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ABSTRACT 
 

Due to the paucity of longitudinal DNA methylation data (DNAm), especially among Hispanic/Latino adults, the 
association between changes in epigenetic clocks over time and cognitive aging phenotypes has not been 
investigated. 

This longitudinal study included 2671 Hispanic/Latino adults (57 years; 66% women) with blood DNAm data and 
neurocognitive function assessed at two visits ~7 years apart. We evaluated the associations of 5 epigenetic 
clocks and their between-visit change with multiple measures of cognitive aging that included a global and 
domain-specific cognitive function score at each visit, between-visit change in global and domain-specific 
cognitive function score, and MCI diagnosis at visit 2 (V2). 

There were significant associations between greater acceleration of all clocks and lower cognitive function at 
each visit and MCI at V2. The strongest associations were observed for GrimAge and DunedinPACE. There were 
significant associations of between-visit increase in PhenoAge and GrimAge acceleration with decline in 
cognitive function and greater risk of MCI diagnosis at V2. 
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INTRODUCTION 
 

Aging can be defined as the time-related deterioration  

of physiological function that leads to physical  

and functional decline and vulnerability to chronic 

conditions, such as cognitive decline and dementia [1]. 

There is considerable interindividual variation in the rate 

of aging, and individuals with the same chronological 

age can differ in their level of age-dependent biological 

changes, known as biological age. The development of 

biomarkers of biological age, which can be used to 

assess the effectiveness of aging interventions and 

accurately predict age-related conditions and mortality, 

is an expanding area of research [2]. 

 

DNA methylation (DNAm) is an epigenetic mechanism 

by which genes and environmental, lifestyle, and 

sociocultural exposures dynamically interact to regulate 

gene expression, thereby shaping various traits related 

to health and aging. Most human tissues and cell types 

exhibit profound changes in DNAm patterns with 

advancing age [3, 4], and multiple DNAm signatures of 

aging have been characterized across various human 

tissues [5–11]. These “epigenetic clocks” are thought to 

capture different aspects of the multidimensional aging 

process. While first-generation epigenetic clocks were 

developed to specifically predict chronological age  

[6, 7, 11], second- and third-generation epigenetic 

clocks have been recently proposed to predict biological 

age represented by various clinical biomarkers of 

physiological dysregulation and change in health 

indicators [5, 8–10]. Age acceleration, the deviation of 

the DNAm-estimated age from the chronological age, 

has been proposed as a novel biomarker of aging. 

Indeed, positive age acceleration, where a person’s 

biological age is older than their chronological age, has 

been associated with a greater risk of various diseases 

and mortality [12]. 

 

Due to the paucity of longitudinal DNAm data, 

especially among Hispanic/Latino adults, the 

association between changes in age acceleration over 

time and cognitive aging phenotypes has not been 

widely investigated. 

 

We leveraged data from the Study of Latinos-

Investigation of Neurocognitive Aging (SOL-INCA) to 

examine the associations of three generation epigenetic 

clocks and their change over a 7-year period, with 

cognitive decline and mild cognitive impairment (MCI) 

in Hispanic/Latino middle-aged and older adults. 

 

RESULTS 
 

Characteristics of the study sample are shown in Table 

1. The mean age at visit 1 was 57 years and there were 

66% women. On average, educational attainment was 

11 years. Approximately, one third of the study sample 

had an ideal cardiovascular heath as measured by 

American Heart Association (AHA) Life’s Simple 7, 

while 29% had poor cardiovascular health. The 

frequency of MCI in the sample was 21% and that of 

significant cognitive decline was 50%. Estimated DNA 

methylation age by each of the 5 clocks was strongly 

correlated with chronological age at each visit (r = 0.76 

to 0.86, Supplementary Table 1), with the strongest 

correlations observed for GrimAge. For each clock, 

measures of age acceleration were strongly correlated 

across the two visits (r = 0.81 to 0.93, Supplementary 

Table 2). At visit 1, the correlations among measures of 

age acceleration by the various clocks varied between 

0.18 to 0.88, with the strongest correlation observed 

between the Horvath and Hannum clocks. Similar 

correlations were observed at visit 2 (Supplementary 

Table 2). 

 

Cross-sectional associations of epigenetic clocks with 

cognitive aging measures 

 

Cross-sectional associations of the five epigenetic 

clocks with the global cognitive function score are 

shown at each visit in Table 2. There were significant 

associations between greater age acceleration for  

all clocks and lower global cognitive function at  

both visits. The strongest associations were observed  

for GrimAge and DunedinPACE. Adjustments for 

education, language preference, and cardiovascular 

health did not meaningfully attenuate these associations. 

Cross-sectional associations of the five epigenetic 

clocks with individual cognitive tests showed similar 

results (Supplementary Table 3), although there was no 

association of the first-generation clocks with B-SEVLT 

sum or B-SEVLT recall. Associations of second- and 

third-generation clocks were strongest with WF and 

DSST. 

 

Associations of MCI status at visit 2 with epigenetic 

clocks measured at each visit are shown in Table 3. 

Epigenetic aging is associated with lower global and domain-specific cognitive function, greater cognitive 
decline, and greater risk of MCI in Hispanic/Latino adults. Longitudinal assessment of change in age 
acceleration for second-generation clocks, GrimAge and PhenoAge may provide additional value in predicting 
cognitive aging beyond a single time point assessment. 
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Table 1. Descriptive characteristics of the study participants. 

Trait Mean (SD) or percentage (N) 

N 2671 

Visit 1 age (years) 56.6 (7.7) 

Visit 2 age (years) 62.5 (7.6) 

Time between visits (years) 7.0 (1.1) 

Females at visit 1 65.80% 

Years of education at visit 1  10.7 (4.6) 

MCI at visit 2 21.10% 

Significant cognitive decline at visit 2 49.60% 

Hispanic background at visit 1 

Central American 9.90% 

Cuban 15.80% 

Dominican 10.40% 

Mexican 36.10% 

Puerto Rican 19.10% 

South American 6.90% 

Mixed/Other 1.80% 

Cardiovascular Health (LS7) at visit 1 

Poor 28.60% 

Intermediate 36.50% 

Ideal 34.90% 

APOE4 alleles carrier 

0 76.70% 

1 21.40% 

2 1.90% 

Age acceleration at visit 1 

Hannum −0.004 (3.366) 

Horvath −0.001 (3.361) 

PhenoAge −0.004 (4.139) 

GrimAge 0.002 (2.706) 

DunedinPACE 1.026 (0.108) 

Age acceleration at visit 2 

Hannum −0.003 (3.660) 

Horvath −0.003 (3.615) 

PhenoAge 0.002 (4.628) 

GrimAge −0.003 (2.798) 

DunedinPACE 1.036 (0.112) 

Annual change in age acceleration between visits 

Hannum 0.0005 (0.2895) 

Horvath 0.0001 (0.2333) 

PhenoAge 0.0004 (0.4566) 

GrimAge −0.0012 (0.1982) 

DunedinPACE 0.0017 (0.0115) 

 
The strongest associations were observed for second- and 

third-generation clocks, GrimAge, and DunedinPACE at 

either visit, with an estimated 3 to 9% increase in risk of 

MCI. Associations of first-generation clocks were 

generally weaker, especially for visit 1 data. Further 

adjustment for education, language preference, and 
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Table 2. Cross-sectional associations of global cognitive function at visit 1 and at visit 2 with epigenetic age 
acceleration (EAA) for 5 clocks at the same visit. 

EAA Measure 
Model 1 Model 2 Model 3 

beta SE  P-value Adj_P-value beta SE P-value Adj_P-value beta SE  P-value Adj_P-value 

Visit 1 

Hannum −0.009 0.003 4.4 × 10−3 2.2 × 10−2 −0.007 0.003 1.6 × 10−2 8.0 × 10−2 −0.007 0.003 2.1 × 10−2 1.1 × 10−1 

Horvath −0.011 0.003 8.3 × 10−4 4.2 × 10−3 −0.008 0.003 2.9 × 10−3 1.5 × 10−2 −0.008 0.003 4.6 × 10−3 2.3 × 10−2 

PhenoAge −0.011 0.003 1.7 × 10−5 8.5 × 10−5 −0.008 0.002 6.8 × 10−4 3.4 × 10−3 −0.007 0.002 2.2 × 10−3 1.1 × 10−2 

GrimAge −0.018 0.004 9.1 × 10−6 4.6 × 10−5 −0.012 0.004 8.0 × 10−4 4.0 × 10−3 −0.011 0.004 3.8 × 10−3 1.9 × 10−2 

DunedinPACE* −0.011 0.002 6.5 × 10−10 3.3 × 10−9 −0.008 0.002 9.6 × 10−7 4.8 × 10−6 −0.007 0.002 1.3 × 10−5 6.5 × 10−5 

Visit 2 

Hannum −0.013 0.004 9.0 × 10−4 4.5 × 10−3 −0.010 0.003 2.7 × 10−3 1.4 × 10−2 −0.009 0.003 5.7 × 10−3 2.9 × 10−2 

Horvath −0.013 0.004 8.0 × 10−4 4.0 × 10−3 −0.010 0.003 2.4 × 10−3 1.2 × 10−2 −0.010 0.003 3.9 × 10−3 2.0 × 10−2 

PhenoAge −0.016 0.003 9.5 × 10−8 4.8 × 10−7 −0.014 0.003 1.6 × 10−7 8.0 × 10−7 −0.011 0.002 3.3 × 10−6 1.7 × 10−5 

GrimAge −0.032 0.005 3.3 × 10−10 1.7 × 10−9 −0.026 0.004 6.3 × 10−9 3.2 × 10−8 −0.024 0.005 2.7 × 10−7 1.4 × 10−6 

DunedinPACE* −0.013 0.002 2.2 × 10−10 1.1 × 10−9 −0.009 0.002 1.7 × 10−7 8.5 × 10−7 −0.008 0.002 1.6 × 10−5 8.5 × 10−5 

Model 1: Adjusted for age, gender, center, and Hispanic background; Model 2: Adjusted for variables in Model 1 + years of education, language preference; 
Model 3: Adjusted for variables in Model 2 + cardiovascular health score (Life’s Simple 7 category); Adj_P-value: P-value adjusted for the number of clocks; 
*DunedinPACE was rescaled to allow for comparison with other clocks (P-value shown for association on the original scale). 

 

 

Table 3. Association of MCI status at visit 2 with age acceleration (EAA) for 5 clocks at visit 1 (V1) and visit 2 
(V2). 

EAA Measure 
Model 1 Model 2 Model 3 

OR 95% CI P-value Adj_P-value OR 95% CI P-value Adj_P-value OR 95% CI P-value Adj_P-value 

V1 Hannum 1.03 1.00; 1.06 1.6 × 10−2 8.0 × 10−2 1.03 1.00; 1.06 2.4 × 10−2 1.2 × 10−1 1.03 1.00; 1.06 5.3 × 10−2 2.7 × 10−1 

V1 Horvath 1.04 1.01; 1.07 7.2 × 10−3 3.6 × 10−2 1.04 1.01; 1.07 1.1 × 10−2 5.5 × 10−2 1.03 1.00; 1.06 2.6 × 10−2 1.3 × 10−1 

V1 PhenoAge 1.03 1.01; 1.06 5.7 × 10−3 2.9 × 10−2 1.03 1.01; 1.05 1.3 × 10−2 6.5 × 10−2 1.02 1.00; 1.05 7.5 × 10−2 3.8 × 10−1 

V1 GrimAge 1.07 1.04; 1.11 5.4 × 10−5 2.7 × 10−4 1.07 1.03; 1.11 1.0 × 10−4 5.0 × 10−4 1.06 1.02; 1.10 3.5 × 10−3 1.8 × 10−2 

V1 DunedinPACE* 1.04 1.03; 1.06 1.5 × 10−7 7.5 × 10−7 1.04 1.02; 1.05 9.2 × 10−7 4.6 × 10−6 1.03 1.02; 1.05 1.0 × 10−4 5.0 × 10−4 

V2 Hannum 1.04 1.01; 1.07 4.3 × 10−3 2.2 × 10−2 1.04 1.01; 1.06 5.7 × 10−3 2.9 × 10−2 1.03 1.00; 1.06 1.9 × 10−2 9.5 × 10−2 

V2 Horvath 1.04 1.02; 1.07 1.0 × 10−3 5.0 × 10−3 1.04 1.02; 1.07 1.5 × 10−3 7.5 × 10−3 1.04 1.01; 1.07 4.6 × 10−3 2.3 × 10−2 

V2 PhenoAge 1.04 1.02; 1.05 2.0 × 10−4 1.0 × 10−3 1.04 1.02; 1.05 3.0 × 10−4 1.5 × 10−3 1.03 1.01; 1.05 4.7 × 10−3 2.4 × 10−2 

V2 GrimAge 1.09 1.05; 1.12 1.4 × 10−6 7.0 × 10−6 1.09 1.05; 1.13 1.4 × 10−6 7.0 × 10−6 1.07 1.03; 1.11 1.2 × 10−4 6.0 × 10−4 

V2 DunedinPACE* 1.03 1.02; 1.05 2.3 × 10−6 1.2 × 10−5 1.03 1.02; 1.05 7.6 × 10−6 3.8 × 10−5 1.02 1.01; 1.04 5 × 10−4 2.5 × 10−3 

Model 1: Adjusted for age, gender, center, and Hispanic background; Model 2: Adjusted for variables in Model 1 + years of education, language preference; 
Model 3: Adjusted for variables in Model 2 + cardiovascular health (Life’s Simple 7 category); Adj_P-value: P-value adjusted for the number of clocks; 
*DunedinPACE was rescaled to allow for comparison with other clocks (P-value shown for association on the original scale). 

 

cardiovascular health mildly attenuated association 

results for all clocks but, except for Hannum and 

PhenoAge measured at visit 1, associations remained 

significant. 

 

Associations of epigenetic clocks with the presence of 

significant cognitive decline at visit 2 are shown in 

Table 4. There were significant associations of second- 

and third-generation clocks PhenoAge, GrimAge, and 

DunedinPACE measured at visit 2 with presence of 

significant cognitive decline (Odds Ratio (OR) = 1.02 to 

1.07, P = 7.1 × 10−6 to 9.0 × 10−3). When epigenetic 

clocks were measured at visit 1, only GrimAge was 

significantly associated with presence of significant 

cognitive decline (OR = 1.05, P = 1.6 × 10−3). These 

associations remained significant with further 

adjustment for education, language preference, and 

cardiovascular health. When cognitive change between 

the two visits was modeled as a quantitative trait, 

greater age acceleration measured at visit 1 or visit 2 

was associated with decline in global cognitive function 

between visits for all clocks, although associations were 

weaker or not statistically significant for first-generation 

clocks (Supplementary Table 4). 
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Table 4. Association of presence of significant cognitive decline at visit 2 with epigenetic age acceleration (EAA) 
for 5 clocks at visit 1 and visit 2. 

EAA Measure 

Model 1 Model 2 Model 3 

OR 95% CI P-value 
Adj_P-

value 
OR 95% CI P-value Adj_P-value OR 95% CI P-value Adj_P-value 

V1 Hannum 1.01 0.99; 1.03 0.29 1.00 1.01 0.99; 1.04 0.28 1.00 1.01 0.99; 1.04 0.32 1.00 

V1 Horvath 1.01 0.98; 1.03 0.59 1.00 1.01 0.98; 1.03 0.57 1.00 1.01 0.98; 1.03 0.63 1.00 

V1 PhenoAge 1.01 0.99; 1.03 0.27 1.00 1.01 0.99; 1.03 0.24 1.00 1.01 0.99; 1.03 0.37 1.00 

V1 GrimAge 1.05 1.02; 1.08 1.6 × 10−3 8.0 × 10−3 1.05 1.02; 1.08 9.0 × 10−4 4.5 × 10−3 1.04 1.02; 1.08 3.0 × 10−3 1.5 × 10−2 

V1 DunedinPACE* 1.01 1.00; 1.02 0.06 0.30 1.01 1.00; 1.03 4.4 × 10−2 0.22 1.01 1.00; 1.02 0.10 1.00 

V2 Hannum 1.01 0.99; 1.03 0.32 1.00 1.01 0.99; 1.03 0.29 1.00 1.01 0.99; 1.03 0.37 1.00 

V2 Horvath 1.01 0.99; 1.03 0.44 1.00 1.01 0.99; 1.03 0.42 1.00 1.01 0.99; 1.03 0.50 1.00 

V2 PhenoAge 1.02 1.01; 1.04 9.0 × 10−3 4.5 × 10−2 1.02 1.01; 1.04 7.0 × 10−3 3.5 × 10−2 1.02 1.00; 1.04 2.0 × 10−2 0.10 

V2 GrimAge 1.07 1.04; 1.10 7.1 × 10−6 3.6 × 10−5 1.07 1.04; 1.10 2.8 × 10−6 1.4 × 10−5 1.07 1.04; 1.10 1.2 × 10−5 6.0 × 10−5 

V2 DunedinPACE* 1.02 1.01; 1.03 8.0 × 10−4 4.0 × 10−3 1.02 1.01; 1.03 5.0 × 10−4 2.5 × 10−3 1.02 1.01; 1.03 1.5 × 10−3 7.5 × 10−3 

Model 1: Adjusted for age, gender, center, and Hispanic background; Model 2: Adjusted for variables in Model 1 + years of education, language preference; 
Model 3: Adjusted for variables in Model 2 + cardiovascular health (Life’s Simple 7 category); Adj_P-value: P-value adjusted for the number of clocks; 
*DunedinPACE was rescaled to allow for comparison with other clocks (P-value shown for association on the original scale). 

 

 

Table 5. Association of global cognitive function change with change (Δ) in epigenetic age acceleration (EAA) 
between visit 1 and visit 2 for 5 clocks. 

EAA Measure 
Model 1 Model 2 Model 3 

beta SE P-value Adj_P-value beta SE P-value Adj_P-value beta SE P-value Adj_P-value 

Δ Hannum 0.024 0.067 0.718 1.00 0.025 0.067 0.711 1.00 0.035 0.068 0.605 1.00 

Δ Horvath −0.065 0.083 0.436 1.00 −0.066 0.083 0.427 1.00 −0.059 0.083 0.477 1.00 

Δ PhenoAge −0.099 0.043 0.021 0.105 −0.106 0.042 0.013 0.065 −0.097 0.043 0.024 0.12 

Δ GrimAge −0.239 0.099 0.016 0.08 −0.256 0.099 0.009 0.045 −0.238 0.099 0.016 0.08 

Δ DunedinPACE* −0.043 0.028 0.121 0.605 −0.043 0.028 0.125 0.625 −0.037 0.028 0.187 0.93 

Model 1: Adjusted for V1 age acceleration, age, gender, center, and Hispanic background; Model 2: Adjusted for variables in Model 1 + years of 
education, language preference; Model 3: Adjusted for variables in Model 2 + cardiovascular health (Life’s Simple 7 category); Adj_P-value: P-value 
adjusted for the number of clocks; *DunedinPACE was rescaled to allow for comparison with other clocks (P-value shown for association on the 
original scale). 

 

Longitudinal associations of epigenetic clocks with 

cognitive aging measures 

 

We next examined the association of change in global 

cognitive function with change in epigenetic clocks 

between the two visits (Table 5). Controlling for visit 1 

PhenoAge acceleration, an increase in PhenoAge 

acceleration from visit 1 to visit 2 was associated with 

a decline in global cognitive function between the two 

visits (P = 0.021). Similarly, an increase in GrimAge 

acceleration, controlling for visit 1 GrimAge acceleration, 

was associated with a decline in global cognitive function 

between the two visits (P = 0.016). Further adjustment for 
education, language preference, and cardiovascular health 

did not meaningfully change these results. Association of 

change in individual cognitive test scores with change in 

epigenetic clocks between the two visits showed varying 

results (Supplementary Table 5). Change in PhenoAge 

acceleration was associated with a decline in B-SEVLT 

sum and DSST (P = 0.048 and 0.0006, respectively), 

while change in GrimAge acceleration was associated 

with a decline in WF and DSST (P = 0.015 and 0.0004, 

respectively). Interestingly, change in DunedinPACE 

between visits was also associated with decline in DSST, 

although adjusting for cardiovascular health mitigated this 

relationship. 

 

Table 6 presents the association of change in epigenetic 

clocks between the two visits with presence of MCI and 

significant cognitive decline at visit 2. Increase in age 
acceleration between the two visits for PhenoAge, and 

GrimAge was associated with a greater risk of MCI, 

controlling for visit 1 age acceleration values (OR = 1.3, 

and 1.8; P = 0.017 and 0.010, respectively). 
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Table 6. Association of presence of MCI and significant cognitive decline at visit 2 with change (Δ) in epigenetic 
age acceleration (EAA) between visit 1 and visit 2 for 5 clocks. 

EAA Measure 
Model 1 Model 2 Model 3 

OR 95% CI P-value Adj_P-value OR 95% CI P-value Adj_P-value OR 95% CI P-value Adj_P-value 

MCI 

Δ Hannum 1.23 0.89; 1.69 0.21 1.00 1.23 0.89; 1.71 0.21 1.00 1.17 0.85; 1.63 0.34 1.00 

Δ Horvath 1.46 1.00; 2.16 0.05 0.25 1.48 1.00; 2.19 0.05 0.25 1.43 1.03; 2.11 0.08 0.40 

Δ PhenoAge 1.28 1.04; 1.57 1.7 × 10−2 0.085 1.32 1.07; 1.62 9.0 × 10−3 4.5 × 10−2 1.26 1.02; 1.55 3.3 × 10−2 0.17 

Δ GrimAge 1.85 1.16; 2.98 1.0 × 10−2 0.05 2.00 1.24; 3.24 4.0 × 10−3 2.0 × 10−2 1.86 1.15; 3.02 1.2 × 10−2 0.06 

Δ DunedinPACE* 1.07 0.94; 1.22 0.32 1.00 1.07 0.94; 1.23 0.29 1.00 1.04 0.91; 1.20 0.53 1.00 

Significant 

Cognitive 

Decline 

Δ Hannum 1.03 0.79; 1.35 0.80 1.00 1.04 0.80; 1.36 0.75 1.00 1.02 0.78; 1.33 0.88 1.00 

Δ Horvath 1.11 0.80; 1.54 0.54 1.00 1.12 0.80; 1.55 0.51 1.00 1.09 0.78; 1.52 0.61 1.00 

Δ PhenoAge 1.30 1.09; 1.55 2.5 × 10−3 1.2 × 10−2 1.31 1.10; 1.56 2.2 × 10−3 1.1 × 10−2 1.28 1.08; 1.52 5.0 × 10−3 2.5 × 10−2 

Δ GrimAge 2.19 1.47; 3.26 1.0 × 10−4 5.0 × 10−3 2.23 1.49; 3.33 8.1 × 10−5 4.1 × 10−4 2.20 1.47; 3.29 1.1 × 10−4 5.5 × 10−4 

Δ DunedinPACE* 1.20 1.07; 1.34 1.4 × 10−3 7.0 × 10−3 1.20 1.08; 1.35 1.0 × 10−3 5.0 × 10−3 1.20 1.07; 1.34 1.6 × 10−3 8.0 × 10−3 

Model 1: Adjusted for V1 age acceleration, age, gender, center, and Hispanic background; Model 2: Adjusted for variables in Model 1 + years of education, 
language preference; Model 3: Adjusted for variables in Model 2 + cardiovascular health (Life’s Simple 7 category); Adj_P-value: P-value adjusted for the 
number of clocks; *DunedinPACE was rescaled to allow for comparison with other clocks (P-value shown for association on the original scale). 

 

Similar findings were observed for association between 

presence of significant cognitive decline and change in 

PhenoAge and GrimAge acceleration (OR = 1.3 and 

2.2; P = 0.0025 and 0.0001, respectively). Between visit 

change in DunedinPACE was associated with a 20% 

greater risk of significant cognitive decline (P = 

0.0014). Further adjustment for education, language 

preference, and cardiovascular health did not 

meaningfully change these results. 

 

Comparison with APOE4 effects 

 

We sought to compare the magnitude of effects of 

epigenetic clocks on measures of cognitive aging to the 

magnitude of effects of APOE4, a well-established 

genetic predictor of AD, on the same cognitive 

measures. However, in this sample, there was no 

association between APOE4 and measures of cognitive 

aging (not shown), except for between-visit change in 

DSST. The magnitude of effects of V1 second- and 

third-generation clocks PhenoAge, GrimAge, and 

DunedinPACE on between-visit decline in DSST was 

considerably smaller (3- to 8-fold) than that of APOE4 

(Supplementary Table 6). In contrast, the magnitude of 

effects of between-visit change in age acceleration on 

decline in DSST was similar to that of APOE4 for 

PhenoAge and DunedinPACE, while it was almost 4-

fold larger for GrimAge (Supplementary Table 6). 

 

Association of cognitive aging measures with 

surrogate biomarker components of GrimAge 

 

We also evaluated the association of cognitive aging 

measures with acceleration in a new version of 

GrimAge (GrimAge2 [13]) and with its 10 surrogate 

biomarker components. Acceleration in PC-based 

GrimAge, GrimAge (original version), and GrimAge2 

performed similarly in association analyses of the 

various cognitive aging measures (Supplementary Table 

7). Estimated effect sizes were slightly larger for PC-

based GrimAge while strength of associations was 

slightly larger for GrimAge2, especially for V2 data. In 

addition, there were strong associations of several 

surrogate biomarker components of GrimAge2 with 

each of the cognitive aging measures (Supplementary 

Table 8). DNAm surrogate of hemoglobin A1C 

exhibited the strongest associations across cognitive 

aging measures and visits. 

 

DISCUSSION 
 

Our study is the first to investigate the longitudinal 

association of epigenetic aging with cognitive aging in a 

large sample of Hispanic/Latino adults. We compared 

the association of five epigenetic clocks, including first-

generation clocks Hannum and Horvath, second-

generation clocks PhenoAge and GrimAge, and third-

generation clock DunedinPACE, with multiple 

measures of cognitive aging. In line with published data 

[5, 14, 15], the five epigenetic clocks showed 

significant inter-correlations, with clocks from the same 

generation being more strongly correlated with one 

another and clocks from more distant generations being 

less strongly correlated. These results are consistent 

with the observation that different generation epigenetic 
clocks capture distinct aspects of the aging process. 

First-generation epigenetic clocks were developed to 

predict chronological age [6, 7]. Second-generation 
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epigenetic clocks were developed to predict mortality 

using various physiological biomarkers [8, 9]. Third-

generation clock DunedinPACE was developed to 

predict change in health indicators from early adulthood 

to middle age [5]. 

 

In cross-sectional analyses, greater age acceleration of 

all clocks was associated with lower general and 

domain-specific cognitive function at each visit and 

with greater risk of MCI at visit 2, while only second- 

and third-generation clocks were associated with 

presence of significant cognitive decline at visit 2. 

Consistently, in longitudinal analyses, increase in 

second-generation clocks PhenoAge acceleration and 

GrimAge acceleration was associated with decline in 

global and domain-specific cognitive function between 

visits. Across all analyses, GrimAge acceleration  

and between-visit change in GrimAge acceleration  

had generally the strongest estimated association  

with cognitive aging, adding to the growing literature 

suggesting that accelerated GrimAge represents a 

valuable biomarker of declining brain health [16, 17]. 

GrimAge is a composite biomarker of blood DNAm 

surrogates of smoking pack-years and 7 plasma 

proteins, including adrenomedullin, β2-microglobulin, 

growth differentiation factor 15, plasminogen activator 

inhibitor 1 and tissue inhibitor metalloproteinase 1. The 

new version of GrimAge, GrimAge2, additionally 

includes DNAm surrogates of hemoglobin A1C and C-

reactive protein, and has been shown to outperform 

GrimAge in predicting mortality and age-related health 

conditions [13]. All these plasma proteins and smoking 

have been associated with cognitive impairment, 

cognitive decline, and dementia in animal models and 

human studies [18–26]. Consistently, DNAm surrogates 

of smoking and of several plasma protein components 

of GrimAge2 were associated with cognitive aging in 

our sample of middle-aged and older Hispanic/Latino 

adults. The strongest associations across measures of 

cognitive aging and visits were for hemoglobin A1C. 

This is in line with our recent report on the association 

of elevated plasma levels of hemoglobin A1C with 

cognitive decline and risk of MCI in this cohort [27]. It 

may also explain the slight outperformance of 

GrimAge2 over GrimAge in association analyses with 

cognitive aging in this sample. 

 

Over 25 studies have investigated cross-sectional 

associations of one or more epigenetic clocks with 

measures of cognitive function in adulthood [28, 29], 

although none in a large sample of Hispanic/Latino 

middle-aged and older individuals. While these studies 

differed in their measures of cognitive performance and 
epigenetic clocks assessed, with few exceptions [30, 31], 

they reported a significant association of epigenetic 

aging with lower cognitive performance [15, 17, 32–40]. 

Our large sample size detected associations of all 

epigenetic clocks with global cognitive function at both 

visits, independent of education, language preference, 

and cardiovascular health. Consistent findings were 

observed for individual cognitive tests although 

associations of B-SEVLT tended to be weaker or non-

significant with first-generation clocks. 

 

In several studies, second- and third-generation clocks 

outperformed first-generation clocks in predicting 

cognitive performance [15, 17, 37, 40]. Similar to our 

findings, compared to other clocks, GrimAge 

acceleration showed the strongest associations with 

measures of cognitive function in 490 older adults from 

the Irish Longitudinal Study on Ageing [40], in 1115 

middle-aged individuals from the Coronary Artery Risk 

Development in Young Adults (CARDIA) study [17], 

and in 3282 older adults from the Health and 

Retirement Study [37]. Moreover, across various 

studies examining the association of epigenetic clocks 

with specific cognitive domains, the most consistent 

findings were for GrimAge acceleration associated with 

episodic memory and processing speed [28]. In contrast, 

in 649 older adults from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI), DunedinPACE 

showed stronger and more consistent associations with 

multiple measures of cognitive function than other 

epigenetic clocks, including GrimAge [15]. 

 

Few studies have examined the association of 

epigenetic clocks with longitudinal decline in cognitive 

function in middle-aged or older adults [17, 31, 41–43]. 

In all studies, there was an association of greater 

epigenetic age acceleration in at least one clock with 

faster cognitive decline over a follow-up period ranging 

from 5 to 15 years [17, 31, 41–43]. Consistent with our 

findings, in studies examining multiple generation 

clocks, significant associations with longitudinal decline 

in cognitive function were generally observed with 

second- or third-generation clocks but not first-

generation clocks [17, 43]. 

 

The relationship between epigenetic clocks and MCI 

has not been widely studied. A study by Shadyab et al. 

found no association of accelerated epigenetic aging 

measured by first- and second-generation clocks with 

MCI in 578 elderly women (mean age 70 years) [44]. 

However, in a subset of 262 women who developed 

coronary heart disease during follow-up, a higher 

Horvath age acceleration was associated with greater 

MCI risk [44]. We observed significant associations 

between all clocks and MCI, with stronger associations 

identified for second- and third-generation clocks. 
Notably, associations of GrimAge acceleration with 

both MCI and presence of significant cognitive decline 

were observed with visit 1 measures, minimizing the 
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possibility of reverse causation. Interestingly, with some 

exceptions [15], studies investigating the association of 

epigenetic aging with clinical dementia have largely 

yielded null results [44–46] but all these studies 

suffered from a limited sample size. More recently, in 

the large Framingham Heart Study Offspring Cohort  

(N = 2264), there were significant associations of 

acceleration in the Horvath, PhenoAge, GrimAge, and 

DunedinPACE epigenetic clocks with incident dementia, 

with stronger effects observed for second- and third-

generation clocks, notably DunedinPACE [15]. 

 

Only one study in 750 middle-aged non-Hispanic White 

and African American adults from the CARDIA cohort 

(mean age 50 years) has examined the association of 

longitudinal change in epigenetic clocks with measures 

of cognitive aging, and reported no association between 

the 5-year change in GrimAge acceleration with 5-year 

change in cognitive function [17]. In contrast, we 

observed that a 7-year increase in age acceleration for 

second- and third-generation clocks was associated  

with significant cognitive decline over the same period 

and with a greater risk of MCI after accounting for  

visit 1 age acceleration, suggesting that longitudinal 

assessment of these clocks may provide additional value 

in predicting cognitive aging and impairment, beyond 

assessment at a single time point. 

 

Age-related changes in DNA methylation caused by 

biological, environmental, and lifestyle factors are an 

important driver of brain aging and decline in brain and 

cognitive health [47]. The mechanisms underlying the 

relationship between epigenetic age acceleration and 

cognitive aging are unknown but may reflect changes in 

metabolism, immunity, and autophagy [48], and 

perhaps other biological pathways that may overlap 

with those implicated in learning and memory. 

Epigenetic clocks have been shown to be heritable  

and genome-wide association studies have identified 

multiple genetic loci [49]. Shared genetic variants 

between epigenetic aging and cognitive aging could 

also underlie the observed associations, as supported  

by significant genetic correlations of GrimAge and 

PhenoAge acceleration with cognitive traits [49]. 

Application of computational methods to elucidate the 

molecular mechanisms of epigenetic clocks have shown 

that their underlying CpGs cluster into 12 distinct 

modules and that epigenetic clocks differ in the relative 

contribution of each of these modules [50]. In 

particular, GrimAge was enriched for mortality-

associated modules, while PhenoAge included both age-

associated and mortality-associated modules [50]. These 

data suggest that these clocks likely capture various 

aging mechanisms. Whether the same or distinct 

mechanisms underlie the association of these clocks 

with cognitive aging remains to be determined. 

Despite considerable strengths, including a large 

sample of Hispanic/Latino adults and a 7-year 

longitudinal assessment of cognitive and epigenetic 

aging, our study suffers from several limitations. First, 

despite robust associations, the magnitude of effects  

of epigenetic clocks on measure of cognitive aging  

was generally modest, although that of change in 

clocks over time was considerably larger and similar to 

APOE4 effects. Second, while we adjusted for 

education, language preference, and cardiovascular 

health, residual confounding may remain. Third, we 

have not examined possible sex differences in the 

association between epigenetic aging and cognitive 

aging. Age-related DNA methylation changes that 

differ by sex have been reported [51, 52], and future 

development of sex-specific epigenetic clocks may 

provide new avenues for addressing this important 

question. Fourth, only two time-points were available 

for both cognitive and epigenetic assessments, which 

may be more sensitive to random variation in the 

measurements rather than reflecting true trajectories. 

Additional data on a third visit will help address this 

concern. Fifth, our study focused on clocks that are 

markers of chronological age and biological age but did 

not consider other clock types such as telomere length 

[10] and mitotic age clocks [53, 54], which are markers 

of cellular aging. Studies are needed to examine 

whether the specific aging mechanisms tracked by 

these clocks are relevant to cognitive aging. Finally, 

our findings necessitate replication in other cohorts of 

Hispanic/Latino adults. 

 

In conclusion, acceleration in second- and third-

generation epigenetic clocks was associated with 

decline in cognitive health and cognitive impairment in 

middle-aged and older Hispanic/Latino adults. In 

particular, GrimAge showed the strongest associations 

across measures of cognitive aging. With further 

validation, it may represent a valuable biomarker that 

may help identify individuals at risk of accelerated 

cognitive decline, who may benefit from early inter-

ventions to maintain or improve brain health. Repeated 

assessment of GrimAge may provide additional 

information about the continuous changes in the aging 

process and may be helpful for monitoring effectiveness 

of health-related interventions to improve cognitive 

health. 

 

METHODS 
 

Study participants 

 

Participants were selected from the Study of Latinos 

Investigation of Neurocognitive Aging (SOL-INCA), an 

ancillary study of the Hispanic Community Health 

Study/Study of Latinos (HCHS/SOL). The design, 
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cohort selection and recruitment for HCHS/SOL and 

SOL-INCA have been previously described [55–57]. 

Briefly, at the HCHS/SOL visit 1 (2008–2011), 16,415 

Hispanic/Latino adults (ages 18–74) from six 

backgrounds (Central American, Cuban, Dominican, 

Mexican, Puerto Rican and South American) were 

enrolled from communities in the Bronx, NY; Chicago, 

IL; Miami, FL; and San Diego, CA. At visit 1, 

participants older than 45 years of age underwent a 

cognitive assessment and were re-assessed at visit 2 

(2015–2018) as part of SOL-INCA (N = 6377). SOL-

INCA follows the complex study design of HCHS/SOL, 

including a multistage sampling strategy with 

stratification and clustering, and probability weights 

that account for non-response and attrition and permit 

valid inferences to targeted Latino populations in 

Bronx, Chicago, Miami, San Diego [55, 57]. 

 

For DNA methylation assessment, SOL-INCA 

participants with MCI and cognitively healthy controls 

from specified age and sex strata were selected (N = 

2800). The sampling strategy’s objective was to include 

all identified MCI cases identified in SOL-INCA and 

oversample cognitively normal participants from 

matching age and sex strata. The study was approved  

by the institutional review boards at each of the 

participating institutions. All human subjects provided 

written informed consent. 

 

Assessment of cognitive abilities and outcomes 

 

Participants completed all assessments at each visit in 

their preferred language (Spanish or English). The 

neurocognitive tests administered at both visits were the 

Brief-Spanish English Verbal Learning Test B-SEVLT 

(sum and recall), which assesses verbal episodic 

learning and memory [58]; the Word Fluency Test 

(WFT) of the Multilingual Aphasia Examination, which 

assesses verbal fluency [59]; the Digit Symbol 

Substitution Test (DSST) of the Wechsler Adult 

Intelligence Scale-Revised, which assesses psycho-

motor speed and sustained attention [60]; and the Six-

Item Screener (SIS) derived from the Mini-Mental 

Status exam, which assesses mental status [61]. 

 

The primary outcomes of the study include a global 

cognitive function measure calculated at each visit as 

the average z-scores of B-SEVLT sum, B-SEVLT 

recall, WFT, and DSST scores; and the change in global 

cognition measure derived using a survey regression 

model to predict the cognitive score at visit 2 as a 

function of visit 1 cognitive score adjusting for the time 

elapsed between assessments. The global cognitive 
change value was calculated as (T2−T2pred)/RMSE, 

where T2 represents the participant’s global cognitive 

function score at visit 2, T2pred is the predicted score, 

and RMSE is the root mean squared error of the fitted 

model. Details about this method have been published 

previously [62]. Two binary cognitive outcomes 

assessed at visit 2 were also analyzed: presence of 

significant cognitive decline and MCI. Significant 

cognitive decline between the two visits was assessed 

based on a latent change score model that takes into 

account cognitive test scores [57]. Presence of 

significant cognitive decline was defined as a change in 

global cognitive function score between the two visits 

exceeding −0.055 standard deviation (SD) per year. 

MCI was assessed according to the National Institute on 

Aging-Alzheimer’s Association (NIA-AA) criteria [63] 

as described previously [57]. Briefly, a participant was 

classified with MCI if three conditions were satisfied: 

(1) any cognitive test score ≦ −1 standard deviation 

(SD) of the SOL-INCA robust norms adjusted for age, 

sex, education, and Picture Vocabulary Test scores, (2) 

a global cognition function decline by more than 0.055 

SD per year between the visits, and (3) a participant 

self-reported cognitive decline based on an Everyday 

Cognition questionnaire [57]. 

 

DNA methylation data 

 

Genomic DNA was isolated from frozen peripheral 

blood leukocytes in the Advanced Research and 

Diagnostics Laboratory at the University of Minnesota 

using the FlexSTAR+ automated workflow (Autogen; 

Holliston, MA, USA) and provided to the Human 

Genetics Center Laboratory at the University of Texas 

Health Science Center at Houston for further 

processing. All sample handling used uniquely 2D 

barcoded Matrix vials (Thermo Fisher Scientific; 

Waltham, MA, USA) integrated with the Human 

Genetics Center Laboratory Information Management 

System (LIMS). To minimize technical confounding 

and batch effects, samples were randomized to arrays so 

that visit 1 and visit 2 samples from a participant were 

placed on the same array and that there was 

approximately the same ratio of MCI cases to normal 

controls across arrays. Samples were randomly 

dispersed based on gender, Hispanic background, and 

field center. Approximately 500 ng of genomic DNA 

was bisulfite converted using the EZ-96 DNA 

Methylation Kit (Zymo Research Corporation; Irvine, 

CA, USA) and DNA methylation levels across 

~850,000 sites were measured using the Infinium 

MethylationEPIC v1.0 BeadChip (Illumina, Inc.;  

San Diego, CA, USA) using the manufacturer’s 

recommended protocols. Laboratory quality control 

included use of the BeadArray Controls Reporter 

(BACR) tool (Illumina, Inc.; San Diego, CA, USA) for 
review and exclusion of samples with poor bisulfite 

conversion efficiency, lower than normal staining, and 

poor hybridization. DNA methylation data were 
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subjected to a comprehensive quality control (QC) 

protocol that uses both control-probe and data driven 

methods to filter out low-quality and questionable 

samples and probes. Probe signal detection and QC  

was performed using SeSaMe [64], which derives a p-

value with out-of-band (OOB) array hybridization 

(pOOBAH) for signal detection for each probe and 

performs probe masking based on known EPIC array 

design issues as well as the signal detection p-value 

(Probes with pOOBAH <0.05 are masked). A total of 

109,978 probes were masked after QC. Samples with 

sex mismatch, genotype mismatch, and those of poor 

quality (i.e., outliers in M-U plots, outlyx, and bscon) 

[65] were excluded (N = 65). A total of 2671 

participants had DNA methylation data at both visits. 

 

Epigenetic clocks estimations 

 

Principal component (PC)-trained clocks were 

estimated according to the method developed by 

Higgins-Chen et al. [66]. This method uses principal 

component analysis (PCA) to reduce variance in 

estimates of epigenetic age resulting from technical 

noise at individual CpG sites by leveraging multi-

collinearity in the data. At each visit, PC-trained DNA 

methylation age estimates were derived for four clocks: 

First-generation clocks, Horvath [7] and Hannum [6]; 

and second-generation clocks, PhenoAge [8] and 

GrimAge [9]. We also estimated a third-generation 

clock, DunedinPACE following the procedure described 

by Belsky et al. [5]. At each visit, estimates of  

age acceleration for each clock were calculated as  

the residuals from a linear regression of the DNA 

methylation age estimates on the chronological age. For 

each clock, change in age acceleration between the two 

visits was calculated as the difference in age acceleration 

between the two visits divided by the time (in years) 

between visits. To permit comparison with other clocks, 

DunedinPACE was rescaled by multiplying each value 

by the chronological age and deriving an “acceleration” 

measure as done for the other clocks. 

 

Statistical analysis 

 

Descriptive statistics included pairwise Pearson’s r 

correlation coefficients which were calculated to 

characterize the degree to which the various DNA 

methylation age estimates are related to one another and 

to chronological age at each visit, and across visits. 

Linear regression models were used to evaluate the 

associations of each measure of age acceleration with a 

global cognitive function score at each visit and with 

change in global cognitive function score between the 

two visits. Logistic regression models were used to 

evaluate the association of measures of age acceleration 

with presence of significant cognitive decline and with 

presence of MCI at V2. Model 1 was adjusted for age, 

sex, center and Hispanic background. Model 2 included 

additional adjustment for years of education and 

language preference. Model 3 also included adjustment 

for a measure of cardiovascular health (AHA Life’s 

Simple 7) [67]. In addition to raw P-values, we present 

P-values corrected for the number of clocks evaluated. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Supplementary Table 1. Correlations between chronological age and DNA methylation age estimated from 5 
epigenetic clocks at each visit. 

 Hannum Horvath PhenoAge GrimAge DunedinPACE* 

Visit 1 0.80 0.78 0.78 0.86 0.80 (0.05) 

Visit 2 0.78 0.76 0.76 0.86 0.78 (0.13) 

P-value < 0.0001 for all correlations; *rescaled values (original scale shown in parentheses). 
 

 

Supplementary Table 2. Correlation between epigenetic age acceleration within visit and across visits. 

 Hannum Horvath PhenoAge GrimAge DunedinPACE 

Hannum 0.89 0.88 0.68 0.34 0.21 

Horvath 0.88 0.93 0.60 0.33 0.18 

PhenoAge 0.70 0.64 0.81 0.50 0.45 

GrimAge 0.41 0.38 0.57 0.91 0.53 

DunedinPACE 0.27 0.21 0.48 0.53 0.81 

P-value < 0.0001 for all correlations; Pairwise correlations between clocks at visit 2 are shown in white. Pairwise correlations 
between clocks across visits are shown in black. Pairwise correlations between clocks at visit 1 are shown in grey. 
 

 

Supplementary Table 3. Cross-sectional associations of epigenetic clocks with individual cognitive test scores at 
each visit. 

3A. B-SEVLT sum 

  Model 1 Model 2 Model 3 

 EAA Measure beta SE P-value 
Adj_ 

P-value 
beta SE P-value 

Adj_ 

P-value 
beta SE P-value 

Adj_ 

P-value 

Visit 1 

Hannum −0.005 0.004 0.259 1.00 −0.003 0.004 0.429 1.00 −0.003 0.004 0.427 1.00 

Horvath −0.007 0.004 0.089 0.445 −0.005 0.004 0.155 0.775 −0.005 0.004 0.180 0.900 

PhenoAge −0.007 0.003 0.028 0.140 −0.005 0.003 0.132 0.660 −0.004 0.003 0.160 0.800 

GrimAge −0.016 0.005 0.002 0.010 −0.011 0.005 0.028 0.140 −0.009 0.005 0.068 0.340 

DunedinPACE* −0.010 0.002 5.4 × 10−5 2.7 × 10−4 −0.007 0.002 0.002 0.010 −0.006 0.002 0.009 0.045 

Visit 2 

Hannum −0.012 0.005 0.008 0.040 −0.010 0.004 0.019 0.095 −0.009 0.004 0.036 0.180 

Horvath −0.012 0.005 0.011 0.055 −0.010 0.004 0.021 0.105 −0.009 0.004 0.035 0.175 

PhenoAge −0.016 0.003 6.3 × 10−6 3.2 × 10−5 −0.015 0.003 2.5 × 10−5 1.2 × 10−4 −0.013 0.003 0.0001 0.0005 

GrimAge −0.034 0.006 3.0 × 10−8 1.5 × 10−7 −0.030 0.006 8.8 × 10−7 4.4 × 10−6 −0.026 0.006 2.5 × 10−5 1.2 × 10−4 

DunedinPACE* −0.014 0.003 6.8 × 10−8 3.4 × 10−8 −0.011 0.003 7.4 × 10−6 3.7 × 10−5 −0.009 0.003 0.0003 0.0015 

 

3B. B−SEVLT recall 

  Model 1 Model 2 Model 3 

 EAA Measure beta SE P-value 
Adj_ 

P-value 
beta SE  P−value 

Adj_ 

P-value 
beta SE P-value 

Adj_ 

P-value 

Visit 1 

Hannum −0.006 0.004 0.131 0.655 −0.005 0.004 0.2121 1.00 −0.005 0.004 0.252 1.00 

Horvath −0.006 0.004 0.113 0.565 −0.005 0.004 0.1763 0.881 −0.005 0.004 0.249 1.00 

PhenoAge −0.007 0.003 0.026 0.130 −0.005 0.003 0.093 0.465 −0.004 0.003 0.174 0.870 
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GrimAge −0.011 0.005 0.023 0.115 −0.008 0.005 0.125 0.625 −0.004 0.005 0.380 1.00 

DunedinPACE* −0.008 0.002 0.0004 0.002 −0.006 0.002 0.006 0.03 −0.005 0.002 0.044 0.220 

Visit 2 

Hannum −0.006 0.005 0.231 1.00 −0.004 0.005 0.348 1.00 −0.004 0.005 0.433 1.00 

Horvath −0.004 0.005 0.374 1.00 −0.003 0.005 0.505 1.00 −0.003 0.005 0.563 1.00 

PhenoAge −0.012 0.004 0.0008 0.004 −0.011 0.003 0.002 0.010 −0.010 0.004 0.005 0.025 

GrimAge −0.020 0.006 0.0008 0.004 −0.017 0.006 0.004 0.020 −0.015 0.006 0.016 0.080 

DunedinPACE* −0.008 0.003 0.003 0.015 −0.006 0.003 0.029 0.145 −0.004 0.003 0.106 0.530 

 

3C. WF 

  Model 1 Model 2 Model 3 

 EAA Measure beta SE  P-value 
Adj_ 

P-value 
beta SE  P-value 

Adj_ 

P-value 
beta SE  P-value 

Adj_ 

P-value 

Visit 1 

Hannum −0.009 0.004 0.029 0.145 −0.007 0.004 0.075 0.375 −0.006 0.004 0.106 0.530 

Horvath −0.011 0.004 0.012 0.060 −0.008 0.004 0.027 0.135 −0.008 0.004 0.043 0.215 

PhenoAge −0.014 0.003 3.3 × 10−5 1.7 × 10−4 −0.010 0.003 0.001 0.005 −0.009 0.003 0.003 0.015 

GrimAge −0.024 0.005 5.8 × 10−6 2.9 × 10−5 −0.017 0.005 0.0005 0.0025 −0.016 0.005 0.002 0.010 

DunedinPACE* −0.015 0.002 1.2 × 10−9 6.0 × 10−9 −0.011 0.002 8.7 × 10−7 4.4 × 10−4 −0.011 0.002 1.3 × 10−5 6.5 × 10−5 

Visit 2 

Hannum −0.015 0.005 0.002 0.010 −0.012 0.004 0.007 0.035 −0.011 0.004 0.014 0.070 

Horvath −0.015 0.005 0.001 0.005 −0.013 0.004 0.003 0.015 −0.012 0.004 0.005 0.025 

PhenoAge −0.016 0.004 1.1 × 10−5 5.5 × 10−5 −0.014 0.003 8.5 × 10−5 4.3 × 10−4 −0.012 0.003 0.0003 0.0015 

GrimAge −0.033 0.006 1.4 × 10−7 7.0 × 10−7 −0.025 0.006 6.3 × 10−6 3.2 × 10−5 −0.023 0.006 0.0001 0.0005 

DunedinPACE* −0.016 0.003 4.3 × 10−9 2.2 × 10−8 −0.011 0.002 3.2 × 10−6 1.6 × 10−5 −0.010 0.003 0.0001 0.0005 

 

3D. DSST 

  Model 1 Model 2 Model 3 

 EAA Measure beta SE P-value 
Adj_ 

P-value 
beta SE P-value 

Adj_ 

P-value 
beta SE P-value 

Adj_ 

P-value 

Visit 1 

Hannum −0.009 0.004 0.016 0.080 −0.007 0.003 0.032 0.160 −0.007 0.003 0.031 0.155 

Horvath −0.011 0.004 0.005 0.025 −0.008 0.003 0.010 0.050 −0.009 0.003 0.008 0.040 

PhenoAge −0.010 0.003 0.001 0.005 −0.006 0.003 0.016 0.080 −0.006 0.003 0.019 0.095 

GrimAge −0.012 0.005 0.013 0.065 −0.008 0.004 0.060 0.300 −0.008 0.004 0.053 0.265 

DunedinPACE* −0.010 0.002 2.8 × 10−5 1.4 × 10−4 −0.006 0.002 0.003 0.015 −0.006 0.002 0.002 0.010 

Visit 2 

Hannum −0.012 0.004 0.003 0.015 −0.010 0.004 0.006 0.030 −0.009 0.004 0.011 0.055 

Horvath −0.013 0.004 0.003 0.015 −0.010 0.004 0.005 0.025 −0.009 0.004 0.008 0.040 

PhenoAge -0.012 0.003 0.0001 0.0005 −0.011 0.003 1.1 × 10−4 5.5 × 10−4 −0.010 0.003 0.0004 0.002 

GrimAge −0.027 0.005 5.9 × 10−7 3.0 × 10−6 −0.023 0.005 3.8 × 10−7 1.9 × 10−6 −0.022 0.005 2.4 × 10−6 1.2 × 10−5 

DunedinPACE* −0.012 0.002 1.4 × 10−7 7.0 × 10−6 −0.009 0.002 2.0 × 10−5 1.0 × 10−4 −0.007 0.002 0.0002 0.001 

Model 1: Adjusted for age, gender, center, and Hispanic background; Model 2: Adjusted for variables in Model 1 + years of education, language preference; 
Model 3: Adjusted for variables in Model 2 + cardiovascular health score (Life’s Simple 7 category); *DunedinPACE was rescaled to allow for comparison with 
other clocks (P-value shown for association on the original scale) 
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Supplementary Table 4. Association of change in global cognitive function with epigenetic age acceleration 
(EAA) at visit 1 for 5 clocks. 

 Model 1 Model 2 Model 3 

EAA Measure beta SE P-value 
Adj_ 

P-value 
beta SE P-value 

Adj_ 
P-value 

beta SE 
P-

value 
Adj_ 

P-value 

V1 Hannum −0.014  0.006 0.0177 0.088 −0.013 0.006 0.026 0.130 −0.012 0.006 0.032 0.160 

V1 Horvath −0.010 0.006 0.076 0.380 −0.009 0.006 0.106 0.530 −0.009 0.006 0.112 0.560 

V1 PhenoAge −0.015 0.005 0.0016 0.008 −0.013 0.005 0.0040 0.020 −0.012 0.005 0.008 0.040 

V1 GrimAge −0.027 0.007 0.0002 0.001 −0.026 0.007 0.0005 0.0025 −0.024 0.008 0.002 0.010 

V1 DunedinPACE* −0.009 0.003 0.0028 0.014 −0.008 0.003 0.0082 0.041 −0.007 0.003 0.035 0.175 

V2 Hannum −0.010 0.005 0.0653 0.362 −0.009 0.005 0.0853 0.426 −0.009 0.005 0.115 0.575 

V2 Horvath −0.010 0.005 0.0639 0.319 −0.009 0.005 0.0861 0.430 −0.009 0.005 0.096 0.480 

V2 PhenoAge −0.016 0.004 9.7 × 10−5 4.8 × 10−4 −0.016 0.004 0.0002 0.001 −0.015 0.004 0.0005 0.0025 

V2 GrimAge −0.032 0.007 9.2 × 10−6 4.6 × 10−5 −0.031 0.007 1.7 × 10−5 8.5 × 10−5 −0.029 0.007 0.0001 0.0005 

V2 DunedinPACE* −0.009 0.003 0.0006 0.003 −0.009 0.003 0.0021 0.010 −0.007 0.003 0.0112 0.056 

Model 1: Adjusted for age, gender, center, and Hispanic background; Model 2: Adjusted for variables in Model 1 + years of education, 
language preference; Model 3: Adjusted for variables in Model 2 + cardiovascular health (Life’s Simple 7 category); *DunedinPACE was 
rescaled to allow for comparison with other clocks (P-value shown for association on the original scale). 

 

 

Supplementary Table 5. Association of change in individual cognitive tests scores with change (Δ) in epigenetic 
age acceleration (EAA) between visit 1 and visit 2 for 5 clocks. 

5A. B-SEVLT sum change 

EAA Measure 

Model 1 Model 2 Model 3 

Beta SE  P-value 
Adj_ 

P-value 
Beta SE  P-value 

Adj_ 

P-value 
Beta SE  P-value 

Adj_ 

P-value 

Δ Hannum −0.028 0.061 0.642 1.00 −0.025 0.060 0.681 1.00 −0.015 0.061 0.811 1.00 

Δ Horvath −0.090 0.076 0.240 1.00 −0.090 0.076 0.237 1.00 −0.079 0.076 0.301 1.00 

Δ PhenoAge −0.075 0.038 0.048 0.24 −0.078 0.038 0.039 0.19 −0.069 0.038 0.070 0.35 

Δ GrimAge −0.078 0.087 0.371 1.00 −0.089 0.087 0.309 1.00 −0.073 0.088 0.407 1.00 

Δ DunedinPACE* −0.021 0.028 0.461 1.00 −0.018 0.028 0.519 1.00 −0.011 0.028 0.685 1.00 

 

5B. B-SEVLT recall change 

EAA Measure 

Model 1 Model 2 Model 3 

Beta SE  P-value 
Adj_ 

P-value 
Beta SE  P-value 

Adj_ 

P-value 
Beta SE  P-value 

Adj_ 

P-value 

Δ Hannum 0.055 0.061 0.370 1.00 0.057 0.061 0.348 1.00 0.059 0.061 0.339 1.00 

Δ Horvath 0.002 0.077 0.979 1.00 0.001 0.077 0.987 1.00 −0.002 0.077 0.980 1.00 

Δ PhenoAge −0.047 0.038 0.219 1.00 −0.050 0.038 0.186 0.93 −0.049 0.038 0.202 1.00 

Δ GrimAge −0.089 0.089 0.314 1.00 −0.100 0.088 0.258 1.00 −0.093 0.089 0.293 1.00 

Δ DunedinPACE* −0.010 0.028 0.722 1.00 −0.008 0.028 0.783 1.00 −0.005 0.029 0.857 1.00 

 

5C. WF change 

EAA Measure 

Model 1 Model 2 Model 3 

Beta SE  P-value 
Adj_ 

P-value 
Beta SE  P-value 

Adj_ 

P-value 
Beta SE  P-value 

Adj_ 

P-value 

Δ Hannum 0.030 0.061 0.628 1.00 0.028 0.061 0.647 1.00 0.039 0.061 0.5198 1.00 

Δ Horvath 0.005 0.077 0.950 1.00 −0.002 0.076 0.980 1.00 0.007 0.077 0.9315 1.00 
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Δ PhenoAge −0.037 0.038 0.331 1.00 −0.044 0.038 0.251 1.00 −0.037 0.038 0.3284 1.00 

Δ GrimAge −0.216 0.089 0.015 0.075 −0.234 0.088 0.008 0.04 −0.221 0.088 0.013 0.065 

Δ DunedinPACE* −0.049 0.028 0.080 0.40 −0.049 0.028 0.078 0.39 −0.048 0.028 0.089 0.445 

 

5D. DSST change 

 Model 1 Model 2 Model 3 

EAA Measure Beta SE  P-value 
Adj_ 

P-value 
Beta SE  P-value 

Adj_ 

P-value 
Beta SE  P-value 

Adj_ 

P-value 

Δ Hannum −0.085 0.062 0.171 0.855 −0.090 0.062 0.147 0.735 −0.073 0.063 0.243 1.00 

Δ Horvath −0.098 0.078 0.208 1.00 −0.105 0.078 0.178 0.890 −0.091 0.078 0.246 1.00 

Δ PhenoAge −0.134 0.039 0.0006 0.003 −0.139 0.039 0.0004 0.002 −0.125 0.039 0.0015 0.0075 

Δ GrimAge −0.319 0.090 0.0004 0.002 −0.334 0.090 0.0002 0.001 −0.313 0.090 0.0005 0.0025 

Δ DunedinPACE* −0.058 0.029 0.042 0.210 −0.059 0.029 0.040 0.200 −0.051 0.029 0.079 0.395 

Model 1: Adjusted for V1 age acceleration, age, gender, center, and Hispanic background; Model 2: Adjusted for variables in Model 1 + years of education, 
language preference; Model 3: Adjusted for variables in Model 2 + cardiovascular health (Life’s Simple 7 category); *DunedinPACE was rescaled to allow for 
comparison with other clocks. 

 

Supplementary Table 6. Comparison of the magnitude of associations between change in DSST and epigenetic 
aging with the magnitude of association between change in DSST and APOE4. 

 beta SE P-value 

APOE4 alleles dosage −0.084 0.042 0.043 

V1 PhenoAge −0.010 0.004 0.019 

V1 GrimAge −0.028 0.007 <0.0001 

V1 DunedinPACE* −0.010 0.003 0.002 

Δ PhenoAge −0.134 0.039 0.0006 

Δ GrimAge −0.319 0.090 0.0004 

Δ DunedinPACE* −0.058 0.029 0.042 

*Model adjusted for age, gender, center, and Hispanic background. 
 

Supplementary Table 7. Association of cognitive aging measures with estimates of GrimAge acceleration 
derived from multiple algorithms. 

Cognitive aging measure EAA Measure Beta/Odds Ratio SE/95% CI P-value 

V1 Global Cognitive Function 

V1 PC GrimAge* −0.018 0.004 9.1 × 10−6 

V1 GrimAge −0.012 0.003 8.2 × 10−5 

V1 GrimAge2  −0.012 0.003 9.9 × 10−5 

V2 Global Cognitive Function 

V2 PC GrimAge* −0.032 0.005 3.3 × 10−10 

V2 GrimAge −0.020 0.004 8.4 × 10−8 

V2 GrimAge2 −0.022 0.003 8.5 × 10−11 

MCI at V2 

V1 PC GrimAge* 1.07 1.04; 1.11 5.4 × 10−5 

V1 GrimAge  1.05 1.02; 1.07 6.6 × 10−4 

V1 GrimAge2  1.05 1.03; 1.08 2.5 × 10−5 

V2 PC GrimAge* 1.09 1.05; 1.12 1.4 × 10−6 

V2 GrimAge  1.06 1.04; 1.09 1.3 × 10−6 

V2 GrimAge2 1.06 1.04; 1.09 2.3 × 10−7 

Significant cognitive decline at V2 

V1 PC GrimAge* 1.05 1.02; 1.08 1.6 × 10−3 

V1 GrimAge  1.02 1.00; 1.05 2.9 × 10−2 

V1 GrimAge2  1.03 1.01; 1.05 4.5 × 10−3 

V2 PC GrimAge* 1.07 1.04; 1.10 7.1 × 10−6 

V2 GrimAge  1.05 1.03; 1.07 2.0 × 10−5 

V2 GrimAge2 1.05 1.03; 1.07 8.4 × 10−7 

*Data shown in manuscript’s Tables. Models are adjusted for age, gender, center, and Hispanic background. 
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Supplementary Table 8. Association of DNA methylation components of GrimAge version 2 estimated at each 
visit with cognitive aging measures. 

Visit 1 
V1 Global Cognitive Function MCI at V2 Significant cognitive decline at V2 

Global Cognitive Function Change 

between V1 and V2 

Beta (SE) P Adj_P Beta (SE) P Adj_P Beta (SE) P Adj_P Beta (SE) P Adj_P 

ADM −0.005 (0.013) 0.69 1.00 0.165 (0.060) 0.006 0.06 0.118 (0.048) 0.0138 0.14 −0.058 (0.024) 0.0147 0.15 

B2M −0.011 (0.011) 0.33 1.00 0.106 (0.047) 0.025 0.25 0.047 (0.040) 0.24 1.00 −0.036 (0.020) 0.0694 0.69 

Cystatin C −0.027 (0.011) 0.015 0.15 0.115 ((0.048) 0.017 0.17 0.087 (0.040) 0.0303 0.30 −0.053 (0.020)  0.0081 0.08 

GDF15 −0.015 (0.011) 0.16 1.00 0.165 (0.045) 0.0003 0.003 0.183 (0.042) 1.4 × 10−5 1.4 × 10−4 −0.070 (0.020) 0.0004 0.004 

Leptin −0.003 (0.017) 0.87 1.00 0.038 (0.075) 0.61 1.00 0.056 (0.062) 0.36 1.00 0.012 (0.031) 0.68 1.00 

logA1C −0.034 (0.011) 0.002 0.02 0.265 (0.048) 3.3 × 10−8 3.3 × 10−7 0.232 (0.041) 1.2 × 10−8 1.2 × 10−7 −0.106 (0.020) 8.0 × 10−8 8.0 × 10−7 

logCRP −0.025 (0.011) 0.030 0.30 0.141 (0.051) 0.005 0.05 0.160 (0.042) 0.0001 0.001 −0.084 (0.020) 3.9 × 10−5 3.9 × 10−4 

Pack Yrs −0.042 (0.012) 0.0003 0.003 0.167 (0.050) 0.0007 0.007 0.104 (0.042) 0.0144 0.14 −0.052 (0.021) 0.0139 0.14 

PAI1 0.007 (0.012) 0.57 1.00 0.176 (0.052) 0.0007 0.007 0.198 (0.043) 3.8 × 10−6 3.8 × 10−5 −0.074 (0.021) 0.0004 0.004 

TIMP1 −0.022 (0.011) 0.05 1.00 0.098 (0.050) 0.05 0.50 0.087 (0.041) 0.0351 0.35 −0.048 (0.020) 0.0189 0.19 

 

Visit 2 
V2 Global Cognitive Function MCI at V2 Significant cognitive decline at V2 

Global Cognitive Function Change 

between V1 and V2 

Beta (SE) P Adj_P Beta (SE) P Adj_P Beta (SE) P Adj_P Beta (SE) P Adj_P 

ADM −0.037 (0.017) 0.0296 0.30 0.126 (0.061) 0.0394 0.39 0.092 (0.049) 0.06 0.60 −0.052 (0.024) 0.0341 0.34 

B2M −0.028 (0.014) 0.0414 0.41 0.062 (0.047) 0.18 1.00 0.001 (0.040) 0.98 1.00 −0.010 (0.020) 0.61 1.00 

Cystatin C −0.042 (0.014) 0.0023 0.02 0.042 (0.049) 0.38 1.00 0.019 (0.040) 0.63 1.00 −0.016 (0.020) 0.40 1.00 

GDF15 −0.046 (0.014) 0.0008 0.008 0.048 (0.046) 0.31 1.00 0.035 (0.039) 0.37 1.00 −0.029 (0.019) 0.13 1.00 

Leptin −0.019 (0.021) 0.36 1.00 0.027 (0.073) 0.71 1.00 0.053 (0.060) 0.38 1.00 −0.005 (0.030) 0.88 1.00 

logA1C −0.077 (0.014) 3.0 × 10−8 3.0 × 10−7 0.298 (0.047) 3.1 × 10−10 3.1 × 10−9 0.187 (0.040) 3.6 × 10−6 3.6 × 10−5 −0.103 (0.020) 1.7 × 10−7 1.7 × 10−6 

logCRP −0.062 (0.015) 2.2 × 10−5 2.2 × 10−4 0.173 (0.052) 0.0008 0.008 0.116 (0.042) 0.0059 0.06 −0.075 (0.021) 0.0003 0.003 

Pack Yrs −0.054 (0.015) 0.0002 0.002 0.128 (0.050) 0.0106 0.11 0.059 (0.042) 0.1594 1.00 −0.042 (0.021) 0.0447 0.45 

PAI1 −0.038 (0.015) 0.0117 0.12 0.196 (0.052) 0.0002 0.002 0.126 (0.043) 0.0032 0.032 −0.075 (0.021) 0.0004 0.004 

TIMP1 −0.031 (0.014) 0.0265 0.26 0.033 (0.049) 0.50 1.00 0.016 (0.040) 0.69 1.00 −0.027 (0.020) 0.17 1.00 

Models are adjusted for age, gender, center, and Hispanic background. Adj_P: P-value adjusted for the number of surrogate biomarkers. ADM: Adrenomedullin; B2M:  
β2-microglobulin; GDF15: Growth differentiation factor 15; logA1c: hemoglobin A1C (log transformed); logCRP: C-reactive protein (log transformed); Pack Yrs: Smoking in 
pack/year; PAI-1: Plasminogen activator inhibitor 1; TIMP1: tissue inhibitor metalloproteinase 1 

 

 


