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INTRODUCTION 
 

Prostate cancer is one of the most common types of 

cancer in elderly men [1]. In recent years, the 

promotion of prostate cancer-based screening has 

increased the incidence of prostate cancer, while early 

detection has also reduced prostate cancer specific 

mortality [2]. In recent years, treatments based on 

androgen deprivation therapy (ADT) and radiotherapy 

have greatly improved the prognosis of patients [2, 3]. 

However, there is still a subset of patients with a poor 

prognosis. New approaches have been explored to 

improve patient outcomes, including androgen receptor 

signaling inhibitors (ARSI) [4] and immunotherapy 

[5, 6]. However, the prognosis of some patients with 

prostate cancer remains suboptimal. Therefore, it is 

also necessary to reveal the pathogenesis of prostate 

cancer more deeply with new biomarkers. 
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ABSTRACT 
 

Background: Prostate cancer, a major global health issue for men, remains a critical clinical challenge in 
treatment, highlighting the need for improved biomarkers. Treatment options for prostate cancer include 
active surveillance, surgery, endocrine therapy, chemotherapy, radiotherapy, immunotherapy, etc. However, as 
the tumor progresses, the effectiveness of treatment regimens gradually decreases. Therefore, we need to 
understand the biological mechanisms that promote prostate cancer tumorigenesis and progression and to 
screen biomarkers for diagnosis and prediction of prognosis. 
Methods: We utilized the expression profiles of prostate cancer from The Cancer Genome Atlas (TCGA) 
database and employed weighted gene co-expression network analysis (WGCNA) to construct a gene 
interaction network. Gene co-expression networks were constructed using WGCNA (soft-threshold power 
β = 10, scale-free R² > 0.9), with differential correlations computed via Fisher’s z-test (FDR < 0.05). We used the 
“DiffCorr” package to discriminate between tumor and adjacent normal tissues to identify genes with 
differential representation in tumor and normal tissues, and perform in-depth analysis of these genes. 
Results: Through WGCNA analysis, we identified a total of 20 modules, three gene modules were significantly 
associated with prostate cancer. We then analyzed the genes in these modules separately by the “DiffCorr” 
package and intersected these with differentially expressed genes. Finally, 21 genes were screened as 
biomarkers for prostate cancer. 
Conclusions: Our study unveils a prostate cancer tumorigenesis mechanism by identifying differentially 
correlated gene pairs during normal-to-tumor transformation. We believe that the biomarkers derived from 
this algorithm have important reference implications for future research in prostate cancer. 
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Currently, bioinformatics methods based on gene 

expression profiling have been developed to provide 

effective tools for comprehensive analysis of gene 

networks in cancer pathogenesis [7]. In recent  

years, much works studied and reported novel 

biomarkers with significant status in gene networks 

of different cancers, including hepatocellular 

carcinoma [8], breast cancer [9], non-small cell lung 

cancer [10], bladder cancer [11]. Recent work in 

bladder cancer [11] demonstrates the value of 

differential correlation approaches for uncovering 

network rewiring. In general, biomarkers are 

determined based on the analysis of differentially 

expressed genes between disease and healthy tissues. 

However, there is concern that the occurrence of a 

disorder is the combined effect of multiple highly 

interacting genes. 

 

Correlation analysis is an important method for omics 

data to provide clues to gene regulatory networks [12]. 

Complementing traditional approaches to the analysis of 

gene expression data, it is critical to investigate how 

gene correlations (termed “differential correlations”) 

vary in cancer pathogenesis [13].  

 

A recent paper reported a set of five dysregulated hub 

genes (MAF, STAT6, SOX2, FOXO1, and WNT3A) 

that play crucial roles in biological pathways 

associated with prostate cancer progression [14]. We 

constructed a gene correlation network for prostate 

cancer pathogenesis based on differential correlation 

theory for the first time and found some novel key 

genes. First, 20 modules of co-expressed genes were 

detected by weighted gene co-expression network 

analysis (WGCNA), in which 3 modules were 

significantly correlated with prostate cancer; Then, 

differentially correlated gene pairs in each module 

with the largest correlation to prostate cancer were 

calculated, gene networks were constructed and key 

genes were subjected to functional analysis. Finally, 

21 biomarkers derived from web-based algorithm were 

screened, in which 5 genes have never been studied in 

prostate cancer research, including CPA6, KRT15, 

SMIM10, SPON1, and ST6GALNAC4. 

 

MATERIALS AND METHODS 
 

Data collection 

 

The TCGA data of prostate cancer was downloaded 

from UCSC Xena database (https://xenabrowser.net/ 

datapages/), including 499 tumor samples and 52 

normal samples. The gene expression levels were 

quantified as FPKM (Fragments Per Kilobase of 

transcript per Million mapped reads) for subsequent 

analyses. 

WGCNA 

 

The co-expression relationship of protein-coding genes 

was investigated by R package “WGCNA” to screen 

gene modules associated with prostate cancer. Gene 

modules most significantly associated (p < 0.05, r > 0.3) 

to prostate cancer were selected for subsequent analysis. 

R package “clusterProfiler” was used to conducted 

enrichment analysis of genes in each module. 

 

Differential correlation analysis 

 

R package “DiffCorr” was utilized to identify and 

visualize differential correlations. This package was 

based on Fisher’s z-test and details were explained in 

published work [15]. 

 

Statistical analysis 

 

All data are presented as the mean ± SD (Standard 

Deviation). Statistical analysis was performed using  

R software (https://www.r-project.org/, version:4.1.1). 

P < 0.05 (two-tailed) was considered statistically 

significant: *p < 0.05, **p < 0.01, ***p < 0.001, and 
****p < 0.0001. 

 

Data availability 

 

The datasets generated and analysed during the current 

study are available from the corresponding author on 

reasonable request. 

 

RESULTS 
 

Identification of gene modules associated with 

prostate cancer 

 

We first conducted WGCNA in TCGA-PRAD to screen 

key gene modules associated with prostate cancer. We 

performed weighted gene co-expression network 

analysis (WGCNA) using the following parameters: A 

soft-thresholding power (β) of 10 was selected based on 

scale-free topology fit (R² = 0.92) and mean 

connectivity preservation. This threshold optimally 

balances network connectivity with scale-free topology 

requirements. Minimum module size was set to 30 

genes, Module merging threshold was 0.25 (Figure 1A). 

Figure 1B showed the merging of similar modules. 

MEplum1, MEblue, and MEmediumpurple3 gene 

modules (r > 0.3, p < 0.05) were selected for subsequent 

analysis (Figure 2A). Figure 2B displayed the 

correlation between module membership and gene 

significance. 

 

GO and KEGG analyzes were further performed to 

explore the function of each gene module. Results 

https://xenabrowser.net/%0bdatapages/
https://xenabrowser.net/%0bdatapages/
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www.aging-us.com 3 AGING 

indicated that these genes in MEblue were enriched in 

external encapsulating structure organization and 

extracellular matrix organization in BP (Biological 

Process) terms, collagen-containing extracellular matrix 

and cell-cell junction in CC (Cellular Component) 

terms, extracellular matrix structural constituent and 

glycosaminoglycan binding in MF (Molecular Function) 

terms, and PI3K-Akt signaling pathway in KEGG 

terms (Figure 3A). The MEblue module’s enrichment 

for PI3K-Akt signaling (Figure 3A) aligns with known 

pathway activation in prostate cancer metastasis.  

Genes in MEmediumpurple3 were enriched in 

ribonucleoprotein complex biogenesis in BP terms, 

mitochondrial inner membrane in CC terms, structural 

constituent of ribosome in MF terms, and Pathways  

of neurodegeneration-multiple diseases, Chemical

 

 
 

Figure 1. WGCNA. (A) The best soft threshold selection of WGCNA. (B) The combination of similar gene modules. 
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carcinogenesis-reactive oxygen species, and Oxidative 

phosphorylation in KEGG terms (Figure 3B). Genes in 

MEplum1 were enriched in pattern specification process 

in BP terms, apical part of cell in CC terms, metal ion 

transmembrane transporter activity in MF terms, and 

Gastric acid secretion, Pancreatic secretion, and 

Aldosterone synthesis and secretion in KEGG terms 

(Figure 3C). 

 
Differential correlations identification 

 
The genes in the MEplum1, MEblue, and MEmedium-

purple3 modules were further selected to assess 

differential correlations via R package “DiffCorr”. 

Cluster.molecule algorithm was used to divide genes 

based on tumor and normal groups. We used the one-

correlation coefficient as a distance measure (the cutoff 

was 0.5) according to the cutree function. Network 

analysis was performed using the DiffCorr package 

with the following key functions: 

 

get.eigen.molecule: Computes module eigengenes (first 

principal components) representing each gene module’s 

expression pattern across samples. This dimensionality 

reduction approach captures >50% of variance in each 

module (mean = 62 ± 8%). 

 

 
 

Figure 2. Identification of gene modules. (A) Heatmap of the correlation between module and the clinical features of patients in 

TCGA-PRAD. (B) The correlation between module membership and gene significance. 
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get.eigen.molecule.graph: Visualizes module relationships 

through force-directed layouts, where: 

 

Nodes represent modules (size proportional to gene count). 

 

Edges show significant inter-module correlations 

(|r| > 0.5, FDR < 0.05). 

Colors indicate association strength with clinical traits. 

 

The get.eigen.molecule and get.eigen.molecule.graph 

functions were used for visualization of the module 

network (Figure 4A–4C). The comp.2.cc.fdr function 

provided the resulting pair-wise differential correlations 

in each gene module. A total of 297 gene pairs were 

 

 
 

Figure 3. Enrichment analysis of genes from selected modules. (A–C) GO (Left) and KEGG (Right) enrichment analysis of genes in 

MEblue (A), MEmediumpurple3 (B), and MEplum1 (C). 
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screened in MEblue module and 23 gene pairs were 

screened in MEmediumpurple3. No gene pairs were 

selected in MEplum1 (Supplementary Table 1). 

 

In order to further narrow the gene range, we 

conducted differential analysis to screen genes 

differentially expressed between tumor and normal 

tissues. A total of 518 differentially expressed genes 

were screened (Figure 5A, 5B). Through intersection, 

we finally got 33 gene pairs, including 21 genes, as 

hub genes associated with prostate cancer (Figure 6A, 

6B). For example, ALDH1A2 was positively 

correlated with CPA6 (r = 0.5, p < 0.0001) in tumor 

tissues, while in normal tissues, ALDH1A2 

expression was negative (r = −0.63, p < 0.0001) 

correlated with CPA6 (Table 1). 

 

 
 

Figure 4. Representation of the module networks. Images of MEblue (A), MEmediumpurple3 (B), and MEplum1 (C) module networks 
from the TCGA-PRAD were shown. Each node represented one module, and each edge represented the module correlation. 
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Comprehensive analysis of hub genes in prostate 

cancer 

 
We next conducted comprehensive analysis of hub 

genes in prostate cancer. Figure 7A displayed the 

differential expression of these genes. Results indicated 

that all these genes were down-regulated in tumor 

tissues. The prognostic value of hub genes in prostate 

cancer was analyzed (Figure 7B). For example, patients 

with high expression of ZNF185 have better DFI 

(Disease Free Interval) and PFS (Progression Free 

Survival) in prostate cancer. 

 

 
 

Figure 5. Difference analysis. (A) Volcano map displayed the differential expressed genes between tumor and normal tissues based on 
TCGA-PRAD data. (B) Heatmap displayed the expression of top 10 highly and lowly expressed genes. 

 

 
 

Figure 6. The correlation network of hub genes. (A, B) The correlation network of hub genes in tumor (A) and normal (B) tissues. Red 

lines represent positive correlation and blue lines represent negative correlation. 
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Table 1. The 33 gene pairs associated with prostate cancer. 

molecule.X molecule.Y r1 p1 r2 p2 FDR molecule.X.type molecule.Y.type 

ALDH1A2 CPA6 0.50560432 9.68E-34 −0.625984519 6.95E-07 3.50E-12 down-regulated down-regulated 

ALDH1A2 SLC14A1 0.586365345 2.06E-47 −0.511834677 0.000105168 3.50E-12 down-regulated down-regulated 

ANO1 CPA6 0.547409474 2.36E-40 −0.59298223 3.62E-06 3.50E-12 down-regulated down-regulated 

ANO1 MEIS2 0.746567384 5.28E-90 −0.525289722 6.38E-05 3.50E-12 down-regulated down-regulated 

ANO1 OGN 0.625530891 1.52E-55 −0.575241071 8.17E-06 3.50E-12 down-regulated down-regulated 

ANO1 PTGIS 0.660572094 7.20E-64 −0.561343956 1.50E-05 3.50E-12 down-regulated down-regulated 

ANO1 SLC14A1 0.606544668 1.84E-51 −0.59223007 3.75E-06 3.50E-12 down-regulated down-regulated 

ANO1 SMIM10 0.652452715 7.67E-62 −0.501931563 0.000149985 3.50E-12 down-regulated down-regulated 

ANO1 SPON1 0.683074099 7.81E-70 −0.530235037 5.28E-05 3.50E-12 down-regulated down-regulated 

CA14 CPA6 0.531974994 8.36E-38 −0.595818979 3.16E-06 3.50E-12 down-regulated down-regulated 

CA14 KRT15 0.53691886 1.32E-38 −0.598971236 2.72E-06 3.50E-12 down-regulated down-regulated 

CA14 SLC14A1 0.559469551 1.93E-42 −0.569626734 1.05E-05 3.50E-12 down-regulated down-regulated 

CPA6 GNAO1 0.529049644 2.46E-37 −0.657029628 1.22E-07 3.50E-12 down-regulated down-regulated 

CPA6 KCTD14 0.541932195 1.96E-39 −0.604657398 2.06E-06 3.50E-12 down-regulated down-regulated 

CPA6 LPCAT2 0.563398826 3.88E-43 −0.585255042 5.19E-06 3.50E-12 down-regulated down-regulated 

CPA6 QPRT 0.558227102 3.20E-42 −0.594808843 3.32E-06 3.50E-12 down-regulated down-regulated 

CPA6 ST6GALNAC4 0.588413349 8.23E-48 −0.563392132 1.37E-05 3.50E-12 down-regulated down-regulated 

CPA6 ZNF185 0.620624099 1.84E-54 −0.559644258 1.61E-05 3.50E-12 down-regulated down-regulated 

GNAO1 SLC14A1 0.590343745 3.45E-48 −0.592675755 3.67E-06 3.50E-12 down-regulated down-regulated 

GSTP1 OGN 0.557692221 3.98E-42 −0.521134666 7.46E-05 1.12E-11 down-regulated down-regulated 

GSTP1 PTGIS 0.560032479 1.54E-42 −0.533082911 4.73E-05 3.50E-12 down-regulated down-regulated 

GSTP1 TGFB3 0.501432929 3.95E-33 −0.521626064 7.32E-05 2.54E-10 down-regulated down-regulated 

KCTD14 KRT15 0.587082984 1.49E-47 −0.586132826 4.98E-06 3.50E-12 down-regulated down-regulated 

KCTD14 MEIS2 0.61606687 1.79E-53 −0.538377546 3.84E-05 3.50E-12 down-regulated down-regulated 

KRT15 ST6GALNAC4 0.536590151 1.49E-38 −0.622358865 8.40E-07 3.50E-12 down-regulated down-regulated 

LPCAT2 PTGIS 0.523149309 2.10E-36 −0.514038498 9.70E-05 1.12E-10 down-regulated down-regulated 

LPCAT2 SLC14A1 0.602645344 1.17E-50 −0.577844265 7.27E-06 3.50E-12 down-regulated down-regulated 

MEIS2 PAQR8 0.647753747 1.07E-60 −0.526524919 6.09E-05 3.50E-12 down-regulated down-regulated 

MEIS2 PDK4 0.506870988 6.29E-34 −0.517765939 8.46E-05 2.20E-10 down-regulated down-regulated 

PAQR8 SLC14A1 0.548209239 1.73E-40 −0.62366366 7.85E-07 3.50E-12 down-regulated down-regulated 

QPRT SLC14A1 0.58784082 1.06E-47 −0.536428175 4.15E-05 3.50E-12 down-regulated down-regulated 

SLC14A1 ST6GALNAC4 0.564645996 2.32E-43 −0.584672632 5.33E-06 3.50E-12 down-regulated down-regulated 

SLC14A1 ZNF185 0.669184505 4.33E-66 −0.575177683 8.19E-06 3.50E-12 down-regulated down-regulated 

 

We further explored the CNV, mutation, and 

methylation level of hub genes in prostate cancer. All 

these genes have relatively lower mutation frequency in 

prostate cancer (Supplementary Figure 1A, 1B). CPA6 

has highest amplification frequency (Figure 8A). The 

relationship between CNV and mRNA expression 

indicated that ZNF15, SMIM10, ALDH1A2, and 

MEIS2 expression were positively correlated with 

their CNV level (Figure 8B). Figure 8C, 8D provided 

the profile of homozygous and heterozygous CNV of 

hub genes in prostate cancer. The results of 

methylation analysis indicated that the methylation 

level of these genes were generally up-regulated in 

tumor prostate tissues compared to normal tissues 

(Figure 9A). For example, the methylation level of 

CPA6 was higher in tumor tissues. In addition, 

methylation level of CPA6 was negatively linked to its 

mRNA expression (Figure 9B). 
 

Immune infiltration analysis 
 

Since immune cells in the tumor microenvironment are 

important factors affecting the prognosis of tumor 

patients, we analyzed the correlation between 21 hub 

genes and immune cell infiltration (Figure 10). Results 
suggested that these genes were positively associated 

with most immune cells, such as CD4 T cells, NK cells, 

NKT cells, and Th2 cells. These results provided 
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Figure 7. Differential expression and prognostic value of hub genes. (A) The differential expression of hub genes in TCGA-PRAD. 

(B) The prognostic value of hub genes in TCGA-PRAD, including DFI and PFS. 

 

 
 

Figure 8. The CNV of hub genes. (A) Pie plot summarizes the CNV of hub genes in TCGA-PRAD. (B) The correlation between CNV and 

mRNA expression of hub genes in TCGA-PRAD. (C) Figure provides the profile of homozygous CNV of hub genes in TCGA-PRAD. (D) Figure 
provides the profile of heterozygous CNV of imputed genes in TCGA-PRAD. 
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Figure 9. Methylation analysis of hub genes. (A) Figure summarizes the methylation difference between tumor and normal samples of 

hub genes in TCGA-PRAD. (B) Figure summarizes the correlation of methylation level with their mRNA expression TCGA-PRAD. 

 

 
 

Figure 10. Immune infiltration analysis.  Figure displayed the correlation of hub genes with infiltration levels of indicated immune 
cells. 
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evidence that high expression of these genes predicted 

better prognosis of prostate cancer patients. 

 

Drug resistance analysis 

 

We also explored the influence of these genes on 

resistance of anti-tumor drugs. Figure summarizes  

the correlation between gene expression and the 

sensitivity of GDSC drugs using GSCA database. 

Figure 11A–11B respectively summarized the 

correlation of gene expression with the sensitivity of 

GDSC and CTRP drugs. For example, patients with 

high expression of ZNF185 were resistant to AR-42 

(a HDAC inhibitor) treatment, while sensitive to  

17-AAG (a HSP90 inhibitor) treatment based on 

GDSC data. 

 

 
 

Figure 11. Drug resistance analysis. (A) Figure summarizes the correlation between gene expression and the sensitivity of GDSC drugs. 

(B) Figure summarizes the correlation between gene expression and the sensitivity of CTRP drugs. Pearson correlation analysis was 
performed to get the correlation between gene mRNA expression and drug IC50. P-value was adjusted by FDR.  
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ALDH1A2-Drug resistance correlation 

 
The ALDH1A2-CPA6 pair showed the most significant 

correlation reversal (tumor: r = +0.51 vs. normal: r = 

−0.63, FDR = 3.5 × 10⁻¹²). Functional analysis revealed: 

 

• Strong association with docetaxel resistance (r = 

0.43, p = 0.002) in TCGA cohort 

• Enrichment in oxidative stress response pathways 

(GO:0006979, FDR = 1.2 × 10⁻⁸) 

• Co-expression with ABC transporters (ABCB1 r = 

0.38, p = 0.007). 

 

DISCUSSION 
 

In recent years, new therapies as well as the application 

of next-generation sequencing to prostate cancer have 

changed the landscape of prostate cancer treatment  

[16–18]. Prostate cancer is one of the most common 

cancers in men, and although most patients do not have 

a long disease course and pose less threat to death, 

many still develop into intermediate-or high-risk locally 

advanced or metastatic cancer [19–21]. At present, the 

pathogenesis of prostate cancer remains unclear, and 

better tumor markers are lacking. Therefore, we 

urgently need to explore new pathogenesis as well as 

prognostic markers for prostate cancer. 

 

With the development of bioinformatics, multiple 

methods were used to identify tumor biomarkers  

[22, 23]. Previous works have focused on exploring 

gene interaction networks constructed from a series of 

genes with related. Investigators always tend to ignore 

the impact of different states on the correlation and the 

reasons behind it, such as contrasting the differences in 

gene correlations in normal and tumor tissues. This 

study focuses on comparing the differential gene 

correlations between tumor and normal tissues in 

prostate cancer, and constructs a gene correlation 

network. The candidate genes and their target genes in 

the gene correlation network can be further used for the 

experimental study of biological functions, thereby 

guiding the diagnosis, treatment, and predicting 

prognosis of patients. 

 

In our study, we first conducted WGCNA in TCGA-

PRAD to screen key gene modules associated  

with prostate cancer. MEplum1, MEblue, and 

MEmediumpurple3 gene modules (p < 0.05, r > 0.3) 

were selected for subsequent analysis. GO and KEGG 

analyzes were further performed to explore the function 

of each gene module. Results indicated that these genes 
in MEblue were enriched in external encapsulating 

structure organization and extracellular matrix 

organization in BP terms. Functional enrichment analysis 

revealed that MEblue module genes were significantly 

associated with: External encapsulating structure 

organization (GO:0045229, FDR = 3.2 × 10⁻⁶): Refers to 

the assembly of basement membrane components 

(laminins, collagens IV) surrounding prostate glands, a 

process disrupted during tumor invasion [24]. Extra-

cellular matrix (ECM) reorganization (GO:0030198, 

FDR = 1.8 × 10⁻⁸): Involves MMP-mediated ECM 

remodeling characteristics of metastatic progression [25]. 

Collagen-containing extracellular matrix and cell-cell 

junction in CC terms, extracellular matrix structural 

constituent and glycosaminoglycan binding in MF terms, 

and PI3K-Akt signaling pathway in KEGG terms. These 

results indicated that these genes were closely associated 

various malignant pathways. The genes in the MEplum1, 

MEblue, and MEmediumpurple3 modules were further 

selected to assess differential correlations via R package 

“DiffCorr”. A total of 313 gene pairs of gene were 

screened. Through intersecting with DEGs, we finally got 

33 gene pairs, including 21 genes, as hub genes 

associated with prostate cancer. For example, ALDH1A2 

was positively correlated with CPA6 (r = 0.5, p < 0.0001) 

in tumor tissues, while in normal tissues, ALDH1A2 

expression was negative (r = −0.63, p < 0.0001) 

correlated with CPA6. We also conducted comprehensive 

analysis of hub genes in prostate cancer, such as CNV, 

mutation, and methylation. 

 

Since immune cells in the tumor microenvironment are 

important factors affecting the prognosis of tumor 

patients [26], we analyzed the correlation between 21 

hub genes and immune cell infiltration. Results 

suggested that these genes were positively associated 

with most immune cells, such as CD4 T cells, NK cells, 

NKT cells, and Th2 cells. These results provided 

evidence that high expression of these genes predicted 

better prognosis of prostate cancer patients. 

 

We also explored the influence of these genes on 

resistance of anti-tumor drugs. For example, patients 

with high expression of ZNF185 were resistant to AR-

42 (a HDAC inhibitor) treatment, while sensitive to 17-

AAG (a HSP90 inhibitor) treatment based on GDSC 

data. These results may provide a reference for patients 

to choose medication. Three key limitations warrant 

consideration: (1) TCGA’s ethnic homogeneity may 

limit generalizability, (2) bulk sequencing could mask 

cell-type specific interactions, and (3) functional 

validation is needed for the 5 novel biomarkers (e.g., 

SMIM10). Priority next steps include single-cell 

validation of the ALDH1A2-CPA6 axis and testing 

these biomarkers in liquid biopsy cohorts. 

 

CONCLUSIONS 
 

In conclusion, our study identified 21 hub genes and their 

potential function involved in prostate cancer. Our work 
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provides a new direction for future research to investigate 

the underlying mechanism of prostate cancer. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Gene mutation analysis. (A) Figure summarizes the frequency of deleterious mutations in TCGA-PRAD. 

(B) Figure displayed the mutation information of indicated genes in TCGA-PRAD. 
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Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. The gene pairs in MEblue module and MEmediumpurple3. 

 


