Approximately 1 ug of total RNA was used to prepare a
small RNA library following to the TruSeq Small RNA
Sample Prep Kits protocol (Illumina, San Diego, USA).
Single-end sequencing of 50 bp on an Illumina HiSeq
2500 at the LC Sciences (Hangzhou, China). miRNA-
seq data have been deposited at the NCBI GEO as under
accession number GSE282307 and are publicly
available as of the date of publication.

Processing of sequencing data

Raw sequencing reads were analyzed using ACGT101-
miR (LC Sciences, Houston, TX, USA) to remove
adapter dimers, junk sequences, low-complexity reads,
common RNA families (rRNA, tRNA, snRNA,
snoRNA), and repeat sequences. Unique sequences
ranging from 18 to 26 nucleotides in length were
mapped to human precursors in miRBase 22.0
(http://mirbase.org/) via BLAST search to identify both
known miRNAs and novel 3p- and Sp-derived miRNAs.
Alignment allowed for length variation at both the 3’
and 5’ ends, as well as a single mismatch within
the sequence. Unique sequences that mapped to
mature miRNAs-containing arms of known human
precursor hairpins were classified as known miRNAs
(http://mirbase.org/). Sequences mapping to the
opposite arm of a known human precursor hairpin,
related to the annotated mature miRNA were considered
novel 5p- or 3p-derived miRNA candidates. The
mapped  pre-miRNAs  were further analyzed
through BLASTed (http:/rna.tbi.univie.ac.at/cgi-bin/
RNAWebSuite/RNAfold.cgi) to determine their
genomic locations. Normalization of sequence counts
was performed following the method described by
Dillies et al. [106]. All expressed miRNAs were listed,
and sequence counts in each sample were normalized by
dividing the counts by the library size parameter of the
corresponding sample. The library size parameter was
calculated as the median value ratio between the counts
of a specific sample and a pseudo-reference sample,
where the pseudo-reference sample was the geometric
mean across all samples. To test for differential miRNA
expression between young and old control and HGPS
primary dermal fibroblasts, the 1019 identified miRNAs
(915 known and 104 novel miRNAs) were further
analyzed using a DESeq2 software within the R
statistical environment (R version 4.1.1 (2021-08-10 R
Foundation for Statistical Computing, Vienna, Austria;
URL https://www.R-project.org)) for normalization and
filtering. All miRNAs were analyzed for all possible
comparisons between all conditions while accounting
for batch effects.

The lists of differentially expressed miRNAs generated
by DESeq2 were further filtered to remove miRNAs
with low read counts (fewer than 10 reads in at least
two of the three biological replicates in both conditions
being compared), as these were considered of low
biological relevance. The general cut-off criteria of
differentially expressed miRNAs were a p-value of 0.05
and a g-value of 0.1, as described previously by Osabe
et al. (2021) [107].

Skin-derived precursor (SKP) isolation

SKPs were isolated from human primary dermal
fibroblasts when culture reached 80% confluence and
senescence levels were < 5%. The isolation method
followed the low pH stress protocol established by Budel
and Djabali in 2017, [61] using acidic Hank’s Balanced
Salt Solution (HBSS; Thermo Fisher-Gibco, 14175053)
adjusted to pH 5.7 with hydrochloric acid (HCL; Merck
KGaA, Darmstadt, Germany, 1.00319.2500). Cells were
first washed with PBS and trypsinized using trypsin-
EDTA. Detached cells were collected, pelleted via
centrifugation at 1200 rpm for 5 min at RT, and washed
with PBS. Cell counts and viability assessments were
performed wusing a Muse Cell Analyzer (Merck
Millipore, Burlington, MA, USA). Every one million
cells were resuspended in 500 pL HBSS (pH 5.7), and
incubated for 25 min at 37° C with resuspension every 5
min. Thereafter, cells were centrifuged at 1200 rpm for 5
min at RT, resuspended with 6 mL SKP medium, and
evenly separated into two T25 non-tissue-culture-treated
flasks (Fisher Scientific-Falcon, Hampton, NH, USA,
10112732) as previously described [61]. The SKP
culture medium consisted of a 3:1 mixture of DMEM
low glucose (1g/L glucose; Thermo Fisher-Gibco,
21885025) and F12 (DMEM/F12, Thermo Fisher-Gibco,
21765029), supplemented with 2% B27 (Thermo Fisher-
Gibco, 17504044), 1% penicillin-streptomycin (Thermo
Fisher-Gibco, 1514022), 0.2% fungizone (Thermo
Fisher-Gibco, 15290018), 0.02% epidermal growth
factor (EGF; Thermo Fisher-Gibco, PHGO0311), and
0.04% basic fibroblast growth factor (bFGF; Thermo
Fisher-Gibco, PHG0026). SKPs were cultured for 5 days
in SKP medium, with daily resuspension to prevent
spheroid adhesion. On day 2 and 4, cells were fed with
10x SKP medium, which contained ten times the
concentration of B27, EGF, and bFGF, diluted to a final
concentration of 1x in SKP culture medium.

Adipocyte differentiation

SKPs were collected on day 5 and centrifuged at 1200
rpm for 5 min at RT. The resulting SKP spheroids
were washed twice with PBS (Sigma-Aldrich, D8537)
and dissociated using 4 ml trypsin (trypsin-
ethylenediaminetetraacetic acid, Thermo Fisher-Gibco,
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25200-056). Cell count and viability were assessed
using a Muse Cell Analyzer (Merck Millipore,
Burlington, MA, USA). The dissociated cells were
then seeded into 24-well plates (Sarstedt, 833922)
containing coverslips (VWR, 43233819) at a density
of 1.2 x 103 cells/well. Cells were cultured following
protocols from Budel and Djabali [61] and Najdi et al.
[62], using adipocyte differentiation medium. The
medium consisted of three volumes of high glucose
DMEM (4.5 g/L glucose, Thermo Fisher-Gibco,
21885025) and one volume of F12 (DMEM/F12 in a
3:1 ratio; Thermo Fisher-Gibco, 21765029). This was
supplemented with 10% FBS (Thermo Fisher-Gibco,
10270106), 1% penicillin-streptomycin  (Thermo
Fisher-Gibco, 1514022), 1% insulin (Sigma-Aldrich,
12643, stock in 0.01M HCL [Merck KGaA,
1.00319.2500]), 1%  3-isobutyl-1-methylxanthine
(IBMX, Sigma-Aldrich, St., Louis, MO, USA, 17018,
stock in absolute ethanol [VWR Chemicals, Radnor,
PA, USA, 20821.33]), 1% L-ascorbic acid (Sigma-
Aldrich, A8960, stock in Ultra-Pure water from
MilliQ), 0.4% dexamethasone (Dexa, Sigma-Aldrich,
D4902, stock in absolute ethanol), 0.2% fungizone
(Thermo Fisher-Gibco, 15290018), and 0.125%
indomethacin (Sigma-Aldrich, 17378, stock in 100%
DMSO (Sigma-Aldrich, D2650). The differentiation
process continued for 12 days, with medium changed
every three days.

Transfection assays

Transfection assays were performed immediately after
seeding SKPs into 24-well plates. The cells were
transfected using the Interferin® (Polyplus, 101000028)
transfection reagent, following the manufacturer’s
protocol. For the miRNA mimic experiment, hsa-miR-
145-5p and hsa-miR-27b-3p (mirVana® miRNA mimic,
Thermo Fisher, 4464066) were transfected into control
cell strains (GMO05565, GMO05757, GMO01651) at a
concentration of 5 nM. Conversely, HGPS cells
(HGADFNO003, HGADFNI127, HGADFN164) were
transfected with 10 nM miRNA inhibitors for hsa-miR-
145-5p and hsa-miR-27b-3p (mirVana® miRNA
inhibitor, Thermo Fisher, 4464084). As controls, cells
were transfected with 5 nM of a negative mimic control
(mirVana™ miRNA Mimic, Negative Control #1,
Thermo Fisher, 4464058) or 10 nM of a negative
inhibitor control (mirVana™ miRNA Inhibitor, Negative
Control #1, Thermo Fisher, 4464076). The transfection
mix for each well was prepared by combining either a 5
nM miRNA mimic or 10 nM miRNA inhibitor with 1
pL of Interferin® (Polyplus, 101000028) in high-
glucose DMEM e (4.5 g/L glucose; Thermo Fisher-
Gibco, 21885025) supplemented with 1% L-glutamine
(Thermo Fisher-Gibco, 25030081), 1% penicillin-
streptomycin (Thermo Fisher-Gibco, 1514022), and

0.5% gentamicin (Thermo Fisher-Gibco, 15710049).
After 10 min of incubation,100 pL of the transfection
mix was added to each well and left to interact with the
cells for 3 days. Transfections were repeated every three
days to maintain gene silencing efficacy.

Reverse transcription (RT) and quantitative
polymerase chain reaction (qPCR)

A total of 500 ng RNA was reverse transcribed into
cDNA using a High-Capacity cDNA Reverse
Transcription (RT) Kit (Thermo Fisher, 4368814) with
10x RT buffer, 25x ANTP, and 10% reverse transcriptase.
For total cDNA synthesis, 10x random primers from the
kit were used. For miRNA, transcription, RT stem-loop
primers with eight complementary nucleotides were
designed using snRNAprimerDB [108]. All primers
were purchased from Thermo Fisher (10336022) and
are listed in Supplementary Table 4. For the ICycler
PCR System (Bio-Rad iCycler iQ™), stem-loop reverse
transcription of miRNAs was performed under the
following thermal cycling conditions: initial incubation
at 16° C for 30 min followed by 60 cycles of 30 s at 30°
C, 30 s at 42° C and 1 min at 50° C. The reaction was
then held at 85° C for 5 min and terminated at 4° C. For
random reverse transcription, the reaction was set at 25°
C for 10 min, followed by 37° C for 120 min, 85° C for
5 min and termination at 4° C.

Quantitative real-time PCR (qPCR) was performed
using PowerUP SYBR Green Master Mix (Applied
Biosystems™, Thermo Fisher). The thermal cycling
conditions for miRNA amplification involved uracil-
DNA glycosylase (UGD) activation at 50° C for 2 min,
followed by Dual-Lock DNA polymerase activation at
95° C for 2 min. This was followed by 60 cycles of
denaturation at 95° C for 15 s and annealing at 60° C for
1 min. The qPCR for total RNA included an initial
activation step at 50° C for 2 min, pre-soak at 95° C for
10 min and 40 cycles of denaturation at 95° C for 15 s
and annealing at 60° C for 1 min.

miRNA levels were normalized to U6 small nuclear
RNA, whereas glyceraldehyde-3-phosphate dehydro-
genase (GAPDH) was used for normalizing of target
mRNA expression. Primer pairs for all evaluated genes
were purchased from Thermo Fisher (Supplementary

Table 4). All experiments were performed in
triplicates.
Western blotting

For western blotting, cells were collected by scraping
the culture plates. After washing with PBS (Sigma-
Aldrich, D8537), cells were lysed in a 1:1 mixture of
Laemmli buffer and lysis buffer. The Laemmli buffer
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consisted of 4x Laemmli sample buffer (Bio-Rad
Laboratories, 1610747), 6% 2-Mercaptoethanol (Bio-
Rad Laboratories, 161-0710), 1% protease-inhibitor
(Thermo Fisher, WF326480), 1% phosphatase-inhibitor
(Thermo Fisher, TG269618), and 0.75% phenyl-
methylsulfonyl fluoride (200 mM PMSF, Sigma-
Aldrich, 10837091001). The lysis buffer contained 150
mM NaCl (Sigma-Aldrich, 310166), 1% Triton X-100
(Sigma-Aldrich, T9284), 50 mM Tris (Sigma Aldrich,
SLBR6201V), 1% sodium dodecyl sulfate (SDS, Sigma-
Aldrich, L3771-100G), and 1 mM EDTA (Sigma-
Aldrich, E9884), adjusted to pH 8.0. Proteins were
separated via SDS-PAGE in a 15% acrylamide gel (Bio-
Rad Laboratories, 161057) and transferred via wet
transfer onto nitrocellulose membranes (Amersham
Protran Premium Western blotting membrane, Sigma-
Aldrich, GE10600003) using a wet transfer system. To
normalize for total protein content, trichloroethanol
(Sigma-Aldrich, T54801) was added, and gels were
imaged immediately after electrophoresis.

The efficiency of protein transfer was assessed using
reversible Ponceau S staining (Sigma-Aldrich, P7170).
Membranes were then blocked with 5 % non-fat milk
(Sigma-Aldrich, P7170, T145.3) for 1 h, at RT,
followed by overnight incubation with primary
antibodies at 4° C. After three washes with Tris-
buffered saline with 0.1% Tween 20 (Sigma-Aldrich,
P9416) for 5 min each, membranes were incubated
with  horseradish  peroxidase = (HRP)-conjugated
secondary antibodies for 1 h, at RT. Protein detection
was performed using Clarity™ Western ECL substrate
(Bio-Rad, 1705061), and chemiluminescence signals
were captured using ChemiDoc™ MP Imaging System
(Bio-Rad Laboratories). Densitometric analysis was
conducted with Image Lab Software (version 6.1.0, Bio-
Rad Laboratories). Protein levels were normalized to
that of GAPDH.

Bodipy staining

Cells grown on 12 mm glass coverslips (VWR,
43233819) were washed once with PBS and fixed with
2 % paraformaldehyde (PFA, Sigma-Aldrich, P6148)
for 10 min at RT. Then, cells were washed with PBS
and incubated with Bodipy (Invitrogen, Waltham, MA,
USA, D3922, 1:5000 dilution) for 45 min at RT to stain
lipid droplets. Following incubation, coverslips were
washed with PBS for 8 min and counterstained with
DAPI  Vectashield mounting medium (Vector
Laboratories, H-1200). Images were acquired using an
Axio Imager D2 fluorescence microscope (Light source:
X-cite 120Q (EXFO Photonic Solutions Inc.,
Mississauga, ON, Canada); objectives used: EC-Plan
Neofluar 10x/0.3 (420340-9901, Carl Zeiss), Plan-
Apochromat 40x/0.95 Korr (440654-9902, Carl Zeiss);

camera used: AxioCam MRm (Carl Zeiss, Oberkochen,
Germany); excitation and emission filters used: filter set
49 (424931, Zeiss), filter set 38 HE (424931, Zeiss)).
Images were captured using AxioVs40 V 4.8.2.0
software (Carl Zeiss, Oberkochen, Germany).

Image analysis

Fiji software (ImageJ, version 2.14.0/1.54f, Java
1.8.0_322, Wayne Rasband, NIH) was used for image
analysis [109]. During image processing, only the
brightness and contrast were adjusted to quantify the
number of Bodipy-positive cells and Bodipy intensity,
while all other parameters remained unchanged. For
Bodipy intensity quantification, images acquired at
10x  magnification were analyzed using the
RenyiEntropy auto threshold method. The threshold
was applied independently to both Bodipy and DAPI
signals. For Bodipy-positive cell counting, images
captured at 40x magnification were used. A minimum
of 1000 cells were counted, with cells surrounded by
lipid droplets classified as Bodipy positive. For the
quantification, Bodipy signal intensity was normalized
to the DAPI signal, while the number of Bodipy-
positive cells was normalized to the total number of
cells per image. Figure illustrations were created using
Inkscape (Version 1.1.1 (3bf5ae0d25, 2021-09-20),
GPL).

Quantification and statistical analyses

For statistical analyses, the following tests were
performed using GraphPad Prism (Version 8.0.2 (263),
San Diego, CA, USA). An unpaired ¢-test was used to
compare the percentage of BODIPY -positive area/cells
in HGPS cells versus control cells, as well as gene
expression levels in LMNA(G609G/G609G) mijce compared
to LMNA® mice. A two-way ANOVA with Sidak's
multiple comparisons test was applied to examine gene
expression across different differentiation days
between HGPS and control cell strains. To evaluate
the effects of different treatments on gene expression,
a two-way ANOVA with Tukey's multiple com-
parisons test was performed, comparing each treatment
to the negative control group at the same time point.
For the quantification of Body-positive areas and cell
counts under different treatments, a one-way ANOVA
with Dunnett's multiple comparison test was
conducted, comparing each treatment group to the
control group. For senescence analysis and BODIPY -
positive cell counting, a minimum of 1000 cells per
strain and condition were analyzed. Results are
presented as the mean =+ standard deviation (SD).
Statistical significance was indicated as follows:
p > 0.05 (not significant); * p < 0.05; ** p < (0.01; ***
p <0.001; **** p <(0.0001.
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Supplementary Figure 1. Connection of deregulated miRNAs to (premature) aging. Link of miRNAs to normal aging (A, B). Role of
miR-34a-5p (A) and miR-92a-3p (B) in cellular aging. Differentially expressed miRNAs and their experimentally observed targets (IPA) by
comparing old control cells (15-20% senescence) to young control cells (senescence <5%). Link of miRNAs to HGPS cellular aging (C, D). miR-
200a/b (C) and miR-126a-3p/5p (D) set of differentially expressed miRNAs and their experimentally observed, overlapping targets (IPA) by
comparing old HGPS cells (15-20% senescence) to young HGPS cells (senescence <5%). Link of miRNAs to early changes in HGPS (E).
Differentially expressed miRNAs and their experimentally observed overlapping targets (IPA) by comparing young HGPS cells (Senescence
<5%) to young control cells (Senescence <5%). Link of miRNAs to premature aging (F). Differentially expressed miRNAs and their
experimentally observed overlapping targets (IPA) by comparing old HGPS cells (15-20% senescence) to old control cells (15-20%
senescence). miRNAs driving early changes in HGPS young cells (G, H). Differentially expressed miRNA miR-486-3p (G) and miR-27b-3p (H)
with their experimentally observed targets (IPA). miR-200a-3p illustrated as miR-141-3p (and other miRNAs w/seed AACACUG); miR-195-5p
and miR-497-5p are combined, and both are shown as miR-16-5p (and other miRNAs w/seed AGCAGCA); miR-199b-5p illustrated as miR-
199a-5p (and other miRNAs w/seed CCAGUGU); miR-27b-3p illustrated as miR-27a-3p (and other miRNAs w/seed UCACAGU).
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Supplementary Figure 2. Quantification of progerin at different differentiation stages. Representative western blot of Lamin A/C
shown in Figure 2E. Distinct progerin band exclusively in HGPS samples. Quantification of progerin protein level of HGPS samples normalized
to GAPDH on day 3, 6, 9, and 12 of differentiation. Values are presented as the mean + SD (n=3); p > 0.05; * p < 0.05; ** p < 0.01; *** p <
0.001; **** p < 0.0001; two-way ANOVA with Tukey’s multiple comparisons test.
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Supplementary Tables
Please browse Full Text version to see the data of Supplementary Table 1.

Supplementary Table 1. Overview of miRNA sequencing data.

Supplementary Table 2. Link of experimentally observed targets for differentially expressed miRNAs to canonical
pathways and cellular functions.

Targets Association Reference

link of miRNAs to normal aging — miR-34a-Sp
Axin2, Wnt family members (WNT1,

WNTS3), B-catenin (CTNNB1) Wnt signaling pathway: cell renewal and tissue homeostasis [1,2]
Jaggedl (JAGLI), Notch receptors NOTCHI, Notch signaling pathway: cell differentiation and 3]
NOTCH?2), delta-like ligands (DLL1) senescence

modulators of the aging processes: regulate DNA damage

p33, sirtuin 1 (SIRTL) responses, apoptosis, and survival

(4]
mitogen-activated protein kinase kinase 1

(MEK 1), SMAD3, and TGF beta receptor 1 aging-associated pathways: MAPK/ERK and TGF-f§

pathways: cell proliferation and repair

(3]

(TGFBR1)

MYC, MYCN Proto-oncogenes: cellular metabolism and growth [6]
Histone deacetylase 1 (HDACI) and epigenetic regulators: gene expression: chromatin state,
chromodomain helicase DNA binding DNA methylation, histone modification, chromatin [7, 8]
protein 8 (CHDS) remodeling

link of miRNAs to normal aging — miR-92a-3p

cyclin E2, cyclin-dependent kinase inhibitors cell cycle regulation, maintenance of cellular homeostasis:

1A and 1C, F-box and WD repeat domain- stem cell agin [9, 10]

containing 7 (FBXW?7) gmne

BCL2-like 11 (BCL2L11) apoptosis, cell proliferation [11]

phosphatase and tensin homolog (PTEN) modulator of survival [12]

Polycomb group proteins (PCGF1, ZEB2) chromatin remodeling [13, 14]

Integrins (ITGAS, ITGB3) and bone

morphogenetic protein receptor type 2 inflammation and age-related fibrosis [15-17]

(BMPR2)

oxysterol binding proteins (OSBPL2, . P

OSBPLS) lipid metabolism; oxidative stress [18]

mitogen-activated protein kinase kinase 4 .

(MAP2K4) MAPK pathway: stress response and senescence [19]

link of miRNAs to HGPS cellular aging — miR-126-3p; miR-126-5p

forkhead box 03 (FOXO3) key 10ng§V1ty fa(.:tor: oxidative stress responses, autophagy, [20,21]
apoptosis: helping protect cells from age-related damage

solute carrier family 45 member 3 . . . .

(SLC45A3) immune cell infiltration, cellular homeostasis [22]

link of miRNAs to HGPS cellular aging — miR-200a/b

BRCA1-associated protein 1 (BAP1) chromatin remodeling, DNA repair, and genomic stability [23, 24]

ERBB2 interacting protein (ERBIN), cell growth, polarity, motility, and cytoskeletal [25-28]

engulfment and cell motility 2 (ELMO2) organization, tissue regeneration

GEM nuclear organelle-associated protein 2

(GEMIN2) nuclear structure [29, 30]

zinc finger E-box binding homeobox 1 and 2 stem cell differentiation, epithelial-to-mesenchymal [31,32]

(ZEBI1, ZEB2) transition (EMT): tissue repair and fibrosis ’

Kelch like family member 20 (KLHL20) protein homeostasis: cogz:s;z(;tmg age-related cellular (33, 34]
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link of miRNAs to early changes in HGPS

B-cell lymphoma 2 (BCL2), programmed
cell death 4 (PDCD4)

brain-derived neurotrophic factor (BDNF),
epidermal growth factor receptor (EGFR),
insulin-like growth factor 1 (IGF-1), growth
factor receptor bound protein 2 (GRB2)

H3.3 histone A

Polo-like kinase 1 (PLK1), WEE1 G2
checkpoint kinase (WEEL)

link of miRNAs to premature aging
BCL2, PDCD4
Cyclin D1 (CCND1)

MAP2K4
NOTCH2

apoptosis modulators: cell death and tissue degeneration

cellular growth and repair: tissue regeneration and
neurodegeneration with age

chromatin structure and gene expression: cellular
senescence

cell cycle, maintaining genomic stability

apoptosis regulators: cell death and tissue degeneration
cell cycle, senescence

RAS/MAPK signaling pathway: cell proliferation and
survival, senescence

cell adhesion, differentiation, and tissue homeostasis

[35-37]

[38-42]

[43-46]

[47, 48]

[35-37, 49]
[50, 51]

[52]
[53, 54]

Target analysis of genome-wide miRNA sequencing of HGPS and control fibroblast cultures of a young passage with relative
senescence < 5 % and an old passage of senescence between 15 and 20 %; control cell strains: GM01651c, GM01652c,
GMO03349c; HGPS cell strains: HGADFN0O3, HGADFN127, HGADFN178.

Supplementary Table 3. Passage numbers of young and old cell cultures for each primary fibroblast cell strain.

Cell Strain

Young culture senescence < 5%

OIld culture senescence 15-20%

GMO01651
GMO01652
GMO03349
GMO5757
GMO05565
HGADFNO003
HGADFN127
HGADFN178
HGADFN164

Passage 14-17
Passage 15-18
Passage 16-18
Passage 15-17
Passage 14-18
Passage 12-15
Passage 11-14
Passage 11-13
Passage 10-14

Passage 23-25
Passage 24-26
Passage 22-26

Passage 21-23
Passage 18-19
Passage 15-17
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Supplementary Table 4. List of primer pairs with forward (F), reverse (R), and reverse transcription (RT) primer

sequences.

Target gene

Primer sequence (5’ to 3°)

mmu-miR-145a-5p

mmu-miR-27b-3p

mmu_C/EBPa
mmu_PPARy
mmu_FABP4

mmu_U6

mmu_GAPDH

hsa-miR-145-5p

hsa-miR-27b-3p

hsa_C/EBPa
hsa_PPARy
hsa_FABP4
hsa_PHB
hsa_LPL
hsa_IRS1
hsa_KLF4
hsa_KLF5

hsa U6

hsa_GAPDH

RT: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAGGGATTC
F: AACAAGGTCCAGTTTTCCCAG
R: GTCGTATCCAGTGCAGGGT
RT: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAGGGATTC
F: AACAAGGTCCAGTTTTCCCAG
R: GTCGTATCCAGTGCAGGGT
F: AGGTGCTGGAGTTGACCAGT
R: CAGCCTAGAGATCCAGCGAC
F: CAAGAATACCAAAGTGCGATCAA
R: GAGCTGGGTCTTTTCAGAATAATAAG
F: AAGACAGCTCCTCCTCGAAGGTT
R: TGACCAAATCCCCATTTACGC
RT: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAAAATA
F: CTCGCTTCGGCAGCACA
R: AACGCTTCACGAATTTGCGT
F: TTGTTGCCATCAACGACCCC
R: GCCGTTGAATTTGCCGTGAG
RT: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAGGGATTC
F: AACAAGGTCCAGTTTTCCCAG
R: GTCGTATCCAGTGCAGGGT
RT: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGCGGAACT
F: AACACGCTTCACGTGGCTA
R: GTCGTATCCAGTGCAGGGT
F: AGGAGGATGAAGCCAAGCAGCT
R: AGTGCGCGATCTGGAACTGCAG
F: GGCTTCACATTCAGCAAACCTGG
R: AGCCTGCGAAAGCCTTTTGGTG
F: ACCAGAGGATGATAAACTGGTGG
R: GCGAACTTCAGTCCAGGTGAAC
F: AAGCGGTGGAAGCCAAACAGGT
R: GCCAGTGAGTTGGCAATCAGCT
F: TGGAGGTACTTTTCAGCCAGGAT
R: TCGTGGGAGCACTTCACTAGCT
F: GGAGTACATGAAGATGGACCTGG
R: CTGTTCGCATGTCAGCATAGC
F: CATCTCAAGGCACACCTGCGAA
R: TCGGTCGCATTTTTGGCACTGG
F: GGAGAAACGACGCATCCACTAC
R: GAACCTCCAGTCGCAGCCTTC
RT: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAAAATA
F: CTCGCTTCGGCAGCACA
R: AACGCTTCACGAATTTGCGT
F: GTCTCCTCTGACTTCAACAGCG
R: ACCACCCTGTTGCTGTAGCCAA
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