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INTRODUCTION 
 

Alzheimer’s disease (AD) is a progressive and 

devastating neurodegenerative disease that affects older 

individuals. AD is pathologically characterized by the 

accumulation of misfolded amyloid-β (Aβ) and tau 

proteins in the brain [1]. Notably, misfolded Aβ peptides 

are considered important pathological mediators in AD 

due to their intrinsic toxicity and profuse extracellular 

deposition in senile, diffuse, and vascular plaques [2]. 

From a pathological standpoint, Aβ aggregates are 

considered the earliest abnormality in AD, triggering 

subsequent changes leading to neurodegeneration and 

disease onset [3, 4]. Experimental evidence and data 

collected from human subjects strongly suggest that the 

accumulation of misfolded Aβ triggers tau pathology, 

synaptic dysfunction, neuronal death, and cognitive 

decline [5, 6]. Among the diverse array of misfolded  

Aβ species in the AD brain, oligomers are linked  

with initial seeding stages [7, 8] and enhanced toxic 

activities [9]. 

 

For many years, Aβ aggregates were believed to be 

confined in the brain [10]. However, some studies 

strongly suggest their presence in peripheral tissues, 

such as the retina, heart, skin, blood vessels, and 

gastrointestinal tract [11–14]. These peripheral 

aggregates have gained increasing attention in AD 

research as they may contribute to the spread and 

dissemination of amyloid pathology [12, 15]. The 
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ABSTRACT 
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transgenic mice that model AD brain amyloidosis. Impaired memory and Aβ accumulation were observed in 
mice infused with blood from old donors. A proteomic analysis in the brain of these mice identified alterations 
in components related to synaptogenesis and the endocannabinoid system. The α2δ2 protein, associated with 
neuronal calcium regulation, was validated as a possible mediator of the observed effects. This study highlights 
the influence of blood in AD pathology and the identification of potential therapeutic targets. 
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repercussions of peripheral Aβ accumulation are 

potentially multifaceted as evidence indicates that they 

can contribute to the development of AD through 

several mechanisms [16]. Therefore, the presence of Aβ 

in peripheral tissues and circulation may contribute to 

disrupt peripheral clearance mechanisms, leading to 

increased Aβ levels in the brain and contributing to the 

development of brain amyloidosis [17]. Along this line, 

the concept of blood based Aβ clearance has emerged as 

a therapeutic strategy [18]. Some studies have found 

that Aβ clearance in the periphery can substantially 

reduce Aβ accumulation in the brain [16, 19, 20]. 

Notably, the implementation of plasma albumin 

exchange has demonstrated a marked reduction in Aβ 

burden in AD patients, accompanied by improvements 

in AD-related cognitive function [21–23]. Furthermore, 

alternative techniques such as hemodialysis and 

peritoneal dialysis have also shown promise in 

decreasing Aβ levels in brain [16, 19, 24]. These 

findings underscore the diverse approaches that 

leverage blood-based mechanisms for Aβ clearance, 

providing valuable insights for the development of 

effective therapeutic interventions [25, 26]. 

 

In the context of blood-based strategies to treat AD, 

several studies have investigated the potential benefits 

or detrimental effects of young and old blood donors on 

aging. These studies have described significant effects 

in blood recipients, suggesting that the factors carried 

by young and old blood can modulate biological 

functions in beneficial or detrimental manners [27–30]. 

Initial studies involving heterochronic parabiosis 

reported notable beneficial changes at systemic levels in 

old animals, strongly suggesting the presence of 

regenerative factors in young blood [31]. Considering 

this and other data, young blood became the focal point 

of numerous animal and human studies, delving into its 

potential benefits for brain health and aging [31–33]. 

Recent studies have shown that the blood from young 

mice provides therapeutic benefits relevant to aging and 

brain diseases. For example, infusions of young blood 

can reverse the effects of brain aging at the synaptic 

level, increase dendritic spine density and plasticity in 

the hippocampus, and improve age-related cognitive 

impairments [34]. Also, plasma from young wild type 

mice reduces phosphorylated tau and tau tangles in  

the brain [35]. Likewise, the introduction of young 

blood to aged animals, either through parabiosis or 

young plasma infusion, induces a restoration in the 

levels of synaptic and neuronal proteins, consequently 

improving memory in aged mice [36, 37]. Moreover, a 

reduction in tau and Aβ pathologies, coupled with 

diminished brain inflammation, has been observed as a 

consequence of similar treatments [38]. Another study 

using whole blood exchange from young wild type mice 

into transgenic mice from 3 to 13 months-old shows a 

reduction in Aβ burden and memory improvement [39]. 

Interestingly, the authors found a persistent effect as 

recorded up to 17 months of treatment [40]. 

 

Despite the above-mentioned evidence, the impact of 

old blood transfusion on AD pathology remains 

understudied. One study described that plasma and 

platelets from aged APP/PS1 mice increased brain Aβ 

deposition and learning/memory deficits when infused 

into younger animals. In addition, the introduction of 

aged platelets elevated Aβ1-40, Aβ1-42, and tau protein 

levels in the brain of treated mice [41]. Another study, 

using heterochronic blood exchange, showed that aged 

mouse blood induces aging phenotype in younger mice; 

however, brain senescence parameters were not altered 

[31, 42]. Particularly, our group infused young Tg2576 

transgenic mice (transgenic mice expressing human 

amyloid precursor protein (APP)) with whole blood  

or plasma from older Tg2576 mice, which resulted in 

increased brain amyloidosis and neuroinflammation  

in the recipient mice [41]. Likewise, the intravenous 

administration of purified Aβ aggregates sped up 

amyloid pathology and triggered neuropathological 

changes, supporting the idea that bloodborne Aβ seeds 

are capable of triggering neuropathological changes  

[13, 43]. Interestingly, one of these studies [41] did not 

show increases in amyloid pathology when young mice 

were infused with blood from old wild type mice. 

However, it is relevant to note that these mice received 

limited (either one or two) doses of low-volume blood 

infusions. 

 

In summary, most published studies in this area have 

focused on the potential therapeutic effects of young 

blood infusion to treat AD. However, few studies have 

examined the potential detrimental effects of old blood 

on brain amyloidosis, and even fewer have explored  

the impact of blood from wild type mice. Additionally, 

the potential role of blood transfusion in modulating  

Aβ accumulation, inflammation, and behavior, and its 

subsequent impact on AD pathology, is an intriguing 

avenue to explore. This study aimed to fill these gaps by 

examining the effects of a long-term blood infusion 

regime from young and old wild type donors into mice 

that model brain amyloidosis. We also evaluated the 

effect of these treatments in other associated detrimental 

events including neuroinflammation and cognitive 

decline. 

 

RESULTS 
 

Behavioral differences in Tg2576 mice infused with 

blood from young or old wild-type donors 
 

Multiple reports described that the administration of 

old blood components can transfer aging associated 
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traits to younger individuals [28, 42, 44, 45]. On the 

contrary, the infusion of young blood is reported to 

provide beneficial effects over multiple deleterious 

phenotypes associated with aging [46, 47]. Considering 

that aging is the main risk factor of AD [48, 49], the 

effect of aged or young blood has been separately 

investigated in the context of this neurological disorder 

[50, 51]. Here, we aimed to study, in parallel, the 

effects that infusion of blood from old or young donors 

exerted in an animal model of brain amyloidosis. 

Specifically, we used Tg2576 mice [52] for these 

experiments. Male and female Tg2576 mice received 

blood infusions from either old or young wild-type 

animals from the same genetic background as described 

in the Materials and Methods section. Briefly, Tg2576 

mice received 30 blood infusions at weekly intervals 

and sacrificed at 12 months of age. Then, their  

brains were studied for multiple disease-associated 

parameters including histopathological, biochemical, and 

proteomic evaluations (Figure 1). Before sacrificing, 

treated mice were tested for spatial memory using the 

Barnes maze paradigm [38]. Mice subjected to this test 

showed similar learning curves without significant 

differences between the groups treated with young or 

old blood (Figure 2A). Parameters for short-term 

memory (STM) and long-term memory (LTM) were 

measured. Although no significant differences in 

latency for STM and LTM were observed (Figure 2B, 

2C), significant differences were registered for the  

time spent in the target quadrant (Figure 2D, 2E). The 

latter data indicate that mice treated with old blood 

display more difficulties remembering where the escape 

chamber was located compared to subjects treated with 

blood from young wild type mice. These data show that 

old and young blood can modulate spatial memory 

when administered into a mouse model of AD. 

 

Infusion of blood from old or young wild type 

donors modulates amyloid pathology deposition in 

Tg2576 mice 

 

Histological staining using the anti-Aβ 4G8 antibody 

and thioflavin S (ThS) was employed to observe 

amyloid deposition in hippocampal and cortical brain 

areas (Figure 3 and Supplementary Figure 1). These 

brain regions were specifically studied as they are the 

most affected in this mouse model and show increased 

amyloid pathology over time (Supplementary Figure 2). 

The extent of amyloid deposition using both analyses 

was compared and quantified between mice injected 

with young blood and those injected with blood from 

old mice. The analysis was conducted in terms of the

 

 
 

Figure 1. Schematic representation of the blood infusion regime (blood from old and young wild type mice into Tg2576 
mice). Wild-type mice aged 50–75 days (WT Young mice), and wild-type mice aged 443–532 days (WT Old mice) served as blood donors. 

This blood was transfused to 120-day-old Tg2576 mice, which then underwent to weekly transfusions and sacrificed at 363–366 days old. 
Before sacrificing, mice were evaluated for spatial memory. Postmortem analyses included immunopathological, biochemical, and 
proteomic evaluations of brain tissues. 
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area reactive to Aβ deposits in each brain region per the 

total analyzed area. The number of deposits in cortex 

and hippocampus was also measured. When examining 

amyloid depositions through 4G8 staining, a significant 

increase of Aβ deposits was observed in the brain 

cortices of Tg2576 mice treated with blood from old 

wild-type mice compared to brain cortices of Tg2576 

mice treated with young wild-type blood (Figure 3A–

3F). Interestingly, amyloid pathology in the hippocampi 

of the same mice did not show significant changes 

(Figure 3A, 3B, 3G–3J). We used similar analyses for 

the ThS-stained brain slices (Supplementary Figure 1). 

There, no significant differences between the groups 

were observed, suggesting that the differences observed 

in the mice’s brain cortices are mostly associated with 

diffuse Aβ deposition. To further examine the impact  

of blood infusion on brain amyloidosis, we quantified 

the total levels of Aβ40 and Aβ42 levels in brain 

homogenates from the same Tg2576 mice treated with 

blood from young and old wild-type mice. This analysis 

showed no significant differences between the groups 

when measuring Aβ40, Aβ42, or the Aβ42/Aβ40 ratios 

(Supplementary Figure 3). The discrepancy between 

this analysis and that conducted by IHC further suggests 

differences in the compactness of the Aβ plaques in 

these animals. Studies to analyze this possibility (e.g., 

denaturation profiles using different concentrations of 

denaturing agents, sucrose gradient fractionations, and 

others) will be conducted as part of future studies. 

 

We additionally analyzed whether blood infusion 

altered other elements of the amyloid cascade. 

Specifically, we questioned whether the production of 

the amyloid-β precursor protein (APP) is affected by

 

 
 

Figure 2. Spatial memory analyses of Tg2576 mice treated with blood from old and young wild type mice. The Barnes maze 

test was applied to all mice included in this study. (A) Average latency to the escape chamber for the training trials sessions over 5 days, as 
described in Materials and Methods. (B) Quantitative analysis of the short-term memory (STM) latency. (C) Quantitative analysis of the 
long-term memory (LTM) latency. (D) Quantitative analysis of the STM time-in-quadrant parameter. (E) Quantitative analysis of the LTM 
time-in-quadrant parameters. N = 6–7/group, (random mix of males and females; young donor group: 3M/3F; old donor group: 3M/4F). Sex 
was not included as a variable in statistical analyses. Data values are expressed as means ± SEM. Data in (A) were analyzed using 
repeated/measures ANOVA. Data in (B) and (D) were analyzed using Student’s t-test. Data in (C) and (E) were analyzed using the Mann-
Whitney U-test. *p < 0.05. 
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Figure 3. Evaluation of Aβ deposition and APP levels in Tg2576 mice treated with blood from old and young wild type mice. 
Representative images of Aβ accumulation in the cortex and hippocampus (A, B). Higher magnification images of the cerebral cortex (C, D) 
and hippocampus (E, F) are also shown. Tissue slices were probed with the 4G8 antibody as described in the Materials and Methods. Scale 
bars: 1,000 µm (A, B), 500 µm (C–F). Quantitative analyses of Aβ burden and plaque number in the cerebral cortex (G, H) and hippocampus 
(I, J) are displayed. (K) Representative western blot image showing APP levels in brain homogenates from blood-treated mice (upper panel), 
with actin used as a loading control (lower panel). (L) Densitometric quantification of APP levels shown in (K), expressed in arbitrary units 
(UA). Data include 5–7 animals per group, (random mix of males and females; young donor group: 1–3M/2–3F; old donor group: 1–3M/ 
2–4F). Sex was not included as a variable in statistical analyses. Data values are expressed as mean ± SEM. Molecular weight markers (KDa) 
are indicated. Each lane represents one individual animal. Statistical analyses: Mann–Whitney U-test for panels (G) and (L); Student’s t-test 
for panels (H), (I), and (J). *p < 0.05, **p < 0.01. 
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blood treatments. APP levels in the brain of mice 

treated with blood from both young and old wild-type 

donors were evaluated via western blotting using  

the 6E10 antibody. Interestingly, APP levels differed 

significantly between both treatment groups, with a 

notable increase in Tg2576 mice receiving old blood 

compared to mice who received young blood (Figure 

3K, 3L). Overall, our data suggest that the infusion of 

blood from donors of different ages alters the deposition 

of Aβ in the brain of Tg2576 mice in a region-specific 

manner. These changes seem to be translated in the 

degree of compactness of the aggregates and could be 

related with the differential expression of APP in this 

particular transgenic model. 

 

Effect of blood infusion from wild type to Tg2576 

mice in markers of glial cells 

 

AD pathology is classically associated with brain 

inflammation. This is easily identified by an increase in 

activated astrocytes and reactive microglia [53]. We 

analyzed the degree of glial activation in the brain of 

mice treated with the different blood sources used in this 

experiment. This was achieved by immunohistochemical 

analyses targeting the glial fibrillary acidic protein 

(GFAP, an astrocytes marker, Supplementary Figure 4). 

A quantitative analysis of the GFAP staining was 

performed to assess the density of signal per unit area. 

No significant differences were observed, suggesting 

that the blood infusion treatments conducted in this 

study did not have an effect in the activation of brain 

astroglial cells. 

 

Infusion of blood from old or young wild type mice 

induce dysregulation in proteins involved in synaptic 

signaling pathways in Tg2576 subjects 

 

To further investigate the possible causes leading to 

spatial memory differences between Tg2576 mice 

infused with old and young blood, proteomic analyses 

were performed. For this purpose, brain homogenates 

from Tg2576 animals subjected to the blood transfusion 

regimen shown in Figure 1 were subjected to mass 

spectrometry. Once the total proteins present in the 

homogenate were identified, an analysis of the 

identified quantifiable proteins was performed. This 

analysis provided a total of 3,312 proteins (Figure 4A 

and Supplementary Data 1). Based on the above results, 

an analysis of Differentially Expressed Proteins (DEPs) 

was performed in Tg2576 mice infused with blood  

from either Old Wild Type and Young wild Type 

donors. This yielded a total of 256 DEPs (Figure 4B). 

IPA pathway analysis identified that several of the 

differentially expressed proteins were predicted to affect 

the cAMP mediated signaling (CAMK2A, PDE6D, 

CAMK2G, AKAP10, BRAF, GRK2, PRKAR1B), the 

synaptogenesis signaling pathways (SYNGAP1, 

CAMK2A, CACNA2D2, ITSN2, CNTNAP2, VAMP3, 

CAMK2G), and the neuronal endocannabinoid synaptic 

pathway (MAPK9, CACNA2D2, GNG13, DAGLA, 

FAAH, PRKARB1B, GRIA1) (Figure 4C–4F and 

Supplementary Figure 5). Based on the differentially 

expressed proteins in each pathway, and considering 

published evidence [54], candidate proteins for 

validation were selected. One of these proteins included 

the SYNGAP1 protein. This is a Ras GTPase activator 

protein, which exerts negative regulation on Ras, Rap and 

alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

acid (AMPA) receptor trafficking to the postsynaptic 

membrane. This regulation significantly impacts synaptic 

plasticity and neuronal homeostasis [55, 56]. Another 

candidate was CACNA2D2, also known as alpha-

2/delta subunit of the voltage-dependent calcium 

channel complex (α2δ2). This protein participates in the 

assembly and localization of a protein complex in the 

cell membrane, modulating calcium currents and the 

activation/inactivation kinetics of the channel. These 

processes regulate the entry of calcium ions into the cell 

after membrane polarization, which has important 

implications for neuronal function [57, 58]. Additional 

candidates included BRAF (B-Raf proto-oncogene, 

serine/threonine kinase, a protein within the RAF family 

of serine/threonine kinases that regulates the MAP 

kinase/ERK signaling pathway influencing cell division, 

differentiation and secretion [59]), MAPK9 (mitogen-

activated protein kinase 9, a MAP kinase family 

member that participates in integrating biochemical 

signals and modulates proliferation, differentiation 

transcription regulation and development [60]), and 

GRK2 (G protein-coupled receptor kinase 2, a G protein-

coupled receptor kinase that phosphorylates beta-

adrenergic receptors and other substrates, including non-

GPCR receptors, cytoskeletal proteins, mitochondrial 

components, and transcription factors [61]). 

 

Brain homogenates from Tg2576 mice infused with 

young or old blood were used for western blotting 

analyses. While SYNGAP1, MAPK9 and GRK2 protein 

levels showed no significant differences between the 

two experimental conditions, the CACNA2D2 and 

BRAF protein levels were found to be increased in  

the brains of Tg2576 mice injected with old blood 

compared to Tg2576 mice injected with young blood 

(Figure 4G–4P). These data suggest that young and old 

blood infusion differentially affect synaptic plasticity 

and neuronal homeostasis, as well as the regulation and 

influx of cellular calcium ions in Tg2576 mice. 

 

DISCUSSION 
 

In this study, we used young and old wild type animals 

as blood donors and Tg2576 mice at pre-pathological 
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Figure 4. Proteomic analysis of Tg2576 mice infused with blood from old and young wild type mice. (A) Heatmap of 

quantifiable proteins from the Old Blood and Young Blood groups, showing log fold-change (logFC) in protein expression. (B) Venn diagram 
of differentially expressed proteins in an Old Blood vs. Young Blood groups comparison. (C) Canonical pathway analysis of differentially 
expressed proteins, highlighting enriched signaling pathways with activation z-scores. (D–F) Differentially expressed proteins in cAMP-
mediated signaling, synaptogenesis signaling, and endocannabinoid neuronal synapse pathways, respectively. Gene names are used. (G, H) 
Representative western blot image and quantitative analysis of expression of CACNA2D2 in brain homogenates. (I, J) Representative 
western blot image and quantitative analysis of expression of BRAF in brain homogenates. (K, L) Representative western blot image and 
quantitative analysis of expression of Syngap1 in brain homogenates. (M, N) Representative western blot image and quantitative analysis of 
expression of MAPK9 in brain homogenates. (O, P) Representative western blot image and quantitative analysis of expression of GRK2 in 
brain homogenates. N = 3/group for proteomic analysis, and n = 4/group for protein validation (random mix of males and females; young 
donor group: 1–2M/2F; old donor group: 1–2M/2F). Data are expressed as mean ± SEM. Data in (H), (J), (L), (N), and (P) were analyzed 
using Student’s t-test. *p < 0.05. 
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stages of brain amyloidosis as recipients to evaluate the 

effect of blood infusion on brain pathology. Our results 

showed an impairment in short- and long- term memory 

in Tg2576 transgenic mice injected with plasma from 

old wild type animals compared to those injected with 

plasma from young subjects (Figure 2). Regarding  

Aβ pathology, we observed significant differences in 

cortical regions where Tg2576 mice injected with the 

blood of old donors accumulated more Aβ compared 

with Tg2576 mice receiving young blood (Figure 3). 

These findings agree with previous studies showing  

that bloodborne factors present in old blood contribute 

to increased cognitive decline and impairments in 

synaptic plasticity [50, 62]. Along the same lines, it is 

well accepted that the administration of young blood 

has positive effects over multiple events, including 

aging and AD [63, 64]. Some studies have shown 

considerable decreases in Aβ deposits in transgenic 

animals treated with young blood [65, 66]. The above 

discussed reports and the data presented in this article 

indicate that old blood is attributed with factors that 

contribute to the “aging” of the recipient. Among the 

factors responsible for the aforementioned effects, 

several inflammatory molecules have been described. 

These include proinflammatory cytokines such as IL1β, 

IL6, IL27 and TNFα, as well as chemokines such as 

CCL11 and CCL27 [67]. In addition, molecules that 

facilitate lymphocyte trafficking to inflammatory sites 

in blood plasma have been identified [17, 68]. Another 

risk factor in aging is the accumulation of senescent 

uPAR+ cells, as these cells release proinflammatory 

cytokines such as PAI-1 and TGFβ, contributing to  

the reduction of immune cell proliferation and the 

transformation of niche cells into a proinflammatory 

phenotype [69, 70]. These processes and their effectors 

have been extensively studied [71]. All this information 

suggests that bloodborne factors can play an important 

role in AD pathology, with aged blood exerting a 

deleterious effect and potentially exacerbating AD 

pathology and reducing cognitive functions. It is 

noteworthy that, in the present study, the increase in Aβ 

burden among transgenic mice infused with old blood 

was exclusively detected employing the 4G8 antibody 

(Figure 3). Notably, ThS staining or biochemical 

evaluations by ELISA indicated no differences across 

the experimental groups (Supplementary Figures 1 and 

3). While both ThS and the 4G8 antibody are employed 

to identify amyloid deposits, the dissimilarity in 

detection could potentially be attributed to the nature of 

the aggregates detected by each method. ThS binds to 

compact amyloid fibrils [72], while the 4G8 antibody 

specifically recognizes residues 17–24 within the Aβ 

sequence [73]. Consequently, 4G8 and ThS can effectively 

differentiate between various forms of aggregates  

[74, 75]. Along this line, blood infusion seems to alter 

the type of amyloid deposits in the brain. Specific for 

this study, the infusion of blood from old wild type 

donors to Tg2576 mice induced the accumulation of 

aggregates in the cortex. The mechanisms dictating the 

specific anatomical distribution of this phenotype will 

be characterized in future studies. Unfortunately, the 

biochemical analyses were not able to add more to these 

observations as they were conducted using homogenates 

prepared from the whole brain hemisphere. 

 

Considering the cognitive and amyloid pathology 

alterations in these mice, we evaluated other components 

classically associated with brain amyloidosis. In the  

first place, we analyzed whether blood infusions altered 

glial markers. We observed no differences at this level 

(Supplementary Figures 4 and 5), suggesting that  

other mechanisms were involved in the modulation of 

pathological processes. Considering this, we analyzed 

whether the expression of APP could be altered in  

these mice, explaining the differences in amyloid 

deposition between the groups. In fact, significantly 

different increases in the presence of APP were 

observed in the brains of Tg2576 mice treated with  

the old blood (Figure 3), partially explaining the 

different degrees of amyloid pathology. The relevance 

of this finding to AD pathology is contentious, 

considering that human APP in this specific transgenic 

line is controlled by a non-physiological (prion protein) 

promoter [76]. 

 

To further study the mechanisms associated with 

pathological and memory cascades due to blood 

infusion, we analyzed the protein components altered  

in the mice included in this study. We conducted a 

proteomic analysis and found dysregulated components 

related to synaptogenesis and the endocannabinoid 

system (Figure 4). Based on the literature and the 

differentially expressed genes involved in AD, we 

validated the α2δ2 protein through western blotting in 

brain homogenates of transgenic mice injected with 

young and old blood. As suggested by the proteomic 

data, we found a significant increase in the levels of this 

protein in the brains of Tg2576 mice treated with old 

blood compared to Tg2576 mice treated with young 

blood. The α2δ2 protein is part of the voltage-gated 

calcium channels (VGCCs) protein complex, which 

belongs to the group of voltage-gated ion channels 

found in excitable cells, including neurons, allowing  

the permeability of calcium [77, 78]. In addition, the 

α2δ2 protein plays a pivotal role in the regulation of 

calcium-dependent signaling and neuronal excitability 

[75, 79]. Dysregulation of this protein has been linked 

to pathological conditions like hearing loss contributing 

to the facilitation of trans-synaptic alignment between 

presynaptic Ca2+ channels and postsynaptic AMPA 

receptors [80]. Interestingly, the α2δ2 subunit of VGCCs 

acts as a developmental switch that limits axon growth 
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and regeneration. Removing or silencing Cacna2d2, 

which encodes the α2δ2 subunit, increases axon growth 

in vitro and enhances axon regeneration after spinal 

cord injury in adult mice [81]. These findings highlight 

the importance of understanding the dysregulation  

of α2δ2 in neurodegenerative diseases like AD, and  

the potential for therapeutic interventions targeting  

Aβ pathology and promoting axon regeneration. 

Additionally, our proteomic analysis revealed a 

significant decrease in the levels of BRAF in transgenic 

mice injected with young blood compared to those 

receiving old blood. The dysregulation of this protein 

has been linked with neurodegenerative processes, 

including tau hyperphosphorylation and neuronal 

dysfunction in AD [82, 83], as well as microglial 

proliferation and neuroinflammation [84, 85]. The 

upregulation of BRAF in animals treated with old blood 

compared to animals treated with young blood may 

reflect a proinflammatory environment characterized by 

increased cytokine activity, including IL1β, IL6 and 

TNFα, which have been implicated in synaptic 

dysfunction and neurodegeneration [86–88]. Previous 

studies have shown that young blood modulates BRAF 

signaling by reducing microglial activation and 

inflammatory pathways [89]. These findings reinforce 

the influence of systemic factors on intracellular 

signaling in AD and highlight BRAF as a potential 

target for therapeutic strategies aimed at mitigating 

neuroinflammation and synaptic impairment. 

 

One limitation of our study involves the absence of a 

separate, blood-untreated control group. While our 

primary aim was to compare the effects of old versus 

young blood infusions on Tg2576 mice, the lack of a 

baseline reference group limits the interpretation of how 

either treatment diverges from the natural pathological 

progression in these animals. Future studies incorporating 

an untreated Tg2576 group or ideally, both transgenic 

and wild-type controls, will be essential to better 

contextualize the impact of bloodborne factors on 

disease progression. Despite this limitation, the direct 

comparison between old- and young- blood-treated 

groups provides valuable insights into the potential age-

dependent effects of circulating factors in modulating 

AD-related pathology. 

 

In summary, this study shows that blood from old and 

young mice carry elements able to modulate AD 

pathology and cognitive features. Interestingly, these 

changes appear to be specific to the cortical region and 

the type of deposits (compact vs. diffuse). Changes in 

memory due to blood infusion seem to be mediated by 

the α2δ2 protein as resolved through proteomic analyses 

and validated by western blotting. The identification of 

this protein mediating these events is a novel aspect of 

this study. We agree that future studies must confirm 

the proposed pathways. However, we believe that this 

study unveils different mechanisms as those previously 

described. The identification of neurodegeneration-

relevant factors in blood is currently an active area of 

research with potential implications for the treatment  

of AD and other pathological conditions associated  

with aging. Further investigations are warranted to 

elucidate the specific factors responsible for these 

effects and to determine their potential translation to 

human treatments. 

 

MATERIALS AND METHODS 
 

Transgenic mice 

 

The experiments described in this article used Tg2576 

[52] and wild type littermates. Tg2576 mice express the 

human APP harboring the Swedish mutation. As a 

consequence, these mice start developing Aβ deposits in 

their brains at 8–9 months old and extensive presence of 

senile plaques and neuroinflammation at 17 months of 

age. Six to seven Tg2576 animals (random mixtures of 

males and females) were used per experimental group. 

Specifically, the group infused with blood from young 

wild-type donors included 3 males and 3 females (50% 

each), while the group infused with blood from old 

wild-type donors included 3 males and 4 females 

(42.9% males, 57.1% females). Although both sexes 

were represented, sex was not considered a biological 

variable in the statistical analyses due to the limited 

sample size. 

 

Intra-venous blood injections treatment 

 

One hundred twenty-day old Tg2576 mice were 

immobilized using a restriction cell and injected  

with 150 µL of blood from wild-type mice in the tail 

vein using a ½ cc 27G ½ tuberculin syringe (BD 

Biosciences, Franklin Lakes, NJ, USA). Tg2576 mice 

received 30 blood doses separated by 7-day intervals. 

Blood treatments were performed using blood from 

young (50–75 days old) or old (443–532) wild-type 

mice. All treated animals were euthanized at 363–366 

days old for subsequent analyses (Figure 1). 

 

Barnes maze test 

 

To determine the spatial memory status of the 

experimental Tg2576 mice, the Barnes maze test was 

used [90]. The Barnes maze setup used in this study 

consisted of a circular table with 40 holes at their edges. 

One of these holes includes an escape box to exit the 

platform. The test is conducted by placing a single 

mouse in the center of the platform. Later, the mouse  

is stimulated with sound (loud clunk amplified by 

speakers) and the bright room’s light so they look to 
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hide by going into the escape box. The escape box 

remains at the same position during the experiment and 

distinctive markings across the room are employed 

around the area as navigation cues. Mice were allowed 

to explore the arena for 3 minutes, 3 times a day, for 5 

days. If they failed to find the escape box, they were 

gently directed to it by the researcher performing the 

study. Memory was assessed on the 5th and 12th days. 

The test on the 5th day reflects the short-term memory 

(STM), whereas that on the 12th day represents the 

long-term memory (LTM). Two parameters were 

measured in this test: time in latency (time to enter into 

the escaping chamber) and time in quadrant (percentage 

of time mice spent in the quadrant where the escape 

chamber is located). 

 

Histological analyses of brain slices 

 

Tissue staining was performed as previously described 

[12, 19]. Briefly, brains were collected and one half of 

the brain (left) was frozen at −80°C for biochemical 

analyses, whereas the other half (right) was stored  

in 4% paraformaldehyde (PFA) and later paraffin 

embedded and cut for histological studies. Serial, 

10 µm-thick sections from groups of Tg2576 animals 

transfused with old and young blood were processed 

for histological analyses. For immunohistochemistry, 

serial sections were deparaffinized and hydrated in 

decreasing ethanol gradients. Endogenous peroxidase 

activity was blocked with 3% H2O2/10% methanol in 

PBS for 20 min. In the case of needing antigenic 

unmasking of the epitope, 85% v/v formic acid was 

used for 3 minutes. The primary antibodies used were 

4G8 Mouse IgG2b (Biolegend, San Diego, CA,  

USA) (1:1000), and anti-GFAP Rabbit/IgG (Abcam, 

Fremont, CA, USA) (1:1000). For 4G8 and anti-GFAP 

primary antibodies, the incubation time was overnight. 

All antibody incubations were performed at room 

temperature, and the subsequent washings were 

performed using PBS to remove antibody excess. A 2-

hours incubation was performed at room temperature 

with corresponding secondary antibodies bound 

horseradish peroxide (HRP): Goat anti-mouse (Jackson 

ImmunoResearch West Grove, PA, USA) (1:1000),  

or Goat anti-rabbit (Jackson ImmunoResearch, West 

Grove, PA, USA) (1:1000). The peroxidase reaction 

was visualized using the DAB Peroxidase Substrate  

Kit (Vector Labs, Newark, CA, USA) following  

the manufacturer’s instructions. Finally, the tissue 

slices were subjected to dehydration in increasing 

ethanol gradients (70%-100%), xylene clearance, and 

coversliped with ENTELLAN mounting solution 

(Sigma-Aldrich, Saint Louis, MO, USA). Additionally, 

brain sections were incubated with Thioflavin-S  

(ThS) solution (0.025% in 50% ethanol) for 10 min  

and dehydrated and mounted with ENTELLAN or 

Fluoromount (Electron Microscopy Sciences, Hatfield, 

PA, USA). All images were visualized and captured 

using Eclipse E200 series 624721 binocular microscopes 

(Nikon Minato-ku, Tokyo, Japan) in bright field and 

488–555 nm filters. Between 4 and 5 tissue slices per 

animal/staining, were taken every 10 slices and used 

for image analyses and quantifications. Burden was 

defined as the labeled area of the brain per total  

area analyzed, and the results were expressed as 

percentage. The region analyzed corresponded to the 

entire cortical and hippocampal areas of the sections 

studied. Histological staining and image analyses were 

conducted using the Fiji ImageJ Win-64 Software. 

 

Quantification of Aβ levels by ELISA 

 

Brain tissue extracts from experimental groups were 

processed following a standardized protein extraction 

protocol [75]. Briefly, brain homogenates (10% w/v) 

were prepared in PBS and centrifuged at 32,600 rpm for 

1 hour at 4°C using a Sorvall WX100 ultracentrifuge 

(Thermo Fisher, Norristown, PA, USA) equipped with a 

Fiberlite fixed-angle rotor F50L-24 × 1.5 (Thermo 

Fisher, Norristown, PA, USA). The supernatants were 

saved and designated as the PBS-soluble fractions. The 

remaining pellets were resuspended in 2% sodium 

dodecyl sulphate (SDS) and homogenized by pipetting 

followed by sonication in a water bath until complete 

solubilization. After a second round of centrifugation 

under the same conditions, the SDS-soluble fractions 

were collected. The remaining pellets were then treated 

with 70% formic acid (Fisher Scientific, Waltham,  

MA, USA) and subjected to sonication (water bath) 

until full dispersion. The FA-solubilized samples 

underwent centrifugation for 30 minutes, and the 

resulting supernatants were collected as FA fractions. 

To neutralize acidity, FA fractions were diluted 1:20  

in 1 M Tris buffer pH 11 (Sigma Aldrich, Saint  

Louis, MO, USA). Aβ42 and Aβ40 peptides present  

in these samples were measured by using ELISA  

Aβ42 and Aβ40 kits (Invitrogen, Carlsbad, CA, USA). 

ELISA was performed following the manufacturer’s 

instructions. 

 

Western blot analyses of brain homogenates 

 

The western blot procedure was performed as described 

elsewhere [91]. Briefly, brain homogenate samples 

were lysed with PBS supplemented with a protease 

inhibitor cocktail (Sigma-Aldrich, Saint Louis, MO, 

USA) plus a phosphatase inhibitor cocktail (Sigma-

Aldrich, Saint Louis, MO, USA). Protein concentration 

was measured using the Qubit dsDNA BR assay  

kit (Thermo Fisher, Norristown, PA, USA) following 

the manufacturer’s instructions. Twenty µg/µL of 

samples were loaded onto 10% polyacrylamide gels 
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under denaturing conditions (sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE)) and 

transferred to nitrocellulose membranes. The membranes 

were incubated with the following primary antibodies 

overnight at 4°C in agitation: 6E10 mouse/IgG1 

(Biolegend, San Diego, CA, USA) (1/500), α2δ2 

(Cacna2d2) rabbit/IgG (Abcam, Fremont, CA, USA) 

(1:1000), SynGAP1 rabbit/IgG (Abcam, Fremont,  

CA, USA), BRAF rabbit/IgG (Proteintech, Rosemont, 

IL, USA), JNK2 (MAPK9) mouse/IgG (Origene, 

Rockville, MD, USA), GRK2 mouse/IgG1 (Invitrogen, 

Carlsbad, CA, USA), and β-Actin mouse/IgG2b 

(Cellsignal, Danvers, MA, USA). Then, the following 

peroxidase-conjugated secondary antibodies were used: 

Goat anti-mouse (Jackson ImmunoResearch West 

Grove, PA, USA) (1:5000), Goat anti-rabbit (Jackson 

ImmunoResearch West Grove, PA, USA) (1:5000). 

Incubations with secondary antibodies were conducted 

for 1 h at room temperature. Immunoreactivity was 

visualized using the ECL Plus™ detection system  

(GE Healthcare, Chicago, IL, USA). Densitometric 

quantification of the bands was performed using the 

ImageJ Software. 

 

Proteomic analysis 

 

Brain homogenates from blood-treated Tg2576 mice 

were sent to MELISA Institute (San Pedro de la Paz, 

Bio Bio, Chile) for analysis. The detailed workflow was 

performed according to the institute’s own parameters. 

In essence, the workflow began as follows. Protein 

extraction and trypsin treatment: each sample was 

treated with a protease/phosphatase inhibitor (Thermo 

Fisher, Norristown, PA, USA) at a 1X concentration. 

After lyophilization, samples were resuspended in  

8 M urea and 25 mM ammonium bicarbonate at  

pH 8, followed by ultrasonic homogenization for 1 

minute at 50% amplitude with 10-second pulses in a 

cold bath. Debris were removed through centrifugation 

at 21,000 × g for 10 minutes at 4°C. Protein 

quantification was carried out using Qubit Protein 

Assay reagent (Thermo Fisher, Norristown, PA, USA). 

Preparation for mass spectrometry (MS): proteins 

underwent chloroform/methanol extraction, as previously 

described [92]. Following equilibration, centrifugation, 

and removal of the supernatant, the protein pellet 

underwent thrice washing with cold 80% acetone  

and was subsequently dried. The pellet was then 

resuspended in 30 µL of a buffer made of 8 M urea,  

2% SDS, 2% deoxycholate in 25 mM ammonium 

bicarbonate pH 8. Reduction of proteins’ disulfide 

bonds was carried out by incubating the samples for 30 

min with dithiothreitol (DTT), followed by alkylation 

(by incubating the sample for 30 min with 25 mM 

iodoacetamide). Then, the samples were diluted 8 times 

with 25 mM ammonium bicarbonate pH 8, and digested 

with sequence quality trypsin (Promega, Madison,  

WI, USA) in a 1:50 ratio, overnight at 37°C. Clean Up 

Sep-Pak C18 Spin Columns (Sigma-Aldrich, Saint 

Louis, MO, USA) were employed for cleanup, and the 

resulting clean peptides were dried. Database searching 

tandem mass spectra: This was extracted by Tims 

Control version 2.0 (Burker Daltonic Billerica, MA, 

USA). Charge state deconvolution and deisotoping were 

not performed. All MS/MS samples were analyzed using 

PEAKS Studio (Bioinformatics Solutions, Waterloo, 

ON Canada; version 10.5 (2019-11-20)). PEAKS Studio 

was set up to search the (UniProt_SwissProt) database 

(21040 entries) assuming an efficient trypsin digestion. 

PEAKS Studio was searched with a fragment ion mass 

tolerance of 0,050 Da and a parent ion tolerance of 50 

PPM. Carbamidomethyl of cysteine was specified in 

PEAKS Studio as a fixed modification. Deamidated of 

asparagine and glutamine, oxidation of methionine, 

acetyl of the n-terminus and carbamyl of lysine and the 

N-terminus were specified in PEAKS Studio as variable 

modifications. 

 

LFQ and differential expression analysis 

 

Individual identification reports from PEAKS were 

concatenated, and missing values (NA) results were 

imputed by MICE [93]. To determine which proteins 

were differentially and significantly expressed in the 

treatment contrast we applied a Wald test to data  

with a Benjamini-Hochberg correction using Deseq2 

[94]. Any protein associated with p-adjust <0.05 was 

considered significant. Graphic representations related 

to quantification results were created using statistical 

environment R v.3.6.0 [95] with EnhancedVolcano 

[96], Complex Heatmap v.2.0.0 [97], GOplot [98] and 

base packages of R. 

 

Bioinformatic analysis 

 

The proteomic dataset including UniProt identifiers  

and logFC values of identified proteins in mass 

spectrometry was submitted to ingenuity pathway 

analysis (IPA). Networks, functional analyses and 

pathways were obtained through the use of IPA 

(QIAGEN Inc., https://digitalinsights.qiagen.com/IPA) 

[99]. Core analysis was performed with the following 

settings: (i) indirect and direct relationships between 

molecules, (ii) based on experimentally observed data, 

and (iii) all data sources were admitted from the 

Ingenuity Knowledge Base. 

 

Statistical analysis 

 

To evaluate differences between groups, normality was 

first assessed using the Shapiro-Wilk test (α = 0.05), 

and homoscedasticity was evaluated using Levene’s 

https://digitalinsights.qiagen.com/IPA
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test for normally distributed data or the Fligner-Killeen 

test for non-normal data (α = 0.05). Outliers were 

detected using the interquartile range (IQR) method 

and were either removed or transformed. Group 

comparisons were performed with two-tailed t-tests for 

normally distributed data with homoscedasticity. Non-

normally distributed data were analyzed with non-

parametric tests, such as the Mann-Whitney U-test. For 

repeated measures data, normality was assessed per 

block using the Shapiro-Wilk test, and homogeneity  

of variances was evaluated with Levene’s test. If  

data met normality assumptions and variances were 

homogeneous, a repeated-measures ANOVA was 

performed to evaluate the effect of time (blocks)  

and group differences. In cases where data deviated 

from normality, a non-parametric alternative, such  

as the Friedman test, was considered. If significant 

differences were detected, post-hoc comparisons were 

conducted using the Tukey’s test for ANOVA or the 

Dunn-Bonferroni for the Friedman test. All these 

analyses were conducted using α = 0.05. The statistical 

analyses and graphical representations were performed 

using R (v 4.4.2) with the car (v 3.1-3), nlme (v 3.1-

162), and rstatix (v 0.7.2) packages, as well as the 

GraphPad Prism software (v 8.0.1, GraphPad Software 

Inc., Boston, MA, USA). 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Deposition of ThS reactive amyloid plaques in the brains of Tg2576 treated with blood from old 
and young wild type mice. Representative images of the accumulation of ThS positive amyloid deposits in brains of blood treated 

Tg2576 mice. (A, B) The brain regions used for analyses included cortex (C, D) and hippocampus (E, F). Quantitative analyses of ThS burden 
in cerebral cortical (G) and hippocampal (H) sections. Scale bars: 500 µm. N = 5–7/group, (random mix of males and females; young donor 
group: 3M/3F; old donor group: 3M/4F). Data values are expressed as mean ± SEM. Data in (G) were analyzed using Student’s t-test, and 
data in (G) were analyzed using the Mann-Whitney U-test. 
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Supplementary Figure 2. Time-course propagation of Aβ pathology in Tg2576 mice. This figure depicts the time-dependent 

increase of amyloid pathology over time in the brain of Tg2576 mice. Tissues were collected in 300-, 450-, and 530-day-old Tg2576 mice. 
Three different brain regions are enlarged for better visualization: cortex, dentate gyrus, and CA1. Scale bar: 200 µm. 
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Supplementary Figure 3. Quantification of Aβ40 and Aβ42 levels in PBS and formic acid (FA) fractions from brain homogenates 
of Tg2576 mice treated with young or old blood. Aβ40 and Aβ42 peptide concentrations were measured using ELISA in different brain 

extract fractions. (A) Aβ40 concentration in the PBS fraction. (B) Aβ42 concentration in the PBS fraction. (C) Aβ42/Aβ40 ratio in the PBS fraction. 
(D) Aβ40 concentration in the FA fraction. (E) Aβ42 concentration in the FA fraction. (F) Aβ42/Aβ40 ratio in the FA fraction. N = 6–7/group, 
(random mix of males and females; young donor group: 2–3M/2–3F; old donor group: 2–3M/2–4F). Data values are expressed as mean ± 
SEM. Statistical analysis was performed as follows: (A, D, E, F), Mann-Whitney U-test; (B, C), Student’s t-test. 
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Supplementary Figure 4. Histopathological analysis of an astrocyte marker in the brain of Tg2576 mice infused with blood 
from old and young wild type mice. Representative images displaying the presence of the astrocyte cell marker GFAP in the brain of 

Tg2576 mice. (A, B) The brain regions used for analysis included cortex (C, D) and hippocampus (E, F). Quantitative analyses of GFAP burden 
in cerebral cortical (G) and hippocampal (H) sections are shown. Scale bars: 500 µm. N = 5–7/group, (random mix of males and females; 
young donor group: 3M/3F; old donor group: 3M/4F). Data values are expressed as mean ± SEM. Data in (G, H) were analyzed using 
Student’s t-test. 
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Supplementary Figure 5. Proteomic pathways analysis of Tg2576 mice infused with blood from old and young wild type 
mice. Pathway analysis of differentially expressed proteins in cAMP-mediated signaling, synaptogenesis signaling, and endocannabinoid 

neuronal synapse pathways in the Old Blood and Young Blood groups. Pathway activation is represented by orange (activation) and blue 
(inhibition) connections. Differentially expressed proteins within each pathway, with color-coded log expression ratios are displayed. Gene 
names are used. N = 3/group, (random mix of males and females; young donor group: 1M/2F; old donor group: 1M/2F). 
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Supplementary Data 
 

Please browse Full Text version to see the data of Supplementary Data 1. 

 

Supplementary Data 1. Ingenuity pathways analysis (IPA) data. 

 


