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ABSTRACT

Background: Prostate cancer, a major global health issue for men, remains a critical clinical challenge in
treatment, highlighting the need for improved biomarkers. Treatment options for prostate cancer include
active surveillance, surgery, endocrine therapy, chemotherapy, radiotherapy, immunotherapy, etc. However, as
the tumor progresses, the effectiveness of treatment regimens gradually decreases. Therefore, we need to
understand the biological mechanisms that promote prostate cancer tumorigenesis and progression and to
screen biomarkers for diagnosis and prediction of prognosis.

Methods: We utilized the expression profiles of prostate cancer from The Cancer Genome Atlas (TCGA)
database and employed weighted gene co-expression network analysis (WGCNA) to construct a gene
interaction network. Gene co-expression networks were constructed using WGCNA (soft-threshold power
B = 10, scale-free R? > 0.9), with differential correlations computed via Fisher’s z-test (FDR < 0.05). We used the
“DiffCorr” package to discriminate between tumor and adjacent normal tissues to identify genes with
differential representation in tumor and normal tissues, and perform in-depth analysis of these genes.

Results: Through WGCNA analysis, we identified a total of 20 modules, three gene modules were significantly
associated with prostate cancer. We then analyzed the genes in these modules separately by the “DiffCorr”
package and intersected these with differentially expressed genes. Finally, 21 genes were screened as
biomarkers for prostate cancer.

Conclusions: Our study unveils a prostate cancer tumorigenesis mechanism by identifying differentially
correlated gene pairs during normal-to-tumor transformation. We believe that the biomarkers derived from
this algorithm have important reference implications for future research in prostate cancer.

INTRODUCTION

Prostate cancer is one of the most common types of
cancer in elderly men [1]. In recent years, the
promotion of prostate cancer-based screening has
increased the incidence of prostate cancer, while early
detection has also reduced prostate cancer specific
mortality [2]. In recent years, treatments based on
androgen deprivation therapy (ADT) and radiotherapy

have greatly improved the prognosis of patients [2, 3].
However, there is still a subset of patients with a poor
prognosis. New approaches have been explored to
improve patient outcomes, including androgen receptor
signaling inhibitors (ARSI) [4] and immunotherapy
[5, 6]. However, the prognosis of some patients with
prostate cancer remains suboptimal. Therefore, it is
also necessary to reveal the pathogenesis of prostate
cancer more deeply with new biomarkers.
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Currently, bioinformatics methods based on gene
expression profiling have been developed to provide
effective tools for comprehensive analysis of gene
networks in cancer pathogenesis [7]. In recent
years, much works studied and reported novel
biomarkers with significant status in gene networks
of different cancers, including hepatocellular
carcinoma [8], breast cancer [9], non-small cell lung
cancer [10], bladder cancer [11]. Recent work in
bladder cancer [11] demonstrates the value of
differential correlation approaches for uncovering
network rewiring. In general, biomarkers are
determined based on the analysis of differentially
expressed genes between disease and healthy tissues.
However, there is concern that the occurrence of a
disorder is the combined effect of multiple highly
interacting genes.

Correlation analysis is an important method for omics
data to provide clues to gene regulatory networks [12].
Complementing traditional approaches to the analysis of
gene expression data, it is critical to investigate how
gene correlations (termed “differential correlations™)
vary in cancer pathogenesis [13].

A recent paper reported a set of five dysregulated hub
genes (MAF, STAT6, SOX2, FOXO1, and WNT3A)
that play crucial roles in biological pathways
associated with prostate cancer progression [14]. We
constructed a gene correlation network for prostate
cancer pathogenesis based on differential correlation
theory for the first time and found some novel key
genes. First, 20 modules of co-expressed genes were
detected by weighted gene co-expression network
analysis (WGCNA), in which 3 modules were
significantly correlated with prostate cancer; Then,
differentially correlated gene pairs in each module
with the largest correlation to prostate cancer were
calculated, gene networks were constructed and key
genes were subjected to functional analysis. Finally,
21 biomarkers derived from web-based algorithm were
screened, in which 5 genes have never been studied in
prostate cancer research, including CPA6, KRTI1S,
SMIM10, SPON1, and STOGALNAC4.

MATERIALS AND METHODS
Data collection

The TCGA data of prostate cancer was downloaded
from UCSC Xena database (https://xenabrowser.net/
datapages/), including 499 tumor samples and 52
normal samples. The gene expression levels were
quantified as FPKM (Fragments Per Kilobase of
transcript per Million mapped reads) for subsequent
analyses.

WGCNA

The co-expression relationship of protein-coding genes
was investigated by R package “WGCNA” to screen
gene modules associated with prostate cancer. Gene
modules most significantly associated (p < 0.05, r > 0.3)
to prostate cancer were selected for subsequent analysis.
R package “clusterProfiler” was used to conducted
enrichment analysis of genes in each module.

Differential correlation analysis

R package “DiffCorr” was utilized to identify and
visualize differential correlations. This package was
based on Fisher’s z-test and details were explained in
published work [15].

Statistical analysis

All data are presented as the mean + SD (Standard
Deviation). Statistical analysis was performed using
R software (https://www.r-project.org/, version:4.1.1).
P<0.05 (two-tailed) was considered statistically
significant: “p < 0.05, *p < 0.01, *p < 0.001, and
*p <0.0001.

Data availability

The datasets generated and analysed during the current
study are available from the corresponding author on
reasonable request.

RESULTS

Identification of gene modules associated with
prostate cancer

We first conducted WGCNA in TCGA-PRAD to screen
key gene modules associated with prostate cancer. We
performed weighted gene co-expression network
analysis (WGCNA) using the following parameters: A
soft-thresholding power (B) of 10 was selected based on
scale-free topology fit (R*> = 0.92) and mean
connectivity preservation. This threshold optimally
balances network connectivity with scale-free topology
requirements. Minimum module size was set to 30
genes, Module merging threshold was 0.25 (Figure 1A).
Figure 1B showed the merging of similar modules.
MEpluml1, MEblue, and MEmediumpurple3 gene
modules (r > 0.3, p <0.05) were selected for subsequent
analysis (Figure 2A). Figure 2B displayed the
correlation between module membership and gene
significance.

GO and KEGG analyzes were further performed to
explore the function of each gene module. Results
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indicated that these genes in MEblue were enriched in
external encapsulating structure organization and
extracellular matrix organization in BP (Biological
Process) terms, collagen-containing extracellular matrix
and cell-cell junction in CC (Cellular Component)
terms, extracellular matrix structural constituent and
glycosaminoglycan binding in MF (Molecular Function)
terms, and PI3K-Akt signaling pathway in KEGG

terms (Figure 3A). The MEblue module’s enrichment
for PI3K-Akt signaling (Figure 3A) aligns with known
pathway activation in prostate cancer metastasis.
Genes in MEmediumpurple3 were enriched in
ribonucleoprotein complex biogenesis in BP terms,
mitochondrial inner membrane in CC terms, structural
constituent of ribosome in MF terms, and Pathways
of neurodegeneration-multiple diseases, Chemical

Mean connectivity

3000
|

Mean Connectivity
1000 2000
| ]

500
1

4
5678 91011121314151617181920
I I I I

5 10 15 20

0
1

Soft Threshold (power)

Cluster Dendrogram

A Scale independence
(5]
4 4622
3 o | ,5678 910111213141516¢718
o © 3
Z
E
3 @ 4
2 o 2
o
=
3 <
2 o
[=]
&
._
o N _]
@ o
'S
o
g 24
o
| T | T
5 10 15 20
Soft Threshold (power)
B o _
@ _]
o
© |
- o
£
=)
Q
T
<
o
N
o
<
o

Merged dynamic

Figure 1. WGCNA. (A) The best soft threshold selection of WGCNA. (B) The combination of similar gene modules.
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carcinogenesis-reactive oxygen species, and Oxidative
phosphorylation in KEGG terms (Figure 3B). Genes in
MEplum1 were enriched in pattern specification process
in BP terms, apical part of cell in CC terms, metal ion
transmembrane transporter activity in MF terms, and
Gastric acid secretion, Pancreatic secretion, and
Aldosterone synthesis and secretion in KEGG terms
(Figure 3C).

Differential correlations identification

The genes in the MEplum1, MEblue, and MEmedium-
purple3 modules were further selected to assess

A

differential correlations via R package “DiffCorr”.
Cluster.molecule algorithm was used to divide genes
based on tumor and normal groups. We used the one-
correlation coefficient as a distance measure (the cutoff
was 0.5) according to the cutree function. Network
analysis was performed using the DiffCorr package
with the following key functions:

get.eigen.molecule: Computes module eigengenes (first
principal components) representing each gene module’s
expression pattern across samples. This dimensionality
reduction approach captures >50% of variance in each
module (mean = 62 + 8%).
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Figure 2. Identification of gene modules. (A) Heatmap of the correlation between module and the clinical features of patients in
TCGA-PRAD. (B) The correlation between module membership and gene significance.
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get.eigen.molecule.graph: Visualizes module relationships
through force-directed layouts, where:

Nodes represent modules (size proportional to gene count).

Edges show significant inter-module correlations
(I > 0.5, FDR < 0.05).
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The get.eigen.molecule and get.eigen.molecule.graph
functions were used for visualization of the module
network (Figure 4A—4C). The comp.2.cc.fdr function
provided the resulting pair-wise differential correlations
in each gene module. A total of 297 gene pairs were
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Figure 3. Enrichment analysis of genes from selected modules. (A-C) GO (Left) and KEGG (Right) enrichment analysis of genes in

MEblue (A), MEmediumpurple3 (B), and MEplum1 (C).
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screened in MEblue module and 23 gene pairs were
screened in MEmediumpurple3. No gene pairs were
selected in MEplum1 (Supplementary Table 1).

In order to further narrow the gene range, we
conducted differential analysis to screen genes
differentially expressed between tumor and normal
tissues. A total of 518 differentially expressed genes
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were screened (Figure 5A, 5B). Through intersection,
we finally got 33 gene pairs, including 21 genes, as
hub genes associated with prostate cancer (Figure 6A,
6B). For example, ALDHIA2 was positively
correlated with CPA6 (r = 0.5, p < 0.0001) in tumor
tissues, while in normal tissues, ALDHIA2
expression was negative (r = —0.63, p < 0.0001)
correlated with CPA6 (Table 1).
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Figure 4. Representation of the module networks. Images of MEblue (A), MEmediumpurple3 (B), and MEplum1 (C) module networks
from the TCGA-PRAD were shown. Each node represented one module, and each edge represented the module correlation.
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Comprehensive analysis of hub genes in prostate
cancer

We next conducted comprehensive analysis of hub
genes in prostate cancer. Figure 7A displayed the
differential expression of these genes. Results indicated
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that all these genes were down-regulated in tumor
tissues. The prognostic value of hub genes in prostate
cancer was analyzed (Figure 7B). For example, patients
with high expression of ZNF185 have better DFI
(Disease Free Interval) and PFS (Progression Free
Survival) in prostate cancer.
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Table 1. The 33 gene pairs associated with prostate cancer.

molecule.X molecule.Y rl pl r2 P2 FDR molecule.X.type molecule.Y.type
ALDHI1A2 CPA6 0.50560432 9.68E-34  —0.625984519 6.95E-07 3.50E-12  down-regulated down-regulated
ALDH1A2 SLCI14Al 0.586365345  2.06E-47 —0.511834677 0.000105168 3.50E-12  down-regulated down-regulated
ANO1 CPA6 0.547409474  2.36E-40  —0.59298223 3.62E-06 3.50E-12  down-regulated down-regulated
ANO1 MEIS2 0.746567384  5.28E-90 —0.525289722 6.38E-05 3.50E-12  down-regulated down-regulated
ANO1 OGN 0.625530891 1.52E-55 —0.575241071 8.17E-06 3.50E-12  down-regulated down-regulated
ANO1 PTGIS 0.660572094  7.20E-64 —0.561343956 1.50E-05 3.50E-12  down-regulated down-regulated
ANO1 SLCI14Al 0.606544668  1.84E-51 —0.59223007 3.75E-06 3.50E-12  down-regulated down-regulated
ANO1 SMIM10 0.652452715  7.67E-62 —0.501931563 0.000149985 3.50E-12  down-regulated down-regulated
ANO1 SPON1 0.683074099  7.81E-70  —0.530235037 5.28E-05 3.50E-12  down-regulated down-regulated
CAl4 CPA6 0.531974994  8.36E-38  —0.595818979 3.16E-06 3.50E-12  down-regulated down-regulated
CAl4 KRT15 0.53691886 1.32E-38  —0.598971236 2.72E-06 3.50E-12  down-regulated down-regulated
CAl4 SLC14Al1 0.559469551  1.93E-42  —0.569626734 1.05E-05 3.50E-12  down-regulated down-regulated
CPA6 GNAO1 0.529049644  2.46E-37 —0.657029628 1.22E-07 3.50E-12  down-regulated down-regulated
CPA6 KCTD14 0.541932195 1.96E-39  —0.604657398 2.06E-06 3.50E-12  down-regulated down-regulated
CPA6 LPCAT2 0.563398826  3.88E-43  —0.585255042 5.19E-06 3.50E-12  down-regulated down-regulated
CPA6 QPRT 0.558227102  3.20E-42  —0.594808843 3.32E-06 3.50E-12  down-regulated down-regulated
CPA6 ST6GALNAC4 0.588413349  8.23E-48  —0.563392132 1.37E-05 3.50E-12  down-regulated down-regulated
CPA6 ZNF185 0.620624099  1.84E-54  —0.559644258 1.61E-05 3.50E-12  down-regulated down-regulated
GNAO1 SLCI14Al 0.590343745  3.45E-48  —0.592675755 3.67E-06 3.50E-12  down-regulated down-regulated
GSTP1 OGN 0.557692221  3.98E-42 —0.521134666 7.46E-05 1.12E-11 down-regulated down-regulated
GSTP1 PTGIS 0.560032479  1.54E-42  —0.533082911 4.73E-05 3.50E-12  down-regulated down-regulated
GSTP1 TGFB3 0.501432929  3.95E-33  —0.521626064 7.32E-05 2.54E-10  down-regulated down-regulated
KCTD14 KRT15 0.587082984  1.49E-47 —0.586132826 4.98E-06 3.50E-12  down-regulated down-regulated
KCTD14 MEIS2 0.61606687 1.79E-53  —0.538377546 3.84E-05 3.50E-12  down-regulated down-regulated
KRT15 ST6GALNAC4 0.536590151 1.49E-38  —0.622358865 8.40E-07 3.50E-12  down-regulated down-regulated
LPCAT2 PTGIS 0.523149309  2.10E-36  —0.514038498 9.70E-05 1.12E-10  down-regulated down-regulated
LPCAT2 SLC14Al1 0.602645344  1.17E-50  —0.577844265 7.27E-06 3.50E-12  down-regulated down-regulated
MEIS2 PAQRS 0.647753747  1.07E-60 —0.526524919 6.09E-05 3.50E-12  down-regulated down-regulated
MEIS2 PDK4 0.506870988  6.29E-34  —0.517765939 8.46E-05 2.20E-10  down-regulated down-regulated
PAQRS SLC14Al1 0.548209239  1.73E-40  —0.62366366 7.85E-07 3.50E-12  down-regulated down-regulated
QPRT SLCI14Al 0.58784082 1.06E-47 —0.536428175 4.15E-05 3.50E-12  down-regulated down-regulated
SLC14A1 ST6GALNAC4 0.564645996  2.32E-43  —0.584672632 5.33E-06 3.50E-12  down-regulated down-regulated
SLC14A1 ZNF185 0.669184505  4.33E-66 —0.575177683 8.19E-06 3.50E-12  down-regulated down-regulated
We further explored the CNV, mutation, and (Figure 9A). For example, the methylation level of

methylation level of hub genes in prostate cancer. All
these genes have relatively lower mutation frequency in
prostate cancer (Supplementary Figure 1A, 1B). CPA6
has highest amplification frequency (Figure 8A). The
relationship between CNV and mRNA expression
indicated that ZNF15, SMIM10, ALDHI1A2, and
MEIS2 expression were positively correlated with
their CNV level (Figure 8B). Figure 8C, 8D provided
the profile of homozygous and heterozygous CNV of
hub genes in prostate cancer. The results of
methylation analysis indicated that the methylation
level of these genes were generally up-regulated in
tumor prostate tissues compared to normal tissues

CPA6 was higher in tumor tissues. In addition,
methylation level of CPA6 was negatively linked to its
mRNA expression (Figure 9B).

Immune infiltration analysis

Since immune cells in the tumor microenvironment are
important factors affecting the prognosis of tumor
patients, we analyzed the correlation between 21 hub
genes and immune cell infiltration (Figure 10). Results
suggested that these genes were positively associated
with most immune cells, such as CD4 T cells, NK cells,
NKT cells, and Th2 cells. These results provided
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Figure 7. Differential expression and prognostic value of hub genes. (A) The differential expression of hub genes in TCGA-PRAD.
(B) The prognostic value of hub genes in TCGA-PRAD, including DFI and PFS.
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evidence that high expression of these genes predicted
better prognosis of prostate cancer patients.

Drug resistance analysis
We also explored the influence of these genes on

resistance of anti-tumor drugs. Figure summarizes
the correlation between gene expression and the

sensitivity of GDSC drugs using GSCA database.
Figure 11A-11B respectively summarized the
correlation of gene expression with the sensitivity of
GDSC and CTRP drugs. For example, patients with
high expression of ZNF185 were resistant to AR-42
(a HDAC inhibitor) treatment, while sensitive to
17-AAG (a HSP90 inhibitor) treatment based on
GDSC data.

A Correlation between GDSC drug sensitivity and mRNA expression
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Figure 11. Drug resistance analysis. (A) Figure summarizes the correla

tion between gene expression and the sensitivity of GDSC drugs.

(B) Figure summarizes the correlation between gene expression and the sensitivity of CTRP drugs. Pearson correlation analysis was
performed to get the correlation between gene mRNA expression and drug IC50. P-value was adjusted by FDR.
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ALDH1A2-Drug resistance correlation

The ALDH1A2-CPAG6 pair showed the most significant
correlation reversal (tumor: r = +0.51 vs. normal: r =
—0.63, FDR = 3.5 x 107'2). Functional analysis revealed:

e Strong association with docetaxel resistance (r =
0.43, p =0.002) in TCGA cohort

e Enrichment in oxidative stress response pathways
(GO:0006979, FDR = 1.2 x 10°%)

o (Co-expression with ABC transporters (ABCBI1 r =
0.38, p =0.007).

DISCUSSION

In recent years, new therapies as well as the application
of next-generation sequencing to prostate cancer have
changed the landscape of prostate cancer treatment
[16—18]. Prostate cancer is one of the most common
cancers in men, and although most patients do not have
a long disease course and pose less threat to death,
many still develop into intermediate-or high-risk locally
advanced or metastatic cancer [19-21]. At present, the
pathogenesis of prostate cancer remains unclear, and
better tumor markers are lacking. Therefore, we
urgently need to explore new pathogenesis as well as
prognostic markers for prostate cancer.

With the development of bioinformatics, multiple
methods were used to identify tumor biomarkers
[22, 23]. Previous works have focused on exploring
gene interaction networks constructed from a series of
genes with related. Investigators always tend to ignore
the impact of different states on the correlation and the
reasons behind it, such as contrasting the differences in
gene correlations in normal and tumor tissues. This
study focuses on comparing the differential gene
correlations between tumor and normal tissues in
prostate cancer, and constructs a gene correlation
network. The candidate genes and their target genes in
the gene correlation network can be further used for the
experimental study of biological functions, thereby
guiding the diagnosis, treatment, and predicting
prognosis of patients.

In our study, we first conducted WGCNA in TCGA-
PRAD to screen key gene modules associated
with prostate cancer. MEpluml, MEblue, and
MEmediumpurple3 gene modules (p < 0.05, r > 0.3)
were selected for subsequent analysis. GO and KEGG
analyzes were further performed to explore the function
of each gene module. Results indicated that these genes
in MEblue were enriched in external encapsulating
structure  organization and  extracellular  matrix
organization in BP terms. Functional enrichment analysis
revealed that MEblue module genes were significantly

associated with: External encapsulating structure
organization (GO:0045229, FDR = 3.2 x 107°): Refers to
the assembly of basement membrane components
(laminins, collagens IV) surrounding prostate glands, a
process disrupted during tumor invasion [24]. Extra-
cellular matrix (ECM) reorganization (GO:0030198,
FDR=1.8 x107®): Involves MMP-mediated ECM
remodeling characteristics of metastatic progression [25].
Collagen-containing extracellular matrix and cell-cell
junction in CC terms, extracellular matrix structural
constituent and glycosaminoglycan binding in MF terms,
and PI3K-Akt signaling pathway in KEGG terms. These
results indicated that these genes were closely associated
various malignant pathways. The genes in the MEpluml,
MEblue, and MEmediumpurple3 modules were further
selected to assess differential correlations via R package
“DiffCorr”. A total of 313 gene pairs of gene were
screened. Through intersecting with DEGs, we finally got
33 gene pairs, including 21 genes, as hub genes
associated with prostate cancer. For example, ALDH1A2
was positively correlated with CPA6 (r = 0.5, p < 0.0001)
in tumor tissues, while in normal tissues, ALDHI1A2
expression was negative (r = —0.63, p < 0.0001)
correlated with CPA6. We also conducted comprehensive
analysis of hub genes in prostate cancer, such as CNV,
mutation, and methylation.

Since immune cells in the tumor microenvironment are
important factors affecting the prognosis of tumor
patients [26], we analyzed the correlation between 21
hub genes and immune cell infiltration. Results
suggested that these genes were positively associated
with most immune cells, such as CD4 T cells, NK cells,
NKT cells, and Th2 cells. These results provided
evidence that high expression of these genes predicted
better prognosis of prostate cancer patients.

We also explored the influence of these genes on
resistance of anti-tumor drugs. For example, patients
with high expression of ZNF185 were resistant to AR-
42 (a HDAC inhibitor) treatment, while sensitive to 17-
AAG (a HSP90 inhibitor) treatment based on GDSC
data. These results may provide a reference for patients
to choose medication. Three key limitations warrant
consideration: (1) TCGA’s ethnic homogeneity may
limit generalizability, (2) bulk sequencing could mask
cell-type specific interactions, and (3) functional
validation is needed for the 5 novel biomarkers (e.g.,
SMIM10). Priority next steps include single-cell
validation of the ALDHIA2-CPA6 axis and testing
these biomarkers in liquid biopsy cohorts.

CONCLUSIONS

In conclusion, our study identified 21 hub genes and their
potential function involved in prostate cancer. Our work
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provides a new direction for future research to investigate
the underlying mechanism of prostate cancer.
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Supplementary Figure 1. Gene mutation analysis. (A) Figure summarizes the frequency of deleterious mutations in TCGA-PRAD.
(B) Figure displayed the mutation information of indicated genes in TCGA-PRAD.
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Supplementary Table
Please browse Full Text version to see the data of Supplementary Table 1.

Supplementary Table 1. The gene pairs in MEblue module and MEmediumpurple3.
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