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ABSTRACT

Introduction: Research indicates a strong correlation between obesity and the risk of dementia, both are linked
to steroid receptor coactivator-1 (SRC-1), a transcriptional coactivator.

Methods: We used RNA sequencing analysis (RNA-Seq) to investigate the transcriptome of SRC-1-KO mice, and
identified $S100 calcium-binding protein A6 (S100A6), an AD associated gene, as one target of SRC-1. We tested
cognitive behaviors in SRC-1-KO mice and mice with a humanized SRC-1 mutation (SRC-1''3%"), and performed
promoter luciferase assays on S100A6.

Results: Loss of SRC-1 caused alterations in gene signatures that are commonly associated with neuro-
degenerative diseases, including AD, and diminished the neural plasticity of the hippocampal CA1 neurons.
Both SRC-1-KO and SRC-1''37¢" mice displayed early signs of contextual memory impairment at 6 months of age.
Mechanistically, SRC-1 significantly promoted the expression S100A6.

Conclusion: We identified a protective role of SRC1 against aging associated cognitive decline, potentially by
promoting the expression of S100A6.

INTRODUCTION disecase [2—6]. The brain is rich in various nuclear

receptors and transcription factors that play a crucial
About 36% of the elderly population (at an age of 70— role in maintaining metabolic equilibrium and cognitive
75) experience mild memory loss, and about 32% are functions. Notably, thyroid hormone receptor [7],
affected by Alzheimer’s disease (AD) [1]. Owing to the glucocorticoid receptor [8], estrogen receptor [9],
aging of populations worldwide, dementia is reaching peroxisome proliferator-activated receptor gamma [10],
epidemic proportions, with a large human, social signal transducer and activator of transcription-3 [11],
and economic burden. AD is the most common cause and Forkhead Box O1 [12], etc. are among those
of severe memory loss in the elderly. Despite the implicated in both metabolic and Alzheimer’s diseases
tremendous efforts in the field of cognitive regulation, progression. These nuclear receptors and transcription
the pathophysiology underlying memory decline is not factors depend on coactivators like steroid receptor
fully understood, and effective treatments are limited. coactivator-1, 2 and 3 (SRC-1, 2 and 3) [13] for their

transcriptional activities. SRC proteins are prevalent in
Research indicates a strong correlation between obesity the brain, especially in areas like the hippocampus and
and an increased risk of dementia and Alzheimer’s hypothalamus [14, 15]. Studies have shown that the
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deletion of SRC-1 (encoded by Ncoal) gene globally or
from the hypothalamus in mice leads to obesity [16,
17]. A particular gene variant, SRC-1-137" mutation,
has been linked to early-onset obesity in children (body
mass index standard deviation score (BMI SDS) >3.5;
age of onset <10 years), and has been confirmed to
induce obesity in mice as well [17, 18]. Despite that loss
of SRC-1 does not accelerate the development of AD
[19], another study showed that RNAi-mediated
knockdown of SRC-1 in the hippocampal CA1 impairs
memory [20, 21]. Thus, the dysfunction of SRC-1 is
linked to both obesity and memory loss. However, it is
unclear whether and how SRC-1 contributes to the
aging associated dementia.

Earlier studies have indicated a reduction in SRC-1
expression in the brains of middle-aged individuals
[22]. In this study, we confirmed the age associated
decline of SRC-1 and further explored the differences in
brain gene expression profiles between wild type
C57BL/6 (WT) and SRC-1-KO mice. We performed
cognitive behavioral tests on WT mice, SRC-1-KO
mice and mice with the humanized SRC-1-1376P
mutation across various age stages to assess the role of
SRC-1 in cognitive functions. Finally, we identified the
stimulatory effect of SRC-1 on the expression of
S100A6 and S100A11, which are genes potentially
associated with AD and memory deficits.

METHODS
Mice

Care of all animals and procedures were approved by
the Institutional Animal Care and Use Committee of
Baylor College of Medicine (AN-5479 and AN-6098).
Mice, including SRC-1-KO mice [16] and SRC-1L1376P
mutant mice [17], were housed in a temperature-
controlled room at 22-24°C using a 12-h light, 12-h
dark cycle. All these mice were fed with regular chow
(5V5R, PicoLab). Food and water were provided ad-
libitum.

RNA-Seq and analysis

Total hypothalamic RNA was isolated from SRC-1-
KO mice and littermates at the age of 20 weeks using
the RNeasy Lipid Tissue Mini Kit (Qiagen). Three
RNA samples for each group were sent to Genomic
and RNA Profiling Core (GARP) at Baylor College of
Medicine for sequencing. One hundred-fifty base pair
paired end reads were aligned to Genome Reference
Consortium Mouse Build 39 reference genome (Mus
musculus genome assembly GRCm39 NCBL
https://www.ncbi.nlm.nih.gov/data-hub/assembly/GCF _
000001635.27/) using STAR 2.7.9a using option “--

outSAMtype BAM SortedByCoordinate” [23]. Output
from STAR was then quantified using “featureCounts”

function from Subread v2.0.3 using default options
[24].

Differential expression was calculated using DEseq2
1.36.0 with test set to “Wald” [25] with R 4.2.2 within
RStudio 2022.07.2 Build 576. Differential expression
results were filtered for genes that were 1.5-fold either
up or down with an adjusted p-value <0.05 using dplyr
1.0.10. These genes were used to produce two list of
genes that were then used to create molecular function
gene ontology utilizing “gost” function from gprofiler2
0.2.1 with options “organism = ‘mmusculus’,
ordered query = FALSE, evcodes = TRUE,
correction_method = ‘gSCS’, domain_scope
‘annotated’, exclude iea = TRUE, sources =
‘GO:MF’”.

An additional enrichment analysis was conducted
using Gene Set Enrichment Analysis (GSEA, version
4.3.2) [26] with the “preranked” option. Genes were
first rank ordered using the algorithm logx(fold
change) X - logio (adjusted p-value). Options on
GSEA  were set to: gene set database
“c2.cp.kegg.v2022.1.Hs.symbols.gmt”, chip platform
Mouse _Gene Symbol Remapping Human_Orthologs
_MsigDB.v2022.1.Hs.chip”,  enrichment  statistic
“classic” and number of permutations “100,000”.
Other options were left on default settings. RNA-Seq
results were visualized using ggplot2.

Alternative splicing was detected using rMATS turbo
(v4.1.24) [27], in Python 2.7.18. Genes splicing events
were considered significant if the absolute inclusion
level difference was greater than 0.2 and adjusted p-
value was less than 0.05.

Secondary analysis of published scRNA-Seq data

Data were obtained from GSE152506 [28]. Raw
counts were first normalized using the log, counts per
10,000 formula. Data from either hypothalamus or
hippocampus were subset then compared across age
using FindMarkers feature of Seurat 5.1.0, Wilcox test
followed by Bonferroni correction for multiple
comparisons [29]. Data were plotted using VInPlot
feature of Seurat with boxplots superimposed on top.

Secondary analysis of published bulk RNA-Seq data

Gene expression data for both human and mouse brain
tissues were obtained from publicly available sources.
Human bulk tissue RNA-seq data were downloaded
from the GTEx portal (https://www.gtexportal.org/
home/downloads/adult-gtex/bulk tissue expression),
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including brain regions such as the Cerebellum, Cortex,
Frontal Cortex, Hippocampus, and Hypothalamus.
Corresponding sample metadata, including donor age
information, were also downloaded from GTEx and
used to stratify samples into two age groups: 2040
years (combining 20-29 and 30-39 years) and 60-80
years (combining 60-69 and 70-79 years). Differential
gene expression (DEG) analysis was performed using
DESeq2 [25] on normalized count data. Log-
transformed expression values were visualized with
violin plots, with age groups on the x-axis and
expression on the y-axis. Statistical significance was
denoted by asterisks (* for p < 0.05, ™ for p < 0.01). For
mouse data, hippocampal gene expression profiles were
obtained from the GEO dataset GSE179698, which
includes RNA-seq samples from 6- and 18-month-old
mice. Expression values for Ncoal, S100a6, and
S100all were extracted from the dataset, and log-
transformed values were visualized using box-and-
whisker plots.

Electrophysiology

Mice (males, 6 weeks of age) were perfused and brain
slices were prepared for electrophysiology recording as
we did before. Briefly, pyramidal neurons in CAl,
identified based on their location and morphology, were
visualized and recorded. Whole-cell recordings were
performed on CAl pyramidal neurons. Evoked EPSCs
(eEPSCs) and EPSC based LTP were recorded as we
did before [30].

Immunofluorescence

WT mice (males, 10 weeks of age) were perfused and
brains were sectioned and processed for immuno-
histochemistry staining for SRC-1 and three cell
markers. Briefly, brain sections were blocked (3%
Normal donkey serum) for 1 h, incubated with Rabbit
anti-SRC-1 (#2191, Cell Signaling Technology) on
shaker at 4°C for overnight, followed by 3 washes
with 1X PBS and then the incubation of the donkey
anti-rabbit AlexaFluor 488 (A21206, Invitrogen) for 2
h. After three washes, each series of brain sections
were then incubated with one of the cell marker
antibodies respectively. Cell marker antibodies include
Mouse anti-NeuN (ab104224, Abcam) as neuron
maker, Chicken anti-GFAP (ab4674, Abcam) as
astrocyte maker and Goat anti-Ibal (ab5076, Abcam)
as microglial cell marker. All the brain sections were
then incubated with the donkey anti-mouse/chicken/
goat AlexaFluor 594 (A21203/A11042/A11058,
Invitrogen) for 2 h. After the last wash and dry, slides
were cover-slipped, and images of the hippocampus
were captured using a fluorescence microscope.

Behavioral tests

The Novel Object Recognition (NOR) test was
conducted over two consecutive days to assess memory
in mice using a modified protocol [31]. On the first day,
each mouse was acclimated to the testing room for 30
minutes, followed by a 20-minute habituation period in
an empty Open Field (OF) box (40.64 cm x 40.64 cm).
Subsequently, two identical objects were placed in
opposite corners of the OF box. The mouse was then
allowed to explore the arena and the objects freely for 15
minutes with an overhead camera to record its behavior
for subsequent analysis. After the 15 minutes session,
the mouse was returned to its home cage, and the OF
box and objects were thoroughly cleaned with soap and
water to eliminate olfactory cues. On the second day,
following a 30-minute acclimatization to the testing
room, the mouse was then reintroduced to the same OF
box. One of the familiar objects was replaced with a
novel object that differed in both shape and color. The
mouse was again allowed to explore the arena for 15
minutes, during which behavior was recorded. After the
session, the mouse was returned to its home cage, and
the testing apparatus was cleaned as described above.
The Discrimination Index was calculated as the time
interacted with the novel object divided by the total time
that the mouse interacted with both objects. The water
maze test (RAWM) and fear conditioning test were
performed as we did previously [30].

Q-PCR validation of gene expression in the
hypothalamus and hippocampus

To examine gene expression, C57BL/6 control and
SRC-1-KO mice (male, 4 months of age) were
sacrificed, and the hypothalamus and hippocampus were
quickly collected. Total RNA was isolated using TRIzol
Reagent (Invitrogen) and 2 pg of total RNA was reverse-
transcribed to cDNA using a High-Capacity cDNA
Reverse Transcription Kits (Invitrogen). Q-PCR was
performed on a CFX384 Real-Time System (Bio-Rad)
using SsoADV SYBR Green Supermix (Bio-Rad).

Primer sequences for S100a6: forward 5'-
GAAGGTGACAAGCACACCCT-3' and reverse: 5'-
CCCAGGAAGGCGACATACTC-3";  for S100all:

forward 5'-AAGTACAGCGGGAAGGATGGA-3" and
reverse  5-ATGCGGTCAAGGACACCAG-3';  for
Cyclophilin: forward 5-TGGAGAGCACCAAGACA
GACA-3' and reverse 5-TGCCGGAGTCGACAA
TGAT-3'. The expressions of S100a6 and S100all were
normalized to the house-keeping gene Cyclophilin.

Western blot

Hypothalamus and hippocampus from young (4 months
of age) and aged (13 months of age) were collected and
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lysed with lysis buffer: 50 mM Tris, 50 mM KCL, 10
mM EDTA, 1% NP-40, supplied with protease inhibitor
cocktail (Roche). Total protein tissue lysate (20 ug)
from each mouse was loaded for SDS-PAGE and then
detected with SRC-1 (128E7) Rabbit mAb (#2191, Cell
signaling, at 1:2000) and HRP-linked anti-rabbit IgG
Antibody (at 1:10000, Cell signaling).

Luciferase assay

Neuro 2A (mouse neuroblastoma cell line) and
immortalized SRC-1-KO MEF cells [17] were cultured
in Dulbecco’s modified Eagle’s medium supplemented
with 10% fetal bovine serum (Atlanta), 100 IU/ml
penicillin and 100 ng/ml streptomycin. Luciferase
reporter plasmid for S100a6 (1.66K, —1744 to —81, with
primer pairs: forward 5-AAAGGCCGTGAGAG
CTAGGA-3'" and reverse 5-TGAGGCAGTCAGTCT
CAAGC-3") and S100all (1.2K, —1292 to —76, with
primer pairs: forward 5-AGCTGAAATTCCAAG
GGCCA-3’ and reverse 5-TCCCCATGTCGGTGCT
CTA-3'), were cloned as previous described [17].

Luciferase assay using Neuro 2A cells was performed to
test if the promoters of S100a6 and S100all can be
regulated by these transcription factors, including AP2
(gift from Robert Tjian, Addgene plasmid # 12100), Spl
(gift from Guntram Suske, Addgene plasmid # 24543),
TCF1 (gift from Kai Ge, Addgene plasmid # 40620),
KLF4 (gift from Derrick Rossi, Addgene plasmid #
26815) and PU.1 (Gift from Qiang Tong) [32]. Neuro
2A cells were transfected with 800 ng of the luciferase
reporter plasmid combined with 200 ng of indicated
transcription factor plasmid or the control empty plasmid
using the Lipofectamine LTX (Invitrogen). Cells were
lysed 40 hours post-transfection, and the luciferase
activity was measured using the Luciferase® Reporter
Assay System (Promega).

To test if SRC-1 enhances the expression of S100a6
and S100all, SRC-1-KO MEF cells were transfected
with 700 ng of the Iluciferase reporter plasmid
combined with 200 ng of indicated transcription factor
plasmid and 100 ng of pCR3.1-SRC-1 or the control
empty plasmid.

RESULTS
SRC-1 is associated with neurodegenerative diseases

SRC-1 has been implicated to regulate both metabolic
balance and cognitive functions. Importantly, the
expression of SRC-1 is significantly declined with
aging [22]. To explore the potential contribution of
SRC-1 to aging associated diseases, including metabolic
dysregulations and dementia, we performed RNA-Seq

analyses using samples obtained from the hypothalamus
of SRC-1-KO mice and C57BL/6 control mice (Figure
1A), and the data has been uploaded to GEO
(GSE278158). As a validation, SRC-1 (coded by
Ncoal) was significantly depleted in the KO mice
(Supplementary Figure 1A). Consistent with the
protective role of SRC-1 in metabolic regulation, Pomc,
Lepr and downstream Stat3 were significantly
decreased in SRC-1-KO mice (Supplementary Figure
1B-1D). This is consistent with our previous study
showing decreased leptin sensitivity in mice with
deletion of SRC-1 selectively from POMC neurons, a
population of hypothalamic neurons essential for
metabolic regulation [17].

Applying a threshold of 1.5-fold difference and a
corrected p-value <0.05, there were 396 genes down
regulated and 103 genes up regulated in SRC-1-KO
mice (Figure 1B and Supplementary data 1). We used
these genes to perform Gene Set enrichment Analysis
(GSEA) and Gene ontology (GO) analysis. The
enrichment analysis for molecular functions revealed
dysfunction in extracellular matrix binding, as well as
intracellular  cytoskeletal binding gene profiles.
Interestingly, S100 protein binding was the most
significant downregulated term, and the structure
constituent of myelin sheath was the most significant
upregulated term (Figure 1C). Importantly, S100
proteins and myelin functions are both implicated in the
pathology of AD [33-37]. In particular, SRC-1-KO
mice express significantly lower SI00A6 and S100A11
(Figure 1D, 1E), and both genes have been
demonstrated neuroprotective effects in neuro-
degenerative diseases [35, 38—47].

Further, Kyoto encyclopedia of genes and genomes
(KEGQG) analysis revealed that gene sets related to
neurodegenerative disorders, including Alzheimer’s,
were enriched, while the gene set for spliceosome was
downregulated in SRC-1-KO mice (Figure 1F).
Utilizing multivariate analysis of transcript splicing
with an absolute inclusion level difference >0.2 and
FDR <0.05, we found there were 343 significant
splicing events (Supplementary Figure 1E) cor-
roborating an altered spliceosome activity. Importantly,
recent studies suggest that dysregulation of
spliceosome also increases the risk of AD [48-50].
Although these splicing events are not directly
involved in AD, GO analysis showed that they
are involved in neuron projection organization
(Supplementary Figure 1E), which is essential for
normal neuron functions.

Together, the changes of gene profiles in SRC-1-KO
mice suggest higher risks of neurodegenerative diseases
including AD.
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SRC-1 regulates neural plasticity of the hippocampal
CA1l neurons

It has been reported that siRNA-mediated knockdown
of SRC-1 in the hippocampal CA1l impairs memory in
mice, associated with decreased CA1 synapse density,
postsynaptic  density  thickness, and long-term
potentiation (LTP) [20]. This finding led us to focus on
the hippocampal CA1 region. Here we found that both
neurons (marked by NeuN) and astrocytes (marked by
GFAP) in the hippocampal CA1l abundantly expressed

A I B

SRC-1, while microglial cells (marked by Iba) did not
(Figure 2).

We further explored neural plasticity in the
hippocampal CA1 neurons. To this end, we used a high-
frequency field stimulation (HFS) protocol to induce
long-term potentiation (LTP) of evoked excitatory post-
synaptic current (EPSC) in CAl neurons from WT
mice, as indicated by a sustained increase of EPSC after
the HFS stimulation. However, in SRC-1-KO mice,
LTP was significantly blunted (Figure 3). These results
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Figure 1. Differential gene expression in the hypothalamus of SRC-1-KO mice. (A) Diagram depicting mouse brain in sagittal view
(top) and coronal view (bottom) with red dotted lines indicating hypothalamic region collected for RNA-seq experiment. (B) Volcano plot of
RNA-seq results (center) with log, fold change plotted on the x-axis and -logio corrected p-value (Padj) plotted on the y-axis. Horizontal

dashed line indicates Padj = 0.05. Two vertical lines indicate 1.5-fold

either up or down. Each dot represents one gene. Genes plotted in red

represent genes that are both 1.5-fold different with a Padj < 0.05. Light grey dashed horizontal line marks Padj = 1e-28 and indicates genes
plotted above this line are out of the scale of the panel. Large orange arrows mark the number of genes that are 1.5-fold lower (left) or
higher (right) with a Padj < 0.05. (C) Gene ontology for molecular function using genes 1.5-fold down with Padj < 0.05 (top) or 1.5-fold up
with Padj < 0.05 (bottom). (D, E) Violin plots for S100a6 (D) and $100al1l (D) normalized to transcripts per million (TPM). ™ and **, Padj <
0.05 or 0.01. (F) Gene set enrichment analysis using Kyoto encyclopedia of genes and genomes (KEGG) as output with a rank ordered gene
list, using log2 fold change X -log10 Padj as the algorithm to rank genes, as input.
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predict a protective role of hippocampal SRC-1 in deletion of SRC-1 (SRC-1-KO) or knock-in of a
humanized loss-of-function point mutation (SRC-

cognitive functions.
1L1376Py [17]. Similar to human, mice displayed an aging

SRC-1 prevents aging-associated memory loss associated cognition decline. The contextual memory of

WT mice was significantly decreased after 18 months of
To fully evaluate the function of SRC-1, we compared age (Figure 4A, 4B), as indicated by the decrease of
the cognitive behaviors among mice with either global freezing behavior in the contextual fear conditioning

A-‘ 4 a‘_}-v\'ﬁ"v’"‘"“"’"‘ﬂ’dﬂky‘u* sR C - 1
L CAL T

Figure 2. The expression of SRC-1 in the hippocampus. (A-C) Co-staining of SRC-1 (green, A) and a neuron marker (NeuN, red, B),
and merge (C) in the hippocampal CA1 region. (D) is high magnification indicating co-expression of SRC-1 in NeuN labeled neurons. (E-G)
Co-staining of SRC-1 (green, E) and an astrocyte marker (GFAP, red, F), and merge (G) in the hippocampal CAl region. (H) is high
magnification indicating co-expression of SRC-1 in GFAP labeled astrocytes. (I-K) Co-staining of SRC-1 (green, 1) and a microglial marker
(Iba, red, J), and merge (K) in the hippocampal CA1 region. (L) is high magnification indicating no double-labelling.
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Figure 3. Impaired LTP in hippocampal CA1 neurons of SRC-1-KO mice. (A) Typical EPSC traces before (lighter curve) and after
(darker curve) LTP induction in CA1 neurons from WT or SRC-1-KO mice. (B) Magnitude of EPSC elevations before (0-5 min) and after LTP
induction (5-50 min). (C) Averaged EPSC elevations during 45-50 min in (B). N = 5-6 neurons from 3 mice. **P < 0.01 in unpaired two-tailed

t-tests.
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test. However, this reduction did not happen in SRC-1-
KO mice and SRC-1Y137" mice, because their
contextual memory had already been significantly
impaired as early as 6 months of age compared to WT
mice (Figure 4C and Supplementary Figure 2A, 2B).
Consistently, the survival rate dropped with aging in all
mice, and it was significantly lower in SRC-1-KO mice
and displayed a non-significant decrease trend in SRC-
1L1376P mice, compared to WT control mice (Figure 4D).
These results together supported an early-aging pheno-
types caused by SRC-1 deficiency.

In the novel object recognition (NOR) test, SRC-1-KO
mice and SRC-1'37%" mice displayed significant
decreased discrimination score between novel object
and old object at 18 months of age, indicating impaired
cognition (Figure 4E, 4F). However, both SRC-1-KO
mice and SRC-1M37%" mice displayed similar per-
formance to WT mice in the Radial Arm Water Maze test

(RAWM), despite a non-significant trend of impaired
spatial memory (Supplementary Figure 2C, 2D).

SRC-1 expression during aging

We demonstrated a protective role of SRC1 against
aging associated cognitive decline, and we further
explored the molecular mechanisms. We reanalyzed
human public data libraries (GTEx portal) and
demonstrated an age associated decline of SRC-1
expression in different brain regions, including the
hippocampus, hypothalamus and cerebellum, and a non-
significant decrease trend in the cortex (Figure SA-5D).
We reanalyzed published spatial RNA-Seq data to
compare gene profiles between young (3 months) and
old (18 months) mice brains [28]. Interestingly,
we found that the expression of SRC-1 was
significantly decreased in both the hypothalamus and
hippocampus of aged mice compared to young mice
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Figure 4. Impaired cognitive functions of SRC-1-KO mice and SRC-1''37%" mice at different ages. (A—C) Freezing time in the fear
conditioning test in all mice at different ages (A), in WT mice at different ages (B), and in all groups of mice at 6 months of age (C). N = 8-12
mice/group. Data are presented as mean + SEM and/or with individual data points. P < 0.05; **P < 0.01; ***P < 0.001 in in two-way ANOVA
analyses followed by Tukey’s multiple comparisons test (A) or one way ANOVA analysis followed by Dunnett's multiple comparisons test (B,
C). (D) The surviving curve of WT mice, SRC-1-KO mice and SRC-1-1376P mijce. *P < 0.05 in Logrank test for trend test. (E, F) Discrimination
score is defined as the ratio of time spent with the novel object during test vs. (training + test) in the novel object test in WT, SRC-111376P
and SRC-1-KO mice at different ages (E) and at 18 months of age (F). N = 8-12 mice/group. Data are presented as mean * SEM with
individual data points. **P < 0.01; ***P < 0.0001 in in two-way ANOVA analyses followed by Tukey’s multiple comparisons test (E) or one
way ANOVA analysis followed by Dunnett's multiple comparisons test (F).
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(Supplementary Figure 3A, 3B). S100A6 displayed a hypothalamus of aged mouse samples (Figure SE-5H

non-significant decrease trend in the hippocampus and a and Supplementary Figure 3D, 3E). S100A11 displayed
significant decrease in the cerebellum of aged human no changes or opposite changes (Figure 51-5L and
samples, as well as a significant decrease in the Supplementary Figure 3G, 3H). Further, secondary
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Figure 5. Aging-associated changes in the expression of SRC-1, S100A6 and S100A11 in human. Secondary analysis of published
RNA-Seq data revealed the differential gene expression between young (20—40 years of age) and old (60-80 years of age) human. (A-D)
The expression of SRC-1 coding gene NCOA1, (E—H) S100A6 coding gene and (I-L) SI00A11 coding gene in the hippocampus, hypothalamus,
cerebellum and cortex of young vs aged human brains, respectively. * and **P < 0.05 or 0.01 in Wald test from DESeq2 with Benjamini-
Hochberg correction for multiple comparisons. (M, N) Western Blot detection (M) and quantification (N) of SRC-1 protein levels compared

to housekeeping protein B-actin in the hippocampus of young (3 months of age) and aged mice (13 months of age). N = 4-5 mice. "P < 0.05
in unpaired two-tailed t-tests.
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analysis of public bulk RNA-Seq data of mice
(GSE179698) revealed a decrease trend of both SRC-1
and S100A6 but not SI00A11 in the hippocampus of
18-month aged mice compared to 6-month young mice
(Supplementary Figure 3C, 3F, 3I). To further confirm
the age-associated decline of SRC-1 in mice, we
detected the expression of SRC-1 protein using western
blot. As expected, SRC-1 protein was significantly
lower in the hippocampus of 13-month aged mice than
that of 4-month young mice (Figure 5M, 5N).

Meanwhile, similar to reduced synaptic proteins by
acute knockdown of SRC-1 in the hippocampus, the
expression of Synaptophysin, GluR1 and PSD-95 [20]
was also decreased in both the hippocampus and the
hypothalamus of aged mice, suggesting aging
associated decline of synaptic functions (Supplementary
Figure 4A—4H). However, these synaptic proteins were
not changed by SRC-1 deletion (Supplementary Figure
41-4L). Based on the non-association between the
expression of SRC-1 and synaptic proteins with
chronic loss of SRC-1, the early-aging cognitive
decline in SRC-1-KO mice should be contributed by
other molecular mechanisms than these synaptic
proteins.

Together, SI00A6 and SRC-1 displayed synchronously
decrease in both SRC-1-KO mice and aging mice,
implying S100A6 as a potential downstream target gene
of SRC-1.

SRC-1 stimulates S100A6 expression

RNA-Seq data identified that S100A6 and S100A11
were downregulated by SRC-1 deficiency in the
hypothalamus. We validated the decreased expression
of these two gene in the hypothalamus (Figure 6A and
Supplementary Figure 5A). The hippocampus is the
major center of cognition, and hippocampus CAl
neurons contribute to both NOR [51, 52] and contextual
fear [53, 54]. Based on the high expression of SRC-1 in
the cognition center, hippocampus CA1l neurons, we
further determined whether SRC-1 regulates S100A6
and S100A11 in the hippocampus, too. SI00A6 was
significantly decreased (Figure 6B), and S100A1l
displayed a decrease trend (Supplementary Figure 5B),
in the hippocampus of SRC-1-KO mice. These results
suggest SI00A6 and S100A11 as two potential down-
stream targets of SRC-1, a co-factor for transcription
factors.

To investigate how SRC-1 regulates the expression of
S100A6 and S100A11, we analyzed their promoters.
Using the online tool PROMO (http://alggen.lIsi.upc.es/
cgi-in/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3),
we screened the promoter regions of S100a6 and

S100all to identify potential transcription factors that
may mediate the effects of SRC-1. These findings were
further validated using JASPAR transcription factor
binding profile database (https://jaspar.genereg.net/).
We found several binding sites of five transcription
factors, including Sp1, AP2, TCF1, KLF4 and PU.1, on
S100a6 and S100all gene promoters (Figure 6C and
Supplementary Figure 5C). These transcription factors
may regulate the processes of AD [55—60]. To confirm
their transcriptional activity, we used a Neuro 2A, a
mouse neuroblastoma cell line, to perform luciferase
assay using the promoters of SI00A6 and S100A11. We
found that the activity of S100A6 promoter was
increased 5 folds by KLF and to a less extend by AP2,
while the activity of SI00A11 promoter was modestly
increased by AP2 and PU.1, but not TCF (Figure 6C
and Supplementary Figure 5C).

To further determine whether SRC-1 can enhance the
effect of these transcription factors, we performed
luciferase assays using SRC-1-KO MEF cells. As
expected, both KLF and AP2 significantly increased
S100A6 promoter activity. Interestingly, in the
background of SRC-1 deficiency, SRC-1 supplement
alone did not change S100A6 promoter activity.
However, SRC-1 supplement significantly augmented
the stimulatory effects of both KLF and AP2 on
S100A6 promoter activity (Figure 6D, 6E). Similarly,
despite that S100A11 promoter activity was not
increased by SRC-1 expression, SRC-1 significantly
augmented the stimulatory effects of PU.1 and AP2 on
S100A11 promoter activity (Supplementary Figure 5D,
5E). Together, these results support that the co-activator
activity of SRC-1. Although SRC-1 does not regulate
the transcription directly, it can enhance the
transcriptional activity of AP2 and KLF to promote the
expression of S100A6 and enhance the transcriptional
activity of PU.1 and AP2 to promote the expression of
S100A11.

DISCUSSION

The RNA-Seq analysis of SRC-1-KO brains revealed a
negative correlation between SRC-1 expression and
neurodegenerative diseases. Consistent with this
finding, we identified a protective role of SRC-1 against
aging associated cognition decline. With the decline of
SRC-1 during aging [22], WT mice displayed a gradual
decline of contextual memory. However, SRC-1-KO
mice and SRC-1M1376P mice displayed lower contextual
memory throughout all the life span tested, suggesting
an early-aging cognitive phenotype in SRC-1-KO mice
and SRC-11376P mijce.

SRC-1-KO mice and SRC-1M137%" mice displayed
deficits in contextual memory as early as 6 months of
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Figure 6. The regulation of S100a6 by transcription factors and SRC-1. (A, B) Relative mRNA levels of S100a6 mRNA measured in
the hypothalamus (A) and the hippocampus (B) isolated from control vs. SRC-1-KO mice using Q-PCR. Data are presented as presented as
mean * SEM. N = 5 samples per group. "P < 0.05, **P < 0.01 in unpaired two-tailed t-tests. (C) Binding sites of transcription factors on the
promoter of $100a6 and the effect of indicated transcription factor on S100a6 promoter luciferase activity in Neuro 2A cells. Data are
presented as mean + SEM. N = 3—4 repeated experiments with 3 biological replicates per group in each experiment. **P < 0.001 in one-way
ANOVA analyses followed by Sidak tests. #P < 0.05 in unpaired two-tailed t-tests against Control. (D, E) Effects of SRC-1 and transcription
factors KLF (D) and AP2 (E) on S100a6 promoter luciferase activity in SRC-1-KO MEF cells. Data are presented as mean + SEM. N = 3—6
repeated experiments with 6 biological replicates per group in each experiment. Control group is normalized to 1 to allow comparisons
among different batches of experiments. *P < 0.05, **P < 0.01 and ***P < 0.001 in two-way ANOVA analyses followed by Sidak tests.
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age and persisted the whole life span. Consistently,
contextual memory is impaired in some AD mouse
models (e.g., Tg2576, SXFAD and APP/PS1) at 46
months of age regardless how soon the AP plaques are
formed [61-63]. However, 3xTg-AD and AppNL-G-F-
knock-in mouse models have intact contextual memory
at 6 months of age [64, 65]. Interestingly, loss of SRC-1
does not accelerate the development of AP plaques in
APP/PS1 mice or change the expression of synaptic
proteins [19]. These results argue that SRC-1 protects
cognitive functions independent of AP pathology.

Despite acute knockdown of SRC-1 in the hippocampus
reduces mice’s performance in the Morris water maze
test by reducing the LTP machinery [20], our SRC-1-
KO mice and SRC-1"137" mijce display intact spatial
memory during all the tested time in the RAWM test. In
addition, while several synaptic proteins are
downregulated by acute knockdown of SRC-1 in the
hippocampus [20, 21], we did not detect the
downregulation of these genes in SRC-1-KO mice. It is
plausible that these synaptic proteins, but not the
mRNAs, are dynamically regulated during memory
formation. Another possibility is that the impaired
contextual memory in SRC-1-KO mice and SRC-1-1376P
mice could be independent of the SRC-1 regulatory
effects on the hippocampal synaptic proteins. It is also
plausible that embryonic deletion or mutation of SRC-1
caused development changes or compensations which
rescue the synaptic proteins encoding genes and/or the
spatial memory deficits. Thus, SRC-1 may provide
different extents of protection or play different roles in
different types of memories through different
mechanisms.

To explore the molecular mechanisms, RNA-Seq
analysis identified S100 proteins as the most
downregulated genes. S100 protein family comprised of
at least 25 Ca?" or Zn*' binding proteins with low
molecular weights. Seven S100 proteins that are present
in the brain, including S100B, S100A1, S100AS6,
S100A7, S100AS8, S100A9 and S100A12, have been
implicated in regulating AP levels and Tau
phosphorylation [35]. We identified S100A6 and
S100A11 as potential downstream target genes of SRC-
1, which are associated with the cognition functions and
AD pathology [35, 38—47]. We also identified the
transcription factors that promote the expression of
S100A6 and S100A11. Further, we confirmed that
SRC-1 can enhance the excitatory effects of KLF and
AP2 on S100A6 promoter, and the excitatory effects of
PU.1 and AP2 on S100A11 promoter, supporting the
co-activator role of SRC-1. Interestingly, the
combination of SRC-1 and KLF displayed the most

dependent signaling pathways, and Ca?" dysregulation
is implicated in AD development [40, 41]. Consistently,
S100A6 is one of the most significantly positively
correlated proteins with the AD phenotype [42].
S100A6 is upregulated in AD patients and in AD mouse
models [43—45]. Interestingly, most S100A6 proteins
are in astrocytes that surround AP plaques [43], and
in vitro S100A6 treatment in mouse brain sections
reduces AP levels and plaque burden [46]. Importantly,
S100A6 expression is tightly positively correlated with
cognitive function recovery in a rat model of traumatic
brain injury [66], implicating the regulatory role of
S100A6 in cognition. However, it is unclear whether
increased S100A6 causes or defense against these
phenotypes.

Previous studies indicate that acute loss of SRC-1
impairs spatial memory associated with downregulation
of hippocampal synaptic proteins encoding genes. Our
results support that embryonic loss of SRC-1 impairs
contextual memory associated with downregulation of
S100A6 and S100A11, independent of the spatial
memory or hippocampal synaptic proteins encoding
genes. Our studies provide SRC-1 as an upstream
regulatory mechanism of S100A6. The synchronous
decrease of contextual memory and the downregulation
of SRC-1 and S100A6 support a protective role of SRC-
1 against aging-associated memory decline, potentially
through transcriptional regulation of S100A6.

Aging is associated with both metabolic dysregulations
and neurodegenerative diseases, and SRC-1 contributes
to both obesity and aging associated dementia. Thus, it
is plausible that the decrease of SRC-1 in aging animals
contributes to both aging associated body weight gain
and cognition loss. Importantly, SRC-1L1376P s a
mutation identified from human patients with obesity,
and SRC-1'137" mice are humanized mutant mouse
model, which recapitulate many phenotypes observed in
human patients [17]. The SRC-1 coding gene has
already been added to the genetic screening panel for
obesity, and our study provides a strong rationale to add
this gene to the screening panel for neurodegenerative
diseases, like AD.

Limitation

Our study was conducted only on male mice to avoid
the estrous cycle effects. Behavior assays were
performed after 6 months of age, which corresponds to
middle age in mice. The memory deficits might be
developed earlier in SRC-1-KO mice and SRC-111376P
mice. We only explored the regulatory effects of SRC-1
on S100A6 and S100A11 as molecular mechanisms.

profound stimulation on S100A6 promoter. S100A6 Many other neurodegenerative diseases-associated
binds Ca?" to regulate Ca’>* homeostasis and Ca’*- molecular changes are worthwhile for future
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explorations. We used a promoter luciferase assay to
evaluate the enhancement effect of SRC-1 on
transcription factors. More comprehensive assays, like
protein-protein interaction assays, need to be performed
to confirm the co-activator function of SRC-1.

CONCLUSION

We identified a negative association between SRC-1
expression and neurodegenerative diseases, and then
confirmed the protective effect of SRC-1 against aging
associated cognition decline. We further identified the
stimulatory effect of SRC-1 on the transcription of

S100A6 and S100A11, a potential molecular
mechanism.
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Supplementary Figure 1. Differential gene expression in the hypothalamus of SRC-1-KO mice. (A-D) Violin plots for the
expression of SRC-1 coding gene Ncoal (A), POMC coding gene Pomc (B), leptin receptor gene Lepr (C) and Stat3 (D) based on the RNA-Seq
analysis. TPadj < 0.1; "Padj < 0.05; ""**Padj < 0.0001. (E) Multivariate analysis of transcript splicing. Table documents the total number of
splicing events detected with MATS software and those deemed significant with a Padj < 0.05 and absolute inclusion level difference > 0.2.
Splicing events were either: skipped exon (SE), alternative 5’ slice site (A5SS), alternative 3’ splicing site (A3SS), mutually exclusive exons
(MXE), or retained intron (RI). Diagram to left of table depicts each event showing alternative pathways in red and blue. Graph below is the
GO analysis for the alternative splicing events.
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Supplementary Figure 2. Cognitive functions of SRC-1 KO mice and SRC-1"'37¢" mice at different ages. (A, B) Freezing time in
the fear conditioning test in SRC-1 KO mice (A) and SRC-11376P mice (B) at different ages. (C, D) The latency that each mouse touched the
escape platform in RAWM test at 30 minutes (C) or 24 hours (D) after the last learning session. STM, short term memory. LTM: long term
memory. N = 8-12 mice/group. Data are presented as mean = SEM and/or with individual data points.
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Supplementary Figure 3. Aging-associated changes in the expression of SRC-1, $100a6 and S100all in mice. Secondary
analysis of published spatial RNA-Seq data (3 months of age vs 18 months of age) and bulk RNA-Seq data (6 months of age vs 18 months of
age) revealed the differential gene expression between young and aged WT mice. (A—C) The expression of SRC-1 coding gene Ncoal in the
hippocampus (A), hypothalamus (B), and hippocampus (C, bulk) of young and aged mice. (D-F) The expression of S100a6 in the
hippocampus (D), hypothalamus (E), and hippocampus (F, bulk) of young and aged mice. (G-1) The expression of S100all in the
hippocampus (G), hypothalamus (H), and hippocampus (1, bulk) of young and aged mice. * and ****P < 0.05 or 0.0001 in Wilcox test followed
by Bonferroni correction for multiple comparisons via Seurat 5.1.0. N =3 for C, Fand I.
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Supplementary Figure 4. The expression of synaptic proteins in aged mice and SRC-1-KO mice. (A-D) Secondary analysis of
published spatial RNA-Seq data revealed the differential expression of synaptic protein coding genes, including Synaptophysin (A and E),
Spinophilin (B and F), GIuR1 (C and G) and PSD-95 (D and H), in the hippocampus (A-D) and hypothalamus (E-H) of young (3 months of age)
and old (18 months of age) WT. (I-L) RNA-Seq analysis revealed the differential expression of synaptic protein coding genes, including
Synaptophysin (1), Spinophilin (J), GIuR1 (K) and PSD-95 (L), in the hypothalamus of young WT and SRC-1-KO mice. ****P < 0.0001 in Wilcox
test followed by Bonferroni correction for multiple comparisons via Seurat 5.1.0.
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Supplementary Figure 5. The regulation of S100al1l by transcription factors and SRC-1. (A B) Relative mRNA levels of S100a11
MRNA measured in the hypothalamus (A) and the hippocampus (B) isolated from control vs. SRC-1KO mice using Q-PCR. Data are
presented as mean + SEM. N = 5 samples per group. "P < 0.05 in unpaired two-tailed t-tests. (C) Binding sites of transcription factors on the
promoter of S100all and the effect of indicated transcription factor on S100all promoter luciferase activity in Neuro 2A cells. Data are
presented as mean + SEM. N = 2—4 repeated experiments with 6 biological replicates per group in each experiment. (D, E) Effects of SRC-1
and transcription factors PU.1 (D) and AP2 (E) on S100all promoter luciferase activity in SRC-1KO MEF cells. Data are presented as mean +
SEM. N = 3—4 repeated experiments with 3 biological replicates per group in each experiment. Control group is normalized to 1 to allow
comparisons among different batches of experiments. *P < 0.05, **P < 0.01 and **P < 0.001, ****P < 0.0001 in one-way ANOVA analyses
followed by Sidak tests.
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Supplementary data
Please browse Full Text version to see the data of Supplementary data 1.

Supplementary Data 1.
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