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ABSTRACT 
 

Epigenetic age is a biological metric of overall health and may predict mental health responses to 
unprecedented stressors. We sought to determine whether epigenetic age acceleration can predict older 
adults’ trajectory of depressive symptoms before and during the COVID-19 pandemic, and whether sex 
differences exist. 
Data from baseline (2012-2015), first follow-up (2015-2018), and COVID-19 Baseline survey (April-May 2020) 
and COVID-19 Exit survey (September-December 2020) of the Canadian Longitudinal Study on Aging were used. 
Epigenetic age was measured at the study baseline, and depressive symptoms were assessed at each of the 
four time points using the 10-item Center for Epidemiological Studies Depression Scale (CESD-10). Sex-stratified 
mixed linear models examined the effect of epigenetic age (measured by DNAmAge and Hannum Age) on 
changes in CESD-10. 
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INTRODUCTION 
 

The Coronavirus disease 2019 (COVID-19) pandemic 

has had a significant impact on the mental health of the 

global population [1]. Several studies have shown that 

increased exposure to stressors and experiences related 

to the pandemic (e.g., job loss, physical distancing and 

isolation, and caregiver burden) [2, 3] has led to 

increased prevalence of depressive symptoms and 

psychological distress in specific groups of the 

population [3–8]. While COVID-19-related social 

restrictions have eased back to pre-pandemic levels, it  

is nevertheless imperative to understand factors that  

can help identify those most at risk for the negative 

mental health impacts of pandemic restrictions.  

This knowledge will not only help develop effective 

interventions for protecting mental health during 

subsequent global pandemics but will also aid more 

general public mental health initiatives by helping 

identify subgroups of individuals who may be more 

affected by major stress exposures. 

 

Sex differences exist in depression, with females 

experiencing a two-fold higher likelihood of being 

diagnosed and presenting with more severe symptoms 

than males [9, 10]. This sex difference extends to the 

effects of the COVID-19 pandemic on depressive 

symptoms, with females across the globe showing 

greater increases in depressive symptoms in several 

large cohort studies [4, 11–14]. While the etiology of 

this sex difference is not well understood, psychosocial, 

environmental, hormonal, and anatomical factors likely 

play roles [15]. Epigenetics, or covalent modifications 

to DNA without alterations to the underlying sequence, 

has emerged as a potential biological mechanism related 

to vulnerability or resilience to depression [16, 17], 

which likely contributes to differences in prevalence 

and incidence of depression between females and males 

[18]. 

 

Subtle variations in DNA methylation across the 

epigenome have been linked to numerous diseases and 

disorders [19]. Whereas chronological age represents 
the time elapsed since birth and increases uniformly 

across individuals, epigenetic age is a biomarker of 

biological aging derived from DNA methylation levels 

at a set of predefined genetic loci, influenced by 

genetic, environmental, and lifestyle factors [19]. 

Although first-generation epigenetic clocks were 

designed to predict chronological age, divergence 

between the two measures—manifesting as epigenetic 

age acceleration or deceleration—is a common pheno-

menon. Accelerated epigenetic age, defined as positive 

deviations from chronological age, is generally 

associated with adverse health outcomes, including 

cardiovascular and neurodegenerative diseases, as well 

as increased mortality [20]. In contrast, epigenetic age 

deceleration is a more complex phenomenon. While 

often linked to slower biological aging and better 

health, it has also been observed in individuals exposed 

to early-life neglect and war, supporting its role as a 

multifaceted and context-dependent biomarker [21–23]. 

Importantly, epigenetic age can be considered a 

surrogate measure of health, and some metrics have 

been found to correlate with the overall burden of 

disease [24]. 

 

Additionally, one’s physical and mental health history is 

strongly reflected in epigenetic age and epigenetic age 

acceleration [25]. For example, exposure to chronic 

stress and major depressive disorder in early and middle 

age are both associated with accelerated epigenetic 

aging in later life [26–28], and cumulative lifetime 

stress is more strongly associated with accelerated 

epigenetic age than current stress in a cohort of African 

American individuals [29]. While specific DNA 

methylation signatures have been shown to identify 

cases of major depressive disorder accurately and also 

predict which individuals will later develop depression 

[30], currently, it is unknown whether epigenetic age 

acceleration, which is derived from DNA methylation 

signatures, is itself predictive of future changes in 

depressive symptoms or in the ability to respond to 

stress. 

 

Although it is well-appreciated that the COVID-19 

pandemic was associated with high levels of individual 

stress exposure, it remains unknown whether an 

individual’s epigenetic age is predictive of their mental 

health response to COVID-19-related stressors and 

experiences. Thus, we build upon a previous report that 

used data from the Canadian Longitudinal Study of 

The mean participant chronological age at study entry was 63±10 years (46% female). Unexpectedly, younger 
epigenetic age predicted increases in depressive symptoms from first follow-up to COVID-19 Baseline survey 
(p’s < 0.05) in females only. Higher epigenetic age was not related to changes in CES-10 score during that time 
period (p’s > 0.05). 
These findings suggest epigenetic age is a biological factor that can identify females at risk for greater negative 
effects of major life stressors on mental health. 
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Aging (CLSA) platform and found that middle- and 

older-aged adults were twice as likely to develop 

depressive symptoms during the COVID-19 pandemic 

compared with pre-pandemic rates [4]. Older adults 

were disproportionately affected by COVID-19 and 

impacted by the public health measures imposed during 

the early stages of the pandemic, stemming from a 

combination of factors, including increased physical 

health risks to SARS-CoV-2 infection, social isolation 

due to stricter adherence to distancing guidelines, and 

heightened emotional stress [31–33]. Thus, we aimed to 

determine whether epigenetic age at a given time point 

could predict subsequent mental health status or change 

in mental health status following major stressors. 

Specifically, we sought to determine whether epigenetic 

age acceleration could predict the trajectory of 

depressive symptoms among middle-aged and older 

adults during the early part of the COVID-19 pandemic. 

These observations, along with the hypothesis that 

epigenetic age may predict subsequent mental health 

response to a major stressor, led us to ask whether 

epigenetic age acceleration can predict an individual’s 

trajectory of depressive symptoms during the COVID-

19 pandemic. Given known sex differences in (i) 

epigenetic aging acceleration, with males having higher 

epigenetic age acceleration than women [34, 35], (ii) 

depression prevalence (higher in females) [36], and (iii) 

physiological response to stress in older age, with 

females showing greater cortisol release [37], we also 

conducted exploratory analyses to examine potential sex 

differences in the relationship between epigenetic age 

and the trajectory of depressive symptoms. 

 

RESULTS 
 

Participant characteristics 

 

Participant characteristics at baseline are presented in 

Table 1. The demographic proportions of the final 

sample included in the current analyses were within 2% 

of those in the complete Comprehensive Cohort, and all 

participants with epigenetic data who also completed the 

COVID-19 Survey entry/exit portions (Table 1). 

Exceptions included sex, which was within 5% between 

samples, and PASE total scores, which were ~35 points 

higher for the final sample in the current analyses and 

for all participants with epigenetics data who completed 

the COVID-19 Survey, compared to the total 

Comprehensive sample (Table 1). For the final sample in 

the current analyses, the mean chronological age was 63 

± 10 years, with a female representation of 46%. More 

than 80% of participants had a university degree or 

higher, and participants reported living with an average 

of 7 chronic conditions (range: 2-16). The mean baseline 

CESD-10 score was 4.4 ± 5.2, DNAmAge was 57.5 ± 

8.7 and Hannum Age was 63.0 ± 12.1. Chronological 

age was strongly correlated with both DNAmAge 

(r=0.86) and Hannum Age (r=0.85). DNAmAge and 

Hannum age were correlated (r=0.87). 

 

Association of epigenetic age with later changes in 

depressive symptoms during the COVID-19 pandemic 

 

The present analyses include CESD-10 data collected 

from participants at 1) CLSA baseline (2012-2015), 2) 

CLSA first follow-up (2015-2018), 3) COVID-19 

Baseline survey (April-May 2020), and 4) COVID-19 

Exit survey (Sept-Dec 2020). Epigenetic age was 

measured in samples collected at CLSA baseline (2012-

2015). 

 

Estimated CESD-10 scores for low and high epigenetic 

age at each time point are described in Figure 1; 

estimated changes in CESD-10 scores at each time point 

are described in Figure 2. CESD-10 scores did not 

change from CLSA baseline to CLSA first follow-up, 

from CLSA first follow-up to COVID-19 Baseline 

survey, or from COVID-19 Baseline survey to COVID-

19 Exit survey for individuals with high epigenetic age, 

as determined by DNAmAge or Hannum Age. 

 

In contrast, CESD-10 scores increased from CLSA first 

follow-up to COVID-19 Baseline survey for individuals 

with low DNAmAge (estimated mean difference: -1.78; 

95% CI:[-2.47, -1.10], p<0.001) and low Hannum Age 

(estimated mean difference: -1.84; 95% CI:[-2.54, -

1.14], p<0.001). Individuals with low DNAmAge 

(estimated mean difference: 1.10; 95% CI:[0.09, 2.11], 

p<0.050) and low Hannum Age (estimated mean 

difference: 1.22; 95% CI:[0.19, 2.25], p<0.030) had 

significantly greater increases from CLSA first follow-

up to COVID-19 Baseline survey than individuals with 

high DNAmAge and high Hannum Age, respectively. 

CESD-10 scores did not significantly change from 

CLSA baseline to CLSA first follow-up or from 

COVID-19 Baseline survey to COVID-19 Exit survey 

for individuals with low epigenetic age, as determined 

by DNAmAge and Hannum Age. 

 

Sex differences in the association of epigenetic age 

with changes in depressive symptoms: exploratory 

analyses 

 

Estimated CESD-10 scores for low and high epigenetic 

age at each time point based on biological sex are 

described in Figures 3 (Female), 4 (Males); estimated 

changes in CESD-10 scores at each time point are 

described in Figures 5 (Females), 6 (Males). There were 

no changes in CESD-10 scores at each time point for 

males with high epigenetic age as determined by 

DNAmAge or Hannum Age. For males with low 

Hannum Age, CESD-10 scores increased from first 
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Table 1. Participant characteristics at baseline (2012-2015). 

Participant characteristic 

All comprehensive 

cohort participants 

(N= 30,097) 

COVID-19 survey 

participants with baseline 

epigenetic data (N= 879) 

Final sample  

(N= 663) 

Mean Age (SD) 62.96 (10.25) 62.46 (9.66) 62.79 (9.84) 

Males (n,%) 14777, 49.1% 430, 48.9% 358, 54.0% 

Mean Body Mass Index (kg/m2) (SD) 28.06 (5.44) 28.64 (5.77) 28.49 (5.71) 

Education (n,%)    
Less than high school 1643, 5.5% 30, 3.4% 22, 3.3% 

High school diploma 2839, 9.4% 77, 8.8% 56, 8.4% 

Some university 2238, 7.4% 74, 8.4% 52, 7.8% 

University degree or higher 23327, 77.6% 698, 79.4% 533, 80.4% 

Income Level (n,%)  
 

 
<$20,000 per year 4373, 15.3% 113, 13.4% 72, 11.3% 

$20,000-$50,000 per year 10538, 36.9% 278, 33.0% 199, 31.3% 

$50,000-$100,000 per year 9696, 33.9% 304, 36.0% 239, 37.6% 

$100,000-$150,000 per year 2517, 8.8% 94, 11.1% 80, 12.6% 

>$150,000 per year 1465, 5.1% 55, 6.5% 46, 7.2% 

Mean Number of Chronic Conditions 7.36 (2.62) 7.31 (2.55) 
7.04 (2.47) 

Alcohol Intake  
 

 
Non-Drinker 3427, 11.7% 89, 10.3% 63, 9.7% 

Occasional Drinker 3705, 12.6% 119, 13.8% 85, 13.1% 

Regular Drinker (at least once per month) 22239, 75.7% 665, 75.9% 503, 77.3% 

Smoking Status    
Daily Smoker 2088, 7.0% 58, 6.6% 35, 5.3% 

Occasional Smoker 488, 1.6% 12,1.4% 11, 1.7% 

Former Smoker 17900, 59.8% 530, 60.6%  397, 60.2% 

Never Smoked 9445, 31.6% 275, 31.4% 217, 32.9% 

Mean PASE Total Score1 (SD) 129.26 (131.20) 165.26 (79.65) 166.51 (81.84) 

Mean CESD-10 Score (SD) 5.67 (7.64) 5.29 (5.63) 4.44 (5.24) 

DNAmAge - 57.18 (8.65) 57.49 (8.72) 

Hannum Age - 62.52 (11.98) 63.00 (12.07) 

1Physical Activity Scale for the Elderly. 

 

 

follow-up to COVID-19 Baseline survey (estimated 

mean difference: -0.87; 95% CI:[-1.71, -0.03]). There 

were no significant differences in changes in CESD-10 

scores between males with low and high epigenetic age 

categorizations. 

 

CESD-10 scores did not change at any time point for 

females with high epigenetic age as determined by 

DNAmAge and Hannum Age. CESD-10 scores increased 

 

from CLSA first follow-up to COVID-19 Baseline 

survey for females with low DNAmAge (estimated 

mean difference: -2.78 95% CI:[-3.89, -1.66]) and low 

Hannum Age (estimated mean difference: -2.67; 95% 

CI:[-3.82, -1.52]). Females with low DNAmAge had 

significantly greater increases in CESD-10 scores from 

CLSA first follow-up to COVID-19 Baseline survey 

than females with high DNAmAge (estimated mean 

difference: 1.75; 95% CI:[0.04, 3.45]). 
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DISCUSSION 
 

The present study examined whether epigenetic age 

predicts an individual’s trajectory of change in mental 

health, specifically depressive symptoms, during the 

COVID-19 pandemic in people without a self-reported 

diagnosis of depression or anxiety at baseline, while 

considering biological sex as a modifying variable. For 

individuals with a younger epigenetic age, as estimated 

by DNAmAge and Hannum Age, there was a greater 

increase in depressive symptoms from the pre-pandemic 

period (i.e., 2015-2018) to the early stages of the 

COVID-19 pandemic (April–May 2020) compared to 

those with an older epigenetic age. Notably, the 

exploratory sex-stratified analysis demonstrated that the 

association between younger epigenetic age and 

increased depressive symptoms during the early stages of 

the COVID-19 pandemic was driven mainly by females 

who showed this relationship with both epigenetic age 

metrics. While extremely interesting, it is worth noting 

that these sex-stratified analyses are exploratory and 

have not been corrected for multiple comparisons; 

therefore, they should be viewed with caution. 

 

Previous work in this CLSA cohort identified three 

distinct trajectories of change in depressive symptoms 

from pre-pandemic to the early-stages and later-stages 

of the pandemic, with some participants showing 

consistently low depressive symptoms, some showing 

moderate increases in depressive symptoms, and some 

showing large increases in depressive symptoms [4]. 

Importantly, compared with males, females were 2.17 

times more likely to be in the group showing large 

increases in depressive symptoms and 1.70 times more 

likely to be in the group showing moderate increases 

than they were to be in the group showing consistently

 

 
 

Figure 1. Estimated mean 10-item center for epidemiological studies depression scale (CESD-10) scores at each study 
timepoint for participants with low (-1 SD) and high (+1 SD) epigenetic age as determined by both epigenetic age markers. 
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low depressive symptoms. The present analyses extend 

these findings by showing that in females, younger 

epigenetic age, measured several years earlier, predicted 

increases in depressive symptoms in response to the 

early stages of the COVID-19 pandemic. This suggests 

that in females, one’s cumulative history of physical 

and mental health as reflected in epigenetic age is a 

predictor of subsequent mental health, though the 

direction of the association was unexpected. Raina and 

colleagues found that males had lower odds of 

depressive symptoms during the pandemic [4], and here 

we found that male epigenetic age did not predict these 

changes in depressive symptoms. 

 

In our analyses, older epigenetic age, as determined by 

DNAmAge and Hannum Age, did not predict changes 

in depressive symptoms during the COVID-19 

pandemic. These results are contrary to our hypothesis, 

as older epigenetic age has previously been associated 

with negative mental health outcomes. For instance, 

adverse experiences and events in childhood are linked 

to increased depressive symptoms in older age, with 

 

 
 

Figure 2. Estimated mean difference in 10-item center for epidemiological studies depression scale (CESD-10) score from 
CLSA baseline to CLSA first follow-up, from CLSA first follow-up to COVID-19 baseline survey, and from COVID-19 baseline 
survey to COVID-19 exist survey for low (-1 SD) vs. high (+1 SD) epigenetic age as determined by both epigenetic age 
markers. 
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Figure 3. Differences in estimated mean 10-item center for epidemiological studies depression scale (CESD-10) scores in 305 
females at each study timepoint for each epigenetic age marker based on low (-1 SD) and high (+1 SD) epigenetic age from 
exploratory, uncorrected analyses. 

 

 
 

Figure 4. Differences in estimated mean 10-item center for epidemiological studies depression scale (CESD-10) scores in 358 
males at each study timepoint for each epigenetic age marker based on low (-1 SD) and high (+1 SD) epigenetic age from 
exploratory, uncorrected analyses. 
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accelerated epigenetic aging mediating this association 

[38]. Although it is important to note that this link is  

not always seen, as in some contexts, early life neglect 

and war exposure are associated with epigenetic 

deceleration [21–23]. One potential explanation for our 

findings could be the unique stressors of the pandemic, 

which may have influenced individuals differently than 

early-life adversities. Additionally, factors like social 

support, adaptive coping mechanisms, or increased 

resiliency due to previous adverse life events may have 

buffered the relationship between epigenetic aging and 

depressive symptoms during this period. 

 

In contrast to the findings between high epigenetic age 

and depressive symptoms, Figures 1–6 highlight that 

younger epigenetic age predicts increases in depressive 

symptoms during the early stages of the pandemic. 

However, this association was only seen in females. 

Additionally, only in females was decelerated epi-

genetic aging associated with increased depressive 

symptoms in response to the COVID-19 pandemic. 

There are several possible reasons for this finding. First, 

factors that decelerate epigenetic aging may have 

amplified the negative effects of COVID-19 on mental 

health among females. For example, higher education 

and socioeconomic status are associated with younger 

epigenetic age as well as professional employment [39, 

40]. Prior research shows that working outside the home 

prior to the pandemic is a risk factor for decreased 

mental health during the pandemic, especially for 

females [8]. This is likely due to the increased stress of 

balancing professional responsibilities with shifting 

work environments, while additionally contributing to 

childcare demands and family health concerns. The 

disruption of routines and adapting to additional 

pressures due to remote work may have contributed to 

heightened anxiety, stress, and depressive symptoms. 

As such, it is possible that the epigenetically younger 

females in our cohort were consequently more impacted 

by the pandemic from a mental health perspective. 

 

We further propose that several social and lifestyle-

related environmental exposures, previously associated 

with younger epigenetic age and decelerated biological 

 

 
 

Figure 5. Differences in estimated mean difference in 10-item center for epidemiological studies depression scale (CESD-10) 
scores in females from CLSA baseline to CLSA first follow-up, from CLSA first follow-up to COVID-19 baseline survey, and 
from COVID-19 baseline survey to COVID-19 exist survey for low (-1 SD) vs. high (+1 SD) epigenetic age as determined by 
each epigenetic age marker from exploratory, uncorrected analyses. 
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aging [41], may have contributed to increased 

depressive symptomatology when significantly 

disrupted, as occurred during the COVID-19 pandemic. 

Social factors, such as frequent social contact, strong 

social support, and higher levels of socialization, are 

linked to a younger epigenetic age [42]. During the 

pandemic, individuals with more socially active 

lifestyles prior to lockdowns experienced greater 

increases in depressive symptoms due to enforced 

isolation [43]. Lifestyle behaviors associated with 

epigenetic aging show a similar pattern. Regular 

physical activity and exercise are consistently linked to 

slower epigenetic aging [44], while physical inactivity 

and sedentary behavior are associated with accelerated 

aging [45]. These behaviors also correlate with mental 

health: physical activity is protective against depression, 

particularly in females [46], whereas sedentary behavior 

is a known risk factor for depressive symptoms [47], 

with some evidence suggesting a stronger effect in 

females [48]. Previous work using the CLSA Covid-19 

survey data indicates that pandemic-related restrictions 

led to reduced physical activity and increased sedentary 

time among older adults [49], both of which were 

associated with poorer mental health outcomes [50]. 

Taken together, these findings support the hypothesis 

that the disruption of social and behavioral exposures 

known to promote epigenetic deceleration and healthy 

aging may have exacerbated depressive symptoms 

during the COVID-19 pandemic. 

 

The associations between epigenetic age acceleration and 

exposure to various adverse health and environmental 

factors, including obesity, low socioeconomic status, 

frailty, and diabetes, are well established in the literature 

[22]. However, it is important to note that while these 

correlations are frequently observed, they are not 

universally consistent across all studies or populations. 

Factors such as genetic variability, lifestyle, or resilience 

 

 
 

Figure 6. Differences in estimated mean difference in 10-item center for epidemiological studies depression scale (CESD-10) 
scores in males from CLSA baseline to CLSA first follow-up, from CLSA first follow-up to COVID-19 baseline survey, and from 
COVID-19 baseline survey to COVID-19 exist survey for low (-1 SD) vs. high (+1 SD) epigenetic age as determined by each 
epigenetic age marker from exploratory, uncorrected analyses. 
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mechanisms may underlie why some individuals do not 

exhibit accelerated epigenetic aging despite facing 

significant adversity. For example, in a recent meta-

analysis of studies examining factors associated with 

epigenetic aging, posttraumatic stress disorder was 

found to be associated with deceleration of epigenetic 

age, as measured by the Horvath clock, but not with 

other clocks (e.g., Hannum clock) [22]. Furthermore, 

epigenetic age deceleration assessed with the Horvath 

clock was also found in schizophrenia, while the 

PhenoAge and GrimAge clocks were positively 

associated with advanced epigenetic age [22]. Both 

posttraumatic stress disorder and schizophrenia are 

commonly treated through prescription medications, 

which could contribute to the divergent findings 

between epigenetic clocks [51]. Hence, in the present 

study, unexplored factors such as medication use, pre-

existing mental health illness (diagnosed or that may 

have gone undiagnosed), and other cohort-specific 

factors at the time of epigenetic age measurement may 

be playing critical roles in the relationship between low 

epigenetic age and future increases in depressive 

symptoms in response to the COVID-19 pandemic. 

 

Prior work has shown that lower income is strongly 

linked to higher rates of depression [52], which were 

exacerbated during the pandemic [53]. Financial strain 

can amplify daily stress, limit access to mental 

healthcare, and augment social and emotional challenges, 

which all contribute to greater depressive burden. Raina 

et al., found that during the initial COVID-19 lockdown 

and subsequent reopening, lower income was associated 

with greater increases in the odds of experiencing 

depressive symptoms [4]. Although income was included 

as a covariate in our analyses, we did not explore a 

potential interaction between income and epigenetic age. 

Future work with larger sample sizes should address this 

to help determine whether epigenetic age interacts with 

socioeconomic status to predict depressive response to 

major stressors. Furthermore, future investigations using 

epigenetic clocks and outcome measures that are likely to 

be influenced by anxiety, stress, and/or other mental 

health diagnoses would benefit from including interactive 

effects with income and biological sex where possible. 

 

While the results of the present analysis reveal a unique 

pattern between epigenetic age, depressive symptoms 

during the early part of the COVID-19 pandemic, and 

female sex, they should be interpreted with caution, as 

the study has several important limitations. Epigenetic 

age was only measured once at baseline, 5 to 8 years 

before the COVID-19 pandemic. The long time interval 

between epigenetic age measurement and the onset of the 
pandemic could reduce the predictive power of 

epigenetic clock measures, as other environmental and 

lifestyle exposures experienced during this period could 

theoretically have had a greater impact on depressive 

trajectories in some individuals than the COVID-19 

pandemic restrictions themselves. We also do not have 

access to information regarding depressive sympto-

mology or specific exposures prior to the measurement of 

the epigenetic clocks in these individuals. It would be of 

interest to see whether the ability of epigenetic age to 

predict changes in depressive symptoms would differ if 

the measurement had occurred at the onset of the 

pandemic. Future work should measure epigenetic age 

closer to major stressor exposure. As epigenetic age was 

only measured once, we were also unable to examine 

whether changes in epigenetic age over time were 

associated with changes in depressive symptoms. 

Additionally, the type of observational data we had 

access to does not allow us to address and exclude 

reverse causality, in which the outcome variable 

influences the exposure rather than the other way around. 

To further understand the interaction between changes in 

CESD-10 scores and epigenetic age, our analyses 

extracted simple slopes for individuals with low 

epigenetic age, defined as 1 SD below the mean, and 

those with high epigenetic age, defined as 1 SD above the 

mean. As the low and high epigenetic groups are the 

extremes of the range and have no direct clinical 

relevance, our results are limited in their generalizability. 

Another limitation of using epigenetic clocks is that each 

clock has a degree of measurement error, typically 

ranging from approximately three to five years [52, 54, 

55]. This measurement error likely arises from technical 

variability (e.g., differences in sample handling or array 

platform) and biological variation (e.g., inter-individual 

and inter-tissue variation in DNA methylation patterns 

arising from multiple sources) [56]. Nevertheless, this 

measurement error likely would have introduced a non-

differential measurement bias, where the small 

differences did not introduce a systematic bias favoring 

one group (e.g., low vs. high epigenetic age) over another 

[57]. Thus, this likely would have had minimal influence 

on the predictive accuracy of the utilized clocks. Finally, 

epigenetic age was only measured in a subset of 

participants of the CLSA, and of these 1445 participants, 

879 consented to participate in the COVID-19 

Questionnaire Survey study. We further excluded 216 

participants who self-reported diagnoses of dementia, 

anxiety, depression or mood disorder, reducing our 

sample size to 663 from 879, which does reduce the 

statistical power of our analyses. To balance this reduced 

statistical power, excluding these participants with  

mood or neurodegenerative disorders may have also 

theoretically reduced bias in our findings, as some studies 

suggest that those with existing mental health conditions 

were at greater risk for depression and anxiety during the 
pandemic [58–60]. Thus, future replication in a larger 

sample with more complete longitudinal data is required, 

which will allow for more sophisticated statistical 



www.aging-us.com 2769 AGING 

modelling to examine both potential linear and nonlinear 

relationships. 

 

CONCLUSION 
 

In summary, this study provides novel insights into the 

relationship between epigenetic age based on first-

generation epigenetic clocks and depressive symptoms 

in response to the COVID-19 pandemic, particularly 

highlighting the potential sex-specific nature of these 

associations. The main findings were that younger 

epigenetic age (1 standard deviation below the mean), 

rather than older epigenetic aging, predicted increases in 

depressive symptoms during the early stages of the 

pandemic. Our exploratory analyses suggest this was 

only seen in females. These results underscore the 

importance of considering biological sex and its 

interaction with epigenetic markers in mental health 

research. Despite the study’s limitations, which include 

a single time-point measurement of epigenetic age 5-8 

years before the COVID-19 pandemic and a relatively 

small sample size, both of which influence the 

interpretation of our findings, these results provide a 

foundation on which epigenetic markers can be used to 

identify individuals most vulnerable to the negative 

effects of major stressor exposures on mental health. 

We have proposed several hypotheses centred around 

the concepts of social epigenetics and the social 

exposome that could help explain our findings. 

However, these remain strictly hypothetical and require 

further study. Epigenetic clocks are promising 

biomarkers for inclusion in risk prediction for many 

different negative health outcomes and could also  

be utilized as a screening tool to determine the 

effectiveness of health-promoting interventions [61]. 

Specifically, within the context of mental health 

protection and promotion, epigenetic age based on first- 

and second-generation clocks, which allow for a more 

nuanced analysis, could be effectively deployed as a 

screen for at-risk groups, such as females with high 

occupational and caregiving burdens. Providing a better 

explanation for these associations will be crucial in 

informing public health strategies and developing 

targeted mental health interventions. 

 

MATERIALS AND METHODS 
 

Study design and participants 

 

The CLSA is a longitudinal, national study of 

community-dwelling middle- and older-aged adults 

between the ages of 45-85 at baseline (2012-2015). 

Detailed study design and methods of the CLSA study 
have been described previously [62]. Very briefly, 

participants were recruited from across the 10 provinces 

through the Statistics Canada’s Canadian Community 

Health Survey, provincial health insurance registries, 

and random digit dialing. Exclusion criteria for 

recruitment in the CLSA were: 1) resident of the three 

territories of Canada; 2) unable to participate in English 

or French; 3) unable to provide their own data at 

baseline; 5) living on federal First Nations reserves or 

other First Nations settlements in the provinces; 4) full-

time members of the Canadian Armed Forces; or 5) 

living in a long-term care institution [62, 63]. Of the 

51,338 participants, a subset of 30,097 participants  

was part of the Comprehensive cohort and completed 

more detailed physical assessments and provided 

biospecimens at baseline (2012-2015). From the 

Comprehensive cohort, 1478 participants were randomly 

selected for DNA methylation analysis of blood samples 

provided at study baseline. The selected participants 

matched the distribution of the Comprehensive cohort  

in terms of province, age, and sex. Of the 1478 

participants, the DNA methylation data from 1445 

participants passed established quality control 

measurements. Of the 30,097 participants of the 

Comprehensive cohort, 27,765 provided data at first 

follow-up (2015-2018). 

 

In response to the onset of the COVID-19 pandemic, the 

CLSA launched the COVID-19 Questionnaire Survey 

on April 15, 2020, to investigate the epidemiology of 

COVID-19 including its impact on the physical and 

mental health of older adults. Of the 51,338 participants 

recruited into the CLSA, 42,700 were viable at the time 

of the CLSA COVID-19 Questionnaire Survey and 

invited to participate. An additional 166 participants 

were found to be deceased, and 23 participants required 

a proxy to participate, thus they were excluded from 

participating. Therefore, 42,511 participants were 

eligible to participate in the CLSA COVID-19 

Questionnaire Survey, of whom 28,559 completed the 

COVID-19 Baseline survey (April 15 – May 30, 2020), 

and 24,114 completed the COVID-19 Exit survey 

(September 29 - December 29, 2020). These data 

collected included information on COVID-19 

symptoms and status, risk factors, healthcare use,  

health behaviours, and psychosocial and economic 

consequences of the pandemic. Of the CLSA participants 

who completed both the COVID-19 Baseline and Exit 

surveys, 18,533 were part of the Comprehensive cohort. 

We used data from the COVID-19 Baseline and Exit 

surveys. 

 

Therefore, the present study includes participants from 

the Comprehensive Cohort (n= 30,097) that provided 

the required data for our analyses at 1) CLSA baseline 

(2012-2015), 2) CLSA first follow-up (2015-2018), 3) 
COVID-19 Baseline survey (April-May 2020), and 4) 

COVID-19 Exit survey (Sept-Dec 2020), as well as had 

DNA methylation data from blood at CLSA baseline 
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(n= 879 out of the 1445 participants). In order to reduce 

reporting bias, participants who self-reported dementia 

or memory diagnosis or self-reported having been 

diagnosed with anxiety, depression, or mood disorder at 

study baseline (2012-2015) were excluded. Thus, the 

final sample size was 663 with the STROBE diagram 

presented in Figure 7. 

 

Measures 

 
DNA methylation and epigenetic age clocks 

Blood samples from CLSA baseline (2012-2015)  

were assayed using the Illumina Infinium 

HumanMethylationEPIC (EPIC) BeadChip microarray 

(Illumina, San Diego, CA, USA), which profiles DNA 

methylation at >850,000 CpG sites genome-wide. A 

complete description of the procedures used to 

generate and prepare the DNA methylation data can be 

found here: https://www.clsa-elcv.ca/doc/3491. Raw 

DNA methylation data in the form of .IDAT files were 

downloaded and used to verify sample sex and 

identity. After using control probes on the EPIC array 

to confirm that sample sex matched reported sex, and 

that all samples were genetically distinct, we utilized 

epigenetic clock data derived by the CLSA team using 

weight and beta values that were normalized using the 

Noob normalization approach [64]. Specifically, for 

the present study we utilized Horvath’s DNA 

Methylation Age clock and Hannum’s epigenetic age 

clock [54, 55]. Briefly, Horvath’s DNA Methylation 

Age clock (DNAmAge) is a pan-tissue epigenetic 

clock based on DNA methylation at 353 CpGs, and 

was one of the first clocks to accurately predict 

chronological age of samples within 3.6 years, and has 

since its development been found to associate with 

biological age and is accelerated in association with 

many diseases and phenotypes including trisomy 21 

[22, 65]. DNAmAGE is theoretically unconfounded 

with cell type proportions [55]. Hannum’s epigenetic 

clock (Hannum Age) is based on DNA methylation  

on 71 CpGs and was primarily developed for use  

with whole blood samples and has been associated 

with several complex diseases similar to Horvath’s 

clock [66]. For the present study, we used CLSA 

baseline (2012-2015) measurements of DNAmAge and 

Hannum Age. 

 

10-item center for epidemiological studies depression 

scale 

Depressive symptoms were indexed using the 10-item 

Center for Epidemiological Studies Depression Scale 

(CESD-10); a brief questionnaire with evidence of 

validity and reliability for measuring depressive 

symptoms [67, 68]. The CESD-10 is scored on a scale 

ranging from 0 to 30, with each of the 10 items rated 

on a 0-3 scale based on the frequency of depressive 

symptoms over the past week. Cut-offs typically 

include minimal depressive symptoms (0-9/30), mild 

 

 
 

Figure 7. Strengthening the reporting of observational studies in epidemiology (STROBE) diagram. 

https://www.clsa-elcv.ca/doc/3491


www.aging-us.com 2771 AGING 

depressive symptoms (10-15/30), and moderate-to-

severe depressive symptoms (16-30/30) [69]. 

Participants completed the CESD-10 at the data 

collection site during the CLSA study baseline (2012-

2015) and first follow-up (2015-2018). Additionally, 

participants completed the CESD-10 either by web or 

telephone during the CLSA COVID-19 Baseline 

survey (April-May 2020) and during the CLSA 

COVID-19 Exist survey (Sept-Dec 2020). For the 

present study, we used the continuous CESD-10 scores 

out of 30 from all 4 time points: CLSA study baseline, 

CLSA first follow-up, COVID-19 baseline, and 

COVID-19 exit. 

 

Covariates 

At CLSA study baseline, participants’ age, biological 

sex, educational attainment (i.e., less than high school, 

high school diploma, some university, university degree 

or higher), income level, and current living status (i.e., 

house, apartment, assisted living, or other) were 

assessed. Additionally, at CLSA baseline participants 

were queried about whether they had ever been 

diagnosed with any of the following: heart disease, 

peripheral vascular disease, memory problems, 

dementia, multiple sclerosis, epilepsy, migraine 

headaches, intestinal or stomach ulcers, bowel 

disorders, bowel incontinence, urinary incontinence, 

macular degeneration, all-cause cancer, back problems 

which were not fibromyalgia or arthritis, kidney 

disease, arthritis in the hand, hip or knee, rheumatoid or 

other arthritis, any diabetes, high blood pressure, a 

thyroid condition, angina, stroke or transient ischemic 

attack, myocardial infarction, asthma, osteoporosis, 

parkinsonism or Parkinson’s disease, or chronic 

obstructive pulmonary disorder. The number of chronic 

conditions that a participant identified having been 

diagnosed with was then computed. In addition, body 

mass index (BMI: kg/m2) was measured using a 

calibrated scale and stadiometer. Participants were also 

queried at CLSA baseline for information on their 

smoking status (i.e., daily, occasional, former, or never-

smoker), alcohol intake (regular, occasional, or non-

drinker), and physical activity level as measured by the 

Physical Activity Scale for the Elderly (PASE) [70]. 

 

Statistical analysis 

 

All analyses were conducted in R version 4.0.3. Our 

primary analysis used the lmer package (version 1.1-25) 

and simple slopes analyses with the Effects package 

(version 4.2-2). Graphs and figures were plotted using 

the ggplot2 package (version 3.3.5). We conducted all 

sensitivity analyses of epigenetic data using the 
packages BiocManager (version 1.30.16), minfi (version 

1.36.0), IlluminaHumanMethylationEPICmanifest 

(version 0.3.0), IllumniaHumanMethylationEPICanno. 

ilm10b4.hg19 (version 0.6.0), and remotes (version 

2.4.1). Our complete statistical analysis and output can 

be found online (https://github.com/ryanfalck/CLSA-

COVID-19-Epigenetics). We calculated means, standard 

deviations (SD), and proportions for all variables of 

interest at baseline. 

 

We first examined changes in CESD-10 from CLSA 

baseline to COVID-19 Exit survey (i.e., four time points) 

based on epigenetic age using mixed linear models with 

restricted maximum likelihood estimation, wherein we 

included random intercepts and slopes. Time was also 

included as a categorical fixed effect. Separate models 

were conducted for each marker of epigenetic age (i.e., 

DNAmAge and Hannum Age). Each model controlled 

for biological sex, BMI, income level, educational 

attainment, living status, smoking status, alcohol intake, 

chronic conditions, and physical activity level. 

Significant time by epigenetic age interactions were then 

illustrated using simple slopes analyses in which the 

relationship of epigenetic age with CESD-10 score over 

time was estimated separately for low epigenetic age (i.e., 

1 SD below the mean) and high epigenetic age (i.e., 1 SD 

above the mean) based on DNAmAge and Hannum Age 

separately. All estimates were calculated using the full 

model and included all covariates. 

 

We then contrasted estimated changes in CESD-10 score 

from 1) CLSA baseline to CLSA first follow-up, 2) 

CLSA first follow-up to COVID-19 Baseline survey, and 

3) COVID-19 Baseline survey to COVID-19 Exit survey 

for low versus high epigenetic age. We present contrasts 

as 95% confidence intervals. To account for multiple 

comparisons, the Benjamini-Hochberg procedure was 

applied to control the false discovery rate (FDR). 

 

As an exploratory analysis, we examined whether 

biological sex moderated the relationship between 

epigenetic age and CESD-10 score over time. We 

conducted similar models while also including 

biological sex as an interaction term. We decomposed 

time by epigenetic age by sex effects using simple 

slopes analyses for low (-1 SD) and high (+1 SD) 

epigenetic age for males and females at each time point 

and contrasted estimated changes in CESD-10 score at 

each time point. As these were exploratory analyses, we 

did not control for multiple comparisons [71, 72]. 

 

Sensitivity analyses 

 

Sensitivity analyses were performed as quality control 

assessments of the EPIC data. Participant sex was 

assessed and confirmed to match annotated phenotypic 
data using fluorescence intensity values from 

microarray probes targeting the X and Y chromosomes, 

according to the method presented in the ewastools 

https://github.com/ryanfalck/CLSA-COVID-19-Epigenetics
https://github.com/ryanfalck/CLSA-COVID-19-Epigenetics
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package [73]. Sample identity was assessed using the 59 

explicit SNP genotyping probes included on the EPIC 

array to index contamination and sample mix-ups, this 

was also completed with ewastools functions [73]. EPIC 

array data indicated that there were no samples with 

contamination. We also determined that no samples had 

incorrect sex annotation. These results can be found on 

github https://github.com/ryanfalck/CLSA-COVID-19-

Epigenetics). 
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