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ABSTRACT

Epigenetic age is a biological metric of overall health and may predict mental health responses to
unprecedented stressors. We sought to determine whether epigenetic age acceleration can predict older
adults’ trajectory of depressive symptoms before and during the COVID-19 pandemic, and whether sex
differences exist.

Data from baseline (2012-2015), first follow-up (2015-2018), and COVID-19 Baseline survey (April-May 2020)
and COVID-19 Exit survey (September-December 2020) of the Canadian Longitudinal Study on Aging were used.
Epigenetic age was measured at the study baseline, and depressive symptoms were assessed at each of the
four time points using the 10-item Center for Epidemiological Studies Depression Scale (CESD-10). Sex-stratified
mixed linear models examined the effect of epigenetic age (measured by DNAmAge and Hannum Age) on
changes in CESD-10.
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The mean participant chronological age at study entry was 63+10 years (46% female). Unexpectedly, younger
epigenetic age predicted increases in depressive symptoms from first follow-up to COVID-19 Baseline survey
(p’s < 0.05) in females only. Higher epigenetic age was not related to changes in CES-10 score during that time

period (p’s > 0.05).

These findings suggest epigenetic age is a biological factor that can identify females at risk for greater negative

effects of major life stressors on mental health.

INTRODUCTION

The Coronavirus disease 2019 (COVID-19) pandemic
has had a significant impact on the mental health of the
global population [1]. Several studies have shown that
increased exposure to stressors and experiences related
to the pandemic (e.g., job loss, physical distancing and
isolation, and caregiver burden) [2, 3] has led to
increased prevalence of depressive symptoms and
psychological distress in specific groups of the
population [3-8]. While COVID-19-related social
restrictions have eased back to pre-pandemic levels, it
is nevertheless imperative to understand factors that
can help identify those most at risk for the negative
mental health impacts of pandemic restrictions.
This knowledge will not only help develop effective
interventions for protecting mental health during
subsequent global pandemics but will also aid more
general public mental health initiatives by helping
identify subgroups of individuals who may be more
affected by major stress exposures.

Sex differences exist in depression, with females
experiencing a two-fold higher likelihood of being
diagnosed and presenting with more severe symptoms
than males [9, 10]. This sex difference extends to the
effects of the COVID-19 pandemic on depressive
symptoms, with females across the globe showing
greater increases in depressive symptoms in several
large cohort studies [4, 11-14]. While the etiology of
this sex difference is not well understood, psychosocial,
environmental, hormonal, and anatomical factors likely
play roles [15]. Epigenetics, or covalent modifications
to DNA without alterations to the underlying sequence,
has emerged as a potential biological mechanism related
to vulnerability or resilience to depression [16, 17],
which likely contributes to differences in prevalence
and incidence of depression between females and males
[18].

Subtle variations in DNA methylation across the
epigenome have been linked to numerous diseases and
disorders [19]. Whereas chronological age represents
the time elapsed since birth and increases uniformly
across individuals, epigenetic age is a biomarker of
biological aging derived from DNA methylation levels

at a set of predefined genetic loci, influenced by
genetic, environmental, and lifestyle factors [19].
Although first-generation epigenetic clocks were
designed to predict chronological age, divergence
between the two measures—manifesting as epigenetic
age acceleration or deceleration—is a common pheno-
menon. Accelerated epigenetic age, defined as positive
deviations from chronological age, is generally
associated with adverse health outcomes, including
cardiovascular and neurodegenerative diseases, as well
as increased mortality [20]. In contrast, epigenetic age
deceleration is a more complex phenomenon. While
often linked to slower biological aging and better
health, it has also been observed in individuals exposed
to early-life neglect and war, supporting its role as a
multifaceted and context-dependent biomarker [21-23].
Importantly, epigenetic age can be considered a
surrogate measure of health, and some metrics have
been found to correlate with the overall burden of
disease [24].

Additionally, one’s physical and mental health history is
strongly reflected in epigenetic age and epigenetic age
acceleration [25]. For example, exposure to chronic
stress and major depressive disorder in early and middle
age are both associated with accelerated epigenetic
aging in later life [26-28], and cumulative lifetime
stress is more strongly associated with accelerated
epigenetic age than current stress in a cohort of African
American individuals [29]. While specific DNA
methylation signatures have been shown to identify
cases of major depressive disorder accurately and also
predict which individuals will later develop depression
[30], currently, it is unknown whether epigenetic age
acceleration, which is derived from DNA methylation
signatures, is itself predictive of future changes in
depressive symptoms or in the ability to respond to
stress.

Although it is well-appreciated that the COVID-19
pandemic was associated with high levels of individual
stress exposure, it remains unknown whether an
individual’s epigenetic age is predictive of their mental
health response to COVID-19-related stressors and
experiences. Thus, we build upon a previous report that
used data from the Canadian Longitudinal Study of

www.aging-us.com 2760

AGING



Aging (CLSA) platform and found that middle- and
older-aged adults were twice as likely to develop
depressive symptoms during the COVID-19 pandemic
compared with pre-pandemic rates [4]. Older adults
were disproportionately affected by COVID-19 and
impacted by the public health measures imposed during
the early stages of the pandemic, stemming from a
combination of factors, including increased physical
health risks to SARS-CoV-2 infection, social isolation
due to stricter adherence to distancing guidelines, and
heightened emotional stress [31-33]. Thus, we aimed to
determine whether epigenetic age at a given time point
could predict subsequent mental health status or change
in mental health status following major stressors.
Specifically, we sought to determine whether epigenetic
age acceleration could predict the trajectory of
depressive symptoms among middle-aged and older
adults during the early part of the COVID-19 pandemic.
These observations, along with the hypothesis that
epigenetic age may predict subsequent mental health
response to a major stressor, led us to ask whether
epigenetic age acceleration can predict an individual’s
trajectory of depressive symptoms during the COVID-
19 pandemic. Given known sex differences in (i)
epigenetic aging acceleration, with males having higher
epigenetic age acceleration than women [34, 35], (ii)
depression prevalence (higher in females) [36], and (iii)
physiological response to stress in older age, with
females showing greater cortisol release [37], we also
conducted exploratory analyses to examine potential sex
differences in the relationship between epigenetic age
and the trajectory of depressive symptoms.

RESULTS
Participant characteristics

Participant characteristics at baseline are presented in
Table 1. The demographic proportions of the final
sample included in the current analyses were within 2%
of those in the complete Comprehensive Cohort, and all
participants with epigenetic data who also completed the
COVID-19 Survey entry/exit portions (Table 1).
Exceptions included sex, which was within 5% between
samples, and PASE total scores, which were ~35 points
higher for the final sample in the current analyses and
for all participants with epigenetics data who completed
the COVID-19 Survey, compared to the total
Comprehensive sample (Table 1). For the final sample in
the current analyses, the mean chronological age was 63
+ 10 years, with a female representation of 46%. More
than 80% of participants had a university degree or
higher, and participants reported living with an average
of 7 chronic conditions (range: 2-16). The mean baseline
CESD-10 score was 4.4 +£ 5.2, DNAmAge was 57.5 +
8.7 and Hannum Age was 63.0 = 12.1. Chronological

age was strongly correlated with both DNAmAge
(r=0.86) and Hannum Age (r=0.85). DNAmAge and
Hannum age were correlated (r=0.87).

Association of epigenetic age with later changes in
depressive symptoms during the COVID-19 pandemic

The present analyses include CESD-10 data collected
from participants at 1) CLSA baseline (2012-2015), 2)
CLSA first follow-up (2015-2018), 3) COVID-19
Baseline survey (April-May 2020), and 4) COVID-19
Exit survey (Sept-Dec 2020). Epigenetic age was
measured in samples collected at CLSA baseline (2012-
2015).

Estimated CESD-10 scores for low and high epigenetic
age at each time point are described in Figure 1;
estimated changes in CESD-10 scores at each time point
are described in Figure 2. CESD-10 scores did not
change from CLSA baseline to CLSA first follow-up,
from CLSA first follow-up to COVID-19 Baseline
survey, or from COVID-19 Baseline survey to COVID-
19 Exit survey for individuals with high epigenetic age,
as determined by DNAmAge or Hannum Age.

In contrast, CESD-10 scores increased from CLSA first
follow-up to COVID-19 Baseline survey for individuals
with low DNAmAge (estimated mean difference: -1.78;
95% CI:[-2.47, -1.10], p<0.001) and low Hannum Age
(estimated mean difference: -1.84; 95% CI:[-2.54, -
1.14], p<0.00I). Individuals with low DNAmAge
(estimated mean difference: 1.10; 95% CI:[0.09, 2.11],
p<0.050) and low Hannum Age (estimated mean
difference: 1.22; 95% CI:[0.19, 2.25], p<0.030) had
significantly greater increases from CLSA first follow-
up to COVID-19 Baseline survey than individuals with
high DNAmAge and high Hannum Age, respectively.
CESD-10 scores did not significantly change from
CLSA baseline to CLSA first follow-up or from
COVID-19 Baseline survey to COVID-19 Exit survey
for individuals with low epigenetic age, as determined
by DNAmAge and Hannum Age.

Sex differences in the association of epigenetic age
with changes in depressive symptoms: exploratory
analyses

Estimated CESD-10 scores for low and high epigenetic
age at each time point based on biological sex are
described in Figures 3 (Female), 4 (Males); estimated
changes in CESD-10 scores at each time point are
described in Figures 5 (Females), 6 (Males). There were
no changes in CESD-10 scores at each time point for
males with high epigenetic age as determined by
DNAmAge or Hannum Age. For males with low
Hannum Age, CESD-10 scores increased from first
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Table 1. Participant characteristics at baseline (2012-2015).

Participant characteristic

All comprehensive
cohort participants

COVID-19 survey
participants with baseline

Final sample

(N=30,097) epigenetic data (N= 879) (N=663)

Mean Age (SD) 62.96 (10.25) 62.46 (9.66) 62.79 (9.84)
Males (n,%) 14777, 49.1% 430, 48.9% 358, 54.0%
Mean Body Mass Index (kg/m?) (SD) 28.06 (5.44) 28.64 (3.77) 28.49 (5.71)
Education (n,%)

Less than high school 1643, 5.5% 30, 3.4% 22,3.3%

High school diploma 2839, 9.4% 77, 8.8% 56, 8.4%

Some university 2238, 7.4% 74, 8.4% 52,7.8%

University degree or higher 23327, 77.6% 698, 79.4% 533, 80.4%
Income Level (n,%)

<$20,000 per year 4373, 15.3% 113, 13.4% 72, 11.3%

$20,000-350,000 per year 10538, 36.9% 278, 33.0% 199, 31.3%

350,000-3100,000 per year 9696, 33.9% 304, 36.0% 239,37.6%

$100,000-3150,000 per year 2517, 8.8% 94, 11.1% 80, 12.6%

>$150,000 per year 1465, 5.1% 55, 6.5% 46, 7.2%
Mean Number of Chronic Conditions 7.36 (2.62) 7.31(2.55) 7.04 (2.47)
Alcohol Intake

Non-Drinker 3427,11.7% 89, 10.3% 63,9.7%

Occasional Drinker 3705, 12.6% 119, 13.8% 85, 13.1%

Regular Drinker (at least once per month) 22239, 75.7% 665, 75.9% 503, 77.3%
Smoking Status

Daily Smoker 2088, 7.0% 58, 6.6% 35,5.3%

Occasional Smoker 488, 1.6% 12,1.4% 11, 1.7%

Former Smoker 17900, 59.8% 530, 60.6% 397, 60.2%

Never Smoked 9445,31.6% 275,31.4% 217,32.9%
Mean PASE Total Score! (SD) 129.26 (131.20) 165.26 (79.65) 166.51 (81.84)
Mean CESD-10 Score (SD) 5.67 (7.64) 5.29 (5.63) 4.44 (5.24)
DNAmAge - 57.18 (8.65) 57.49 (8.72)

Hannum Age

62.52 (11.98)

63.00 (12.07)

!Physical Activity Scale for the Elderly.

follow-up to COVID-19 Baseline survey (estimated
mean difference: -0.87; 95% CI:[-1.71, -0.03]). There
were no significant differences in changes in CESD-10
scores between males with low and high epigenetic age
categorizations.

CESD-10 scores did not change at any time point for
females with high epigenetic age as determined by
DNAmAge and Hannum Age. CESD-10 scores increased

from CLSA first follow-up to COVID-19 Baseline
survey for females with low DNAmAge (estimated
mean difference: -2.78 95% CI:[-3.89, -1.66]) and low
Hannum Age (estimated mean difference: -2.67; 95%
CI:[-3.82, -1.52]). Females with low DNAmAge had
significantly greater increases in CESD-10 scores from
CLSA first follow-up to COVID-19 Baseline survey
than females with high DNAmAge (estimated mean
difference: 1.75; 95% CI:[0.04, 3.45]).
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DISCUSSION

The present study examined whether epigenetic age
predicts an individual’s trajectory of change in mental
health, specifically depressive symptoms, during the
COVID-19 pandemic in people without a self-reported
diagnosis of depression or anxiety at baseline, while
considering biological sex as a modifying variable. For
individuals with a younger epigenetic age, as estimated
by DNAmAge and Hannum Age, there was a greater
increase in depressive symptoms from the pre-pandemic
period (i.e., 2015-2018) to the early stages of the
COVID-19 pandemic (April-May 2020) compared to
those with an older epigenetic age. Notably, the
exploratory sex-stratified analysis demonstrated that the
association between younger epigenetic age and
increased depressive symptoms during the early stages of
the COVID-19 pandemic was driven mainly by females

who showed this relationship with both epigenetic age
metrics. While extremely interesting, it is worth noting
that these sex-stratified analyses are exploratory and
have not been corrected for multiple comparisons;
therefore, they should be viewed with caution.

Previous work in this CLSA cohort identified three
distinct trajectories of change in depressive symptoms
from pre-pandemic to the early-stages and later-stages
of the pandemic, with some participants showing
consistently low depressive symptoms, some showing
moderate increases in depressive symptoms, and some
showing large increases in depressive symptoms [4].
Importantly, compared with males, females were 2.17
times more likely to be in the group showing large
increases in depressive symptoms and 1.70 times more
likely to be in the group showing moderate increases
than they were to be in the group showing consistently

Average CESD-10 Score at Each Study Time Point

EA Variable Group Study Time Point CESD-10 Score (Mean * 95% Cl)
CLSA Baseline (2012-2015) I—H : 411+0.24
Low 3
9 Epigenetic CLSA First Follow-up (2015-2018) e 3.59+0.24
g Age COVID-19 Baseline Survey (Apr-May 2020) ; P 5.37 £ 0.26
o Acceleration : ; ; 5
® COVID-19 Exit Survey (Sept-Dec 2020) } o | 5.61+0.31
> ; ; ; ;
= 3 3 4 8
© CLSA Baseline (2012-2015) e : 4.07 £0.26
= High ;
<Zt Epigenetic CLSA First Follow-up (2015-2018) e 4.00 £ 0.26
o :
Age COVID-19 Baseline Survey (Apr-May 2020) L —— 4.69+0.28
Acceleration :
COVID-19 Exit Survey (Sept-Dec 2020) : —e—| 4.91+0.33
CLSA Baseline (2012-2015) H—| 41310.25
Low : :
Epigenetic CLSA First Follow-up (2015-2018) e : 3.55+0.24
] Age COVID-19 Baseline Survey (Apr-May 2020) - 4.50 + 0.26
< Acceleration :
£ COVID-19 Exit Survey (Sept-Dec 2020) O —a—y } 4.74 £0.32
S . : : .
c * : * *
= CLSA Baseline (2012-2015) —o—| 4.04 +0.26
o o High :
Epigenetic CLSA First Follow-up (2015-2018) e 4.04 £0.26
Age COVID-19 Baseline Survey (Apr-May 2020) e 4.67+0.28
Acceleration
COVID-19 Exit Survey (Sept-Dec 2020) |—o——| : 478 £0.33
3 4 5 6

Figure 1. Estimated mean 10-item center for epidemiological studies depression scale (CESD-10) scores at each study
timepoint for participants with low (-1 SD) and high (+1 SD) epigenetic age as determined by both epigenetic age markers.
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low depressive symptoms. The present analyses extend
these findings by showing that in females, younger
epigenetic age, measured several years earlier, predicted
increases in depressive symptoms in response to the
early stages of the COVID-19 pandemic. This suggests
that in females, one’s cumulative history of physical
and mental health as reflected in epigenetic age is a
predictor of subsequent mental health, though the
direction of the association was unexpected. Raina and
colleagues found that males had lower odds of
depressive symptoms during the pandemic [4], and here

we found that male epigenetic age did not predict these
changes in depressive symptoms.

In our analyses, older epigenetic age, as determined by
DNAmAge and Hannum Age, did not predict changes
in depressive symptoms during the COVID-19
pandemic. These results are contrary to our hypothesis,
as older epigenetic age has previously been associated
with negative mental health outcomes. For instance,
adverse experiences and events in childhood are linked
to increased depressive symptoms in older age, with

Average Change in CESD-10 Score from Previous Study Time Point

Study Time Point  EA Variable Group Change in CESD-10 Score (Mean * 95% CI)
s Low |.,_.._| 0.52 (-0.15, 1.19)
1 ] = :
o 3 DNA ,
£ 0o Methylation Age :
o 5 High I—b—l 0.06 (-0.65, 0.78)
© L ;
m -
< £ :
@ : Low I“_‘—l 0.59 (-0.10, 1.26)
0w Hannum ;
- | 1
3) Age .
High |—¢—| 0.00 (-0.73, 0.72)
- :
) Low |—A—| ! -1.78 (-2.47, -1.10)
o 2 |
= 5 DNA !
g g Methylation Age ;
= £ High |—o—,| -0.69 (-1.43, 0.06)
<% =
[ i
T o Low |—.a.—| : 1.84 (-2.54, -1.14)
- :
% i Hannum |
d S Age |
9 High '—0—4 -0.62 (-1.38, 0.13)
q;," > Low |—-h—| -0.24 (-0.92, 0.45)
£ S DNA ;
v = Methylation Age I
2 o High |—o-—| -0.21 (-0.96, 0.53)
- !
[T s
g @ :
@ 8 Low I_"'_'_l -0.34 (-1.04, 0.36)
E 8 Hannum :
S O Age i
3 High I—o-—' -0.11 (:0.87, 0.64)
o .
0

-3

-2

-1

Figure 2. Estimated mean difference in 10-item center for epidemiological studies depression scale (CESD-10) score from
CLSA baseline to CLSA first follow-up, from CLSA first follow-up to COVID-19 baseline survey, and from COVID-19 baseline
survey to COVID-19 exist survey for low (-1 SD) vs. high (+1 SD) epigenetic age as determined by both epigenetic age
markers.
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Female - Average CESD-10 Score At Each Study Time Point

EA Variable Group Study Time Point CESD-10 Score (Mean * 95% CI)
CLSA Baseline (2012-2015) | 4.42+0.38
" Low
2 Epigenetic CLSA First Follow-up (2015-2018) = 4.04+0.39
Age
e COVID-19 Baseline S Apr-May 2020 = .82 +0.42
'.9.. Acceleration aseline Survey. (Apr-May ) 6.8210
=] ) i
;>' COVID-19 Exit Survey (Sept-Dec 2020) i |—— 7.41%0.51
° CLSA Baseline (2012-2015) ' ] 5.00 £ 0.43
= High
<zt Epigenetic CLSA First Follow-up (2015-2018) | 4.49£0.44
a Age :
g li 2 I ) i
Acceleration COVID-19 Baseline Survey (Apr-May 2020) : 5.52 +0.49
COVID-19 Exit Survey (Sept-Dec 2020) - 5.75 % 0.56
CLSA Baseline (2012-2015) || 4.51%0.39
Low
Epigenetic CLSA First Follow-up (2015-2018) |—o—{ 4.09 +0.40
(] Age
=) COVID-19 Baseline S Apr-May 2020] A f
S Aocoloralion aseline Survey (Apr-May 2020) ] 6.76 £ 0.43
£ . i 2
2 COVID-19 Exit Survey (Sept-Dec 2020) f——] 7.53+0.53
s CLSA Baseline (2012-2015) = 4.89£0.45
I High
Epigenetic CLSA First Follow-up (2015-2018) I—-ﬁ—' 4.42 +0.46
Age , :
Kocalaration COVID-19 Baseline Survey (Apr-May 2020) : |—ﬁ— 5.59 £ 0.51
COVID-19 Exit Survey (Sept-Dec 2020) = 5.61+0.58
2 4 8

Figure 3. Differences in estimated mean 10-item center for epidemiological studies depression scale (CESD-10) scores in 305
females at each study timepoint for each epigenetic age marker based on low (-1 SD) and high (+1 SD) epigenetic age from
exploratory, uncorrected analyses.

Male - Average CESD-10 Score At Each Study Time Point

EA Variable Group Study Time Point CESD-10 Score (Mean % 95% CI)
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© "
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=
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Epigenetic CLSA First Follow-up (2015-2018) e 3.17%0.30
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Epigenetic CLSA First Follow-up (2015-2018) fo 3.60£0.30
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4

Figure 4. Differences in estimated mean 10-item center for epidemiological studies depression scale (CESD-10) scores in 358
males at each study timepoint for each epigenetic age marker based on low (-1 SD) and high (+1 SD) epigenetic age from
exploratory, uncorrected analyses.
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accelerated epigenetic aging mediating this association
[38]. Although it is important to note that this link is
not always seen, as in some contexts, early life neglect
and war exposure are associated with epigenetic
deceleration [21-23]. One potential explanation for our
findings could be the unique stressors of the pandemic,
which may have influenced individuals differently than
early-life adversities. Additionally, factors like social
support, adaptive coping mechanisms, or increased
resiliency due to previous adverse life events may have
buffered the relationship between epigenetic aging and
depressive symptoms during this period.

In contrast to the findings between high epigenetic age
and depressive symptoms, Figures 1-6 highlight that
younger epigenetic age predicts increases in depressive
symptoms during the early stages of the pandemic.
However, this association was only seen in females.
Additionally, only in females was decelerated epi-
genetic aging associated with increased depressive
symptoms in response to the COVID-19 pandemic.
There are several possible reasons for this finding. First,

factors that decelerate epigenetic aging may have
amplified the negative effects of COVID-19 on mental
health among females. For example, higher education
and socioeconomic status are associated with younger
epigenetic age as well as professional employment [39,
40]. Prior research shows that working outside the home
prior to the pandemic is a risk factor for decreased
mental health during the pandemic, especially for
females [8]. This is likely due to the increased stress of
balancing professional responsibilities with shifting
work environments, while additionally contributing to
childcare demands and family health concerns. The
disruption of routines and adapting to additional
pressures due to remote work may have contributed to
heightened anxiety, stress, and depressive symptoms.
As such, it is possible that the epigenetically younger
females in our cohort were consequently more impacted
by the pandemic from a mental health perspective.

We further propose that several social and lifestyle-
related environmental exposures, previously associated
with younger epigenetic age and decelerated biological

Female - Average Change in CESD-10 Score from Previous Study Time Point

Study Time Point EA Variable Group

ACESD-10 Score (Mean + 95% Cl)
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« i Low ——] 0.42 (-0.67, 1.51)
b Hannum 3
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N

Figure 5. Differences in estimated mean difference in 10-item center for epidemiological studies depression scale (CESD-10)
scores in females from CLSA baseline to CLSA first follow-up, from CLSA first follow-up to COVID-19 baseline survey, and
from COVID-19 baseline survey to COVID-19 exist survey for low (-1 SD) vs. high (+1 SD) epigenetic age as determined by
each epigenetic age marker from exploratory, uncorrected analyses.
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aging [41], may have contributed to increased
depressive  symptomatology =~ when  significantly
disrupted, as occurred during the COVID-19 pandemic.
Social factors, such as frequent social contact, strong
social support, and higher levels of socialization, are
linked to a younger epigenetic age [42]. During the
pandemic, individuals with more socially active
lifestyles prior to lockdowns experienced greater
increases in depressive symptoms due to enforced
isolation [43]. Lifestyle behaviors associated with
epigenetic aging show a similar pattern. Regular
physical activity and exercise are consistently linked to
slower epigenetic aging [44], while physical inactivity
and sedentary behavior are associated with accelerated
aging [45]. These behaviors also correlate with mental
health: physical activity is protective against depression,
particularly in females [46], whereas sedentary behavior
is a known risk factor for depressive symptoms [47],
with some evidence suggesting a stronger effect in

females [48]. Previous work using the CLSA Covid-19
survey data indicates that pandemic-related restrictions
led to reduced physical activity and increased sedentary
time among older adults [49], both of which were
associated with poorer mental health outcomes [50].
Taken together, these findings support the hypothesis
that the disruption of social and behavioral exposures
known to promote epigenetic deceleration and healthy
aging may have exacerbated depressive symptoms
during the COVID-19 pandemic.

The associations between epigenetic age acceleration and
exposure to various adverse health and environmental
factors, including obesity, low socioeconomic status,
frailty, and diabetes, are well established in the literature
[22]. However, it is important to note that while these
correlations are frequently observed, they are not
universally consistent across all studies or populations.
Factors such as genetic variability, lifestyle, or resilience
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Figure 6. Differences in estimated mean difference in 10-item center for epidemiological studies depression scale (CESD-10)
scores in males from CLSA baseline to CLSA first follow-up, from CLSA first follow-up to COVID-19 baseline survey, and from
COVID-19 baseline survey to COVID-19 exist survey for low (-1 SD) vs. high (+1 SD) epigenetic age as determined by each
epigenetic age marker from exploratory, uncorrected analyses.

2767 AGING

WWWw.aging-us.com



mechanisms may underlie why some individuals do not
exhibit accelerated epigenetic aging despite facing
significant adversity. For example, in a recent meta-
analysis of studies examining factors associated with
epigenetic aging, posttraumatic stress disorder was
found to be associated with deceleration of epigenetic
age, as measured by the Horvath clock, but not with
other clocks (e.g., Hannum clock) [22]. Furthermore,
epigenetic age deceleration assessed with the Horvath
clock was also found in schizophrenia, while the
PhenoAge and GrimAge clocks were positively
associated with advanced epigenetic age [22]. Both
posttraumatic stress disorder and schizophrenia are
commonly treated through prescription medications,
which could contribute to the divergent findings
between epigenetic clocks [51]. Hence, in the present
study, unexplored factors such as medication use, pre-
existing mental health illness (diagnosed or that may
have gone undiagnosed), and other cohort-specific
factors at the time of epigenetic age measurement may
be playing critical roles in the relationship between low
epigenetic age and future increases in depressive
symptoms in response to the COVID-19 pandemic.

Prior work has shown that lower income is strongly
linked to higher rates of depression [52], which were
exacerbated during the pandemic [53]. Financial strain
can amplify daily stress, limit access to mental
healthcare, and augment social and emotional challenges,
which all contribute to greater depressive burden. Raina
et al., found that during the initial COVID-19 lockdown
and subsequent reopening, lower income was associated
with greater increases in the odds of experiencing
depressive symptoms [4]. Although income was included
as a covariate in our analyses, we did not explore a
potential interaction between income and epigenetic age.
Future work with larger sample sizes should address this
to help determine whether epigenetic age interacts with
socioeconomic status to predict depressive response to
major stressors. Furthermore, future investigations using
epigenetic clocks and outcome measures that are likely to
be influenced by anxiety, stress, and/or other mental
health diagnoses would benefit from including interactive
effects with income and biological sex where possible.

While the results of the present analysis reveal a unique
pattern between epigenetic age, depressive symptoms
during the early part of the COVID-19 pandemic, and
female sex, they should be interpreted with caution, as
the study has several important limitations. Epigenetic
age was only measured once at baseline, 5 to 8 years
before the COVID-19 pandemic. The long time interval
between epigenetic age measurement and the onset of the
pandemic could reduce the predictive power of
epigenetic clock measures, as other environmental and
lifestyle exposures experienced during this period could

theoretically have had a greater impact on depressive
trajectories in some individuals than the COVID-19
pandemic restrictions themselves. We also do not have
access to information regarding depressive sympto-
mology or specific exposures prior to the measurement of
the epigenetic clocks in these individuals. It would be of
interest to see whether the ability of epigenetic age to
predict changes in depressive symptoms would differ if
the measurement had occurred at the onset of the
pandemic. Future work should measure epigenetic age
closer to major stressor exposure. As epigenetic age was
only measured once, we were also unable to examine
whether changes in epigenetic age over time were
associated with changes in depressive symptoms.
Additionally, the type of observational data we had
access to does not allow us to address and exclude
reverse causality, in which the outcome variable
influences the exposure rather than the other way around.
To further understand the interaction between changes in
CESD-10 scores and epigenetic age, our analyses
extracted simple slopes for individuals with low
epigenetic age, defined as 1 SD below the mean, and
those with high epigenetic age, defined as 1 SD above the
mean. As the low and high epigenetic groups are the
extremes of the range and have no direct clinical
relevance, our results are limited in their generalizability.
Another limitation of using epigenetic clocks is that each
clock has a degree of measurement error, typically
ranging from approximately three to five years [52, 54,
55]. This measurement error likely arises from technical
variability (e.g., differences in sample handling or array
platform) and biological variation (e.g., inter-individual
and inter-tissue variation in DNA methylation patterns
arising from multiple sources) [56]. Nevertheless, this
measurement error likely would have introduced a non-
differential measurement bias, where the small
differences did not introduce a systematic bias favoring
one group (e.g., low vs. high epigenetic age) over another
[57]. Thus, this likely would have had minimal influence
on the predictive accuracy of the utilized clocks. Finally,
epigenetic age was only measured in a subset of
participants of the CLSA, and of these 1445 participants,
879 consented to participate in the COVID-19
Questionnaire Survey study. We further excluded 216
participants who self-reported diagnoses of dementia,
anxiety, depression or mood disorder, reducing our
sample size to 663 from 879, which does reduce the
statistical power of our analyses. To balance this reduced
statistical power, excluding these participants with
mood or neurodegenerative disorders may have also
theoretically reduced bias in our findings, as some studies
suggest that those with existing mental health conditions
were at greater risk for depression and anxiety during the
pandemic [58—60]. Thus, future replication in a larger
sample with more complete longitudinal data is required,
which will allow for more sophisticated statistical
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modelling to examine both potential linear and nonlinear
relationships.

CONCLUSION

In summary, this study provides novel insights into the
relationship between epigenetic age based on first-
generation epigenetic clocks and depressive symptoms
in response to the COVID-19 pandemic, particularly
highlighting the potential sex-specific nature of these
associations. The main findings were that younger
epigenetic age (1 standard deviation below the mean),
rather than older epigenetic aging, predicted increases in
depressive symptoms during the early stages of the
pandemic. Our exploratory analyses suggest this was
only seen in females. These results underscore the
importance of considering biological sex and its
interaction with epigenetic markers in mental health
research. Despite the study’s limitations, which include
a single time-point measurement of epigenetic age 5-8
years before the COVID-19 pandemic and a relatively
small sample size, both of which influence the
interpretation of our findings, these results provide a
foundation on which epigenetic markers can be used to
identify individuals most vulnerable to the negative
effects of major stressor exposures on mental health.
We have proposed several hypotheses centred around
the concepts of social epigenetics and the social
exposome that could help explain our findings.
However, these remain strictly hypothetical and require
further study. Epigenetic clocks are promising
biomarkers for inclusion in risk prediction for many
different negative health outcomes and could also
be utilized as a screening tool to determine the
effectiveness of health-promoting interventions [61].
Specifically, within the context of mental health
protection and promotion, epigenetic age based on first-
and second-generation clocks, which allow for a more
nuanced analysis, could be effectively deployed as a
screen for at-risk groups, such as females with high
occupational and caregiving burdens. Providing a better
explanation for these associations will be crucial in
informing public health strategies and developing
targeted mental health interventions.

MATERIALS AND METHODS
Study design and participants

The CLSA is a longitudinal, national study of
community-dwelling middle- and older-aged adults
between the ages of 45-85 at baseline (2012-2015).
Detailed study design and methods of the CLSA study
have been described previously [62]. Very briefly,
participants were recruited from across the 10 provinces
through the Statistics Canada’s Canadian Community

Health Survey, provincial health insurance registries,
and random digit dialing. Exclusion criteria for
recruitment in the CLSA were: 1) resident of the three
territories of Canada; 2) unable to participate in English
or French; 3) unable to provide their own data at
baseline; 5) living on federal First Nations reserves or
other First Nations settlements in the provinces; 4) full-
time members of the Canadian Armed Forces; or 5)
living in a long-term care institution [62, 63]. Of the
51,338 participants, a subset of 30,097 participants
was part of the Comprehensive cohort and completed
more detailed physical assessments and provided
biospecimens at baseline (2012-2015). From the
Comprehensive cohort, 1478 participants were randomly
selected for DNA methylation analysis of blood samples
provided at study baseline. The selected participants
matched the distribution of the Comprehensive cohort
in terms of province, age, and sex. Of the 1478
participants, the DNA methylation data from 1445
participants  passed  established quality control
measurements. Of the 30,097 participants of the
Comprehensive cohort, 27,765 provided data at first
follow-up (2015-2018).

In response to the onset of the COVID-19 pandemic, the
CLSA launched the COVID-19 Questionnaire Survey
on April 15, 2020, to investigate the epidemiology of
COVID-19 including its impact on the physical and
mental health of older adults. Of the 51,338 participants
recruited into the CLSA, 42,700 were viable at the time
of the CLSA COVID-19 Questionnaire Survey and
invited to participate. An additional 166 participants
were found to be deceased, and 23 participants required
a proxy to participate, thus they were excluded from
participating. Therefore, 42,511 participants were
eligible to participate in the CLSA COVID-19
Questionnaire Survey, of whom 28,559 completed the
COVID-19 Baseline survey (April 15 — May 30, 2020),
and 24,114 completed the COVID-19 Exit survey
(September 29 - December 29, 2020). These data
collected included information on COVID-19
symptoms and status, risk factors, healthcare use,
health behaviours, and psychosocial and economic
consequences of the pandemic. Of the CLSA participants
who completed both the COVID-19 Baseline and Exit
surveys, 18,533 were part of the Comprehensive cohort.
We used data from the COVID-19 Baseline and Exit
surveys.

Therefore, the present study includes participants from
the Comprehensive Cohort (n= 30,097) that provided
the required data for our analyses at 1) CLSA baseline
(2012-2015), 2) CLSA first follow-up (2015-2018), 3)
COVID-19 Baseline survey (April-May 2020), and 4)
COVID-19 Exit survey (Sept-Dec 2020), as well as had
DNA methylation data from blood at CLSA baseline
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(n= 879 out of the 1445 participants). In order to reduce
reporting bias, participants who self-reported dementia
or memory diagnosis or self-reported having been
diagnosed with anxiety, depression, or mood disorder at
study baseline (2012-2015) were excluded. Thus, the
final sample size was 663 with the STROBE diagram
presented in Figure 7.

Measures

DNA methylation and epigenetic age clocks

Blood samples from CLSA baseline (2012-2015)
were assayed using the Illumina Infinium
HumanMethylationEPIC (EPIC) BeadChip microarray
(Ilumina, San Diego, CA, USA), which profiles DNA
methylation at >850,000 CpG sites genome-wide. A
complete description of the procedures used to
generate and prepare the DNA methylation data can be
found here: https://www.clsa-elcv.ca/doc/3491. Raw
DNA methylation data in the form of .IDAT files were
downloaded and used to verify sample sex and
identity. After using control probes on the EPIC array
to confirm that sample sex matched reported sex, and
that all samples were genetically distinct, we utilized
epigenetic clock data derived by the CLSA team using
weight and beta values that were normalized using the
Noob normalization approach [64]. Specifically, for
the present study we utilized Horvath’s DNA
Methylation Age clock and Hannum’s epigenetic age

clock [54, 55]. Briefly, Horvath’s DNA Methylation
Age clock (DNAmAge) is a pan-tissue epigenetic
clock based on DNA methylation at 353 CpGs, and
was one of the first clocks to accurately predict
chronological age of samples within 3.6 years, and has
since its development been found to associate with
biological age and is accelerated in association with
many diseases and phenotypes including trisomy 21
[22, 65]. DNAmMAGE is theoretically unconfounded
with cell type proportions [55]. Hannum’s epigenetic
clock (Hannum Age) is based on DNA methylation
on 71 CpGs and was primarily developed for use
with whole blood samples and has been associated
with several complex diseases similar to Horvath’s
clock [66]. For the present study, we used CLSA
baseline (2012-2015) measurements of DNAmAge and
Hannum Age.

10-item center for epidemiological studies depression
scale

Depressive symptoms were indexed using the 10-item
Center for Epidemiological Studies Depression Scale
(CESD-10); a brief questionnaire with evidence of
validity and reliability for measuring depressive
symptoms [67, 68]. The CESD-10 is scored on a scale
ranging from 0 to 30, with each of the 10 items rated
on a 0-3 scale based on the frequency of depressive
symptoms over the past week. Cut-offs typically
include minimal depressive symptoms (0-9/30), mild

CLSA Comprehensive Cohort at Baseline (2012-

2015) (n=30,097)

Randomly selected for DNA

methylation analysis (2012-

2015) (n=1478)

CLSA Comprehensive Cohort with First Follow-
up data (2015-2018) (n=27,765)

Participants with high quality
DNA methylation data (n=1445)

Participants who completed First Follow-up and
COVID-19 Baseline and Exit Surveys

(n=18,533)

Survey data (n=879)

Participants with DNA methylation data, First
Follow-up data and COVID-10 Baseline and Exit

Excluded participants with self-

reported dementia, memory

diagnosis, anxiety, depression,

Final Sample
(n=663)

or mood disorder (n=216)

Figure 7. Strengthening the reporting of observational studies in epidemiology (STROBE) diagram.
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depressive symptoms (10-15/30), and moderate-to-
severe  depressive symptoms (16-30/30) [69].
Participants completed the CESD-10 at the data
collection site during the CLSA study baseline (2012-
2015) and first follow-up (2015-2018). Additionally,
participants completed the CESD-10 either by web or
telephone during the CLSA COVID-19 Baseline
survey (April-May 2020) and during the CLSA
COVID-19 Exist survey (Sept-Dec 2020). For the
present study, we used the continuous CESD-10 scores
out of 30 from all 4 time points: CLSA study baseline,
CLSA first follow-up, COVID-19 baseline, and
COVID-19 exit.

Covariates

At CLSA study baseline, participants’ age, biological
sex, educational attainment (i.e., less than high school,
high school diploma, some university, university degree
or higher), income level, and current living status (i.e.,
house, apartment, assisted living, or other) were
assessed. Additionally, at CLSA baseline participants
were queried about whether they had ever been
diagnosed with any of the following: heart disease,
peripheral vascular disease, memory problems,
dementia, multiple sclerosis, epilepsy, migraine
headaches, intestinal or stomach ulcers, bowel
disorders, bowel incontinence, urinary incontinence,
macular degeneration, all-cause cancer, back problems
which were not fibromyalgia or arthritis, kidney
disease, arthritis in the hand, hip or knee, rheumatoid or
other arthritis, any diabetes, high blood pressure, a
thyroid condition, angina, stroke or transient ischemic
attack, myocardial infarction, asthma, osteoporosis,
parkinsonism or Parkinson’s disease, or chronic
obstructive pulmonary disorder. The number of chronic
conditions that a participant identified having been
diagnosed with was then computed. In addition, body
mass index (BMI: kg/m?) was measured using a
calibrated scale and stadiometer. Participants were also
queried at CLSA baseline for information on their
smoking status (i.e., daily, occasional, former, or never-
smoker), alcohol intake (regular, occasional, or non-
drinker), and physical activity level as measured by the
Physical Activity Scale for the Elderly (PASE) [70].

Statistical analysis

All analyses were conducted in R version 4.0.3. Our
primary analysis used the /mer package (version 1.1-25)
and simple slopes analyses with the Effects package
(version 4.2-2). Graphs and figures were plotted using
the ggplot? package (version 3.3.5). We conducted all
sensitivity analyses of epigenetic data using the
packages BiocManager (version 1.30.16), minfi (version
1.36.0), HlluminaHumanMethylationEPICmanifest
(version 0.3.0), [llumniaHumanMethylationEPICanno.

ilm10b4.hgl9 (version 0.6.0), and remotes (version
2.4.1). Our complete statistical analysis and output can
be found online (https://github.com/ryanfalck/CLSA-
COVID-19-Epigenetics). We calculated means, standard
deviations (SD), and proportions for all variables of
interest at baseline.

We first examined changes in CESD-10 from CLSA
baseline to COVID-19 Exit survey (i.e., four time points)
based on epigenetic age using mixed linear models with
restricted maximum likelihood estimation, wherein we
included random intercepts and slopes. Time was also
included as a categorical fixed effect. Separate models
were conducted for each marker of epigenetic age (i.e.,
DNAmAge and Hannum Age). Each model controlled
for biological sex, BMI, income level, educational
attainment, living status, smoking status, alcohol intake,
chronic conditions, and physical activity level.
Significant time by epigenetic age interactions were then
illustrated using simple slopes analyses in which the
relationship of epigenetic age with CESD-10 score over
time was estimated separately for low epigenetic age (i.e.,
1 SD below the mean) and high epigenetic age (i.e., 1 SD
above the mean) based on DNAmAge and Hannum Age
separately. All estimates were calculated using the full
model and included all covariates.

We then contrasted estimated changes in CESD-10 score
from 1) CLSA baseline to CLSA first follow-up, 2)
CLSA first follow-up to COVID-19 Baseline survey, and
3) COVID-19 Baseline survey to COVID-19 Exit survey
for low versus high epigenetic age. We present contrasts
as 95% confidence intervals. To account for multiple
comparisons, the Benjamini-Hochberg procedure was
applied to control the false discovery rate (FDR).

As an exploratory analysis, we examined whether
biological sex moderated the relationship between
epigenetic age and CESD-10 score over time. We
conducted similar models while also including
biological sex as an interaction term. We decomposed
time by epigenetic age by sex effects using simple
slopes analyses for low (-1 SD) and high (+1 SD)
epigenetic age for males and females at each time point
and contrasted estimated changes in CESD-10 score at
each time point. As these were exploratory analyses, we
did not control for multiple comparisons [71, 72].

Sensitivity analyses

Sensitivity analyses were performed as quality control
assessments of the EPIC data. Participant sex was
assessed and confirmed to match annotated phenotypic
data using fluorescence intensity values from
microarray probes targeting the X and Y chromosomes,
according to the method presented in the ewastools
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package [73]. Sample identity was assessed using the 59
explicit SNP genotyping probes included on the EPIC
array to index contamination and sample mix-ups, this
was also completed with ewastools functions [73]. EPIC
array data indicated that there were no samples with
contamination. We also determined that no samples had
incorrect sex annotation. These results can be found on
github https://github.com/ryanfalck/CLSA-COVID-19-

Epigenetics).
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