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INTRODUCTION 
 

Aging is a multifaceted biological phenomenon 

characterized by a progressive decline in cellular 

function and regenerative capacity, which ultimately 

contributes to the onset of age-related diseases and a 

reduction in overall physiological resilience [1, 2]. Of 

the many biomarkers indicative of the aging trajectory, 

DNA methylation has been recognized as a notably 

robust epigenetic marker [3]. These methylation 

patterns, which influence gene expression without 

altering the DNA sequence itself, are shaped by both 

genetic predispositions and environmental factors, 

providing a nuanced molecular profile of biological 

aging that extends beyond chronological age alone  

[4, 5]. 

 

The potential to estimate age through DNA methylation 

patterns has led to significant attention, resulting in the 

development of several epigenetic clocks, including 

Horvath’s pan-tissue clock [6], the skin and blood 

clock [7], GrimAge [8], Levine’s PhenoAge [9] and 

Voisin’s Muscle Epigenetic Age Test (MEAT) [10, 

11]. These epigenetic clocks serve as robust tools for 

estimating biological or chronological age, with each 

model specifically designed for either a single tissue 

type or multiple tissues. Although these clocks  

have demonstrated notable utility, their predictive 
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ABSTRACT 
 

Aging causes progressive molecular and cellular changes that impair skeletal muscle function. DNA methylation 
is a key epigenetic regulator of this process, but its role in skeletal muscle, especially in Asian populations and 
postmortem samples, remains underexplored. We analyzed DNA methylation profiles from 103 pectoralis 
major muscle samples from autopsies of South Korean individuals (18–85 years) using the Infinium EPIC array. 
Targeted validation and age prediction modeling were performed with Next-Generation Sequencing (NGS) and 
Single Base Extension (SBE). We identified 20 age-associated CpG markers linked to genes involved in muscle 
structure, metabolism, and stress response. Machine learning models built on these CpG sites showed high 
prediction accuracy, with mean absolute errors of 5.537 years in sequencing and 3.797 years in extension 
platforms, and strong correlation with chronological age. 
This study introduces the skeletal muscle epigenetic clocks in an Asian population using postmortem skeletal 
muscle tissue. These novel prediction models, based on 20 common CpG markers using SBE and NGS platforms, 
provide a robust framework for forensic applications and enable population-tailored epigenetic profiling. 
Beyond predictive utility, the identified age-associated methylation signatures offer valuable insights into the 
molecular pathways of muscle aging and hold promise as biomarkers for translational research and age-related 
clinical interventions. 
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performance typically declines when used outside the 

tissue context for which they were developed. For 

example, Horvath’s pan-tissue clock exhibited poor 

calibration in histologically muscular tissues, such as 

breast, uterine endometrium, skeletal muscle, and heart, 

underscoring the tissue specificity of DNA methylation 

profiles [6]. Therefore, biological age, reflecting 

molecular and physiological changes, does not always 

coincide with chronological age, which underscores the 

need for tissue- and context-specific epigenetic clocks. 

 

In particular, skeletal muscle presents distinct 

challenges for epigenetic age prediction because of its 

intricate cellular composition and its vital roles in 

mobility, metabolism, and health across the lifespan 

[12]. The cellular heterogeneity of skeletal muscle, 

encompassing myofibers, satellite cells, and various 

supportive cells, contributes to distinct DNA 

methylation profiles that differ from those of other 

tissues [13, 14]. Zykovich’s group identified age-related 

methylation changes in skeletal muscle from young and 

older Canadian-Americans, providing insights into 

muscle-specific aging [15]. To improve age prediction, 

Voisin’s team established the MEAT clock, an 

epigenetic clock specifically for skeletal muscle, which 

enhanced age estimation accuracy in muscle tissue [10, 

11]. More recently, proteomic clocks have demonstrated 

good performance in muscle as well as in various other 

tissues [16–18]. However, previous studies mostly 

relied on biopsy samples from limited regions, mainly 

the vastus lateralis (VL) muscle, and could not fully 

capture the methylation patterns of different muscle 

fiber types [19]. Moreover, previous studies have 

primarily focused on individuals of European ancestry, 

limiting their applicability to other populations, like 

Asians, and post-mortem contexts. Given the influence 

of genetics and environmental factors on epigenetics, 

further research involving diverse populations and a 

broader range of anatomical muscle regions is needed to 

improve muscle-specific epigenetic age models [20]. 

 

In this study, we aimed to address current limitations by 

utilizing pectoralis major (PM) muscle tissue, allowing 

us to analyze a wider range of muscle tissues from 

different anatomical locations. This approach helps 

capture regional variability in DNA methylation 

patterns within skeletal muscle. Additionally, by 

focusing on an Asian population, specifically Koreans, 

we sought to improve the accuracy and applicability of 

muscle-specific epigenetic clocks, bridging gaps in 

population diversity overlooked by previous research. 

This study aimed to identify skeletal muscle–specific 

CpG markers for age prediction and to develop robust 

CpG-based epigenetic models. In addition to 

constructing a novel prediction model from selected 

CpG methylation sites, we evaluated its robustness 

under varying DNA input conditions and examined the 

mRNA expression of genes associated with these CpGs 

to assess their biological relevance. To further establish 

tissue specificity, we compared DNA methylation 

patterns and model performance across skeletal, cardiac, 

and smooth muscle tissues. Our findings underscore the 

importance of tissue-specific DNA methylation in age 

estimation and support the development of practical 

tools for research and forensic use. 

 

RESULTS 
 

Discovery of aging-associated CpG markers from 

skeletal muscle 

 

Among the 103 PM muscle samples, 23 male samples 

aged 18 and 35–78 years were examined using the EPIC 

array to identify aging-associated CpG markers for Next 

Generation Sequencing (NGS) and Single Base 

Extension (SBE)-based model construction (Figure 1A 

and Supplementary Figure 1). Probes with detection p-

value greater than 0.05 were excluded, leaving a total of 

91,899 high-quality CpG probes for analysis 

(Supplementary Table 1). Of these, 105 CpG sites met 

the threshold of an FDR-adjusted p-value < 0.1. 

Initially, a two-way hierarchical clustering heatmap of 

500 randomly selected CpGs based on linear regression 

was generated, revealing distinct age-related 

methylation patterns (Figure 1B). In particular, among 

CpGs with a regression coefficient (β1) > 0.005, 

accelerated sites were 1.5 times more prevalent than 

decelerated ones (181 vs. 122) (Figure 1C). Overall, 

70.7% (64,995 CpGs) showed age-related methylation 

acceleration, while 29.3% (26,904 CpGs) showed 

deceleration, which aligns with previous findings [21]. 

Next, enrichment analysis based on CpG island and 

genomic position was performed using the Chi-square 

test. Examination of probe counts revealed that 

accelerated CpGs were widespread across genomic 

regions classified by CpG density and transcriptional 

activity, compared to decelerated sites (Figure 1D). 

Regarding proportion, 30.8% of accelerated CpGs and 

21.7% of decelerated CpGs were identified within 

transcriptional regulatory sites, such as the transcription 

start site (TSS), including TSS1500 and TSS200, as 

well as the 5′ untranslated region (UTR) (Figure 1D). 
 

Among the 91,899 filtered CpGs, 12 CpGs were 

selected as candidate age-associated markers according 

to the criteria of a maximum to minimum beta value 

difference (Δβ) > 0.2, R2 > 0.65 from linear regression 

between age and beta value, and an FDR-adjusted p-

value < 0.08 (Figure 1E and Table 1). To improve 

marker diversity and generalizability, eight additional 

CpGs overlapping with MEAT v.1 and v.2 were 

selected from 24,050 sites with Δβ > 0.2, despite 
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Figure 1. Identification and characterization of aging-related skeletal muscle-specific CpGs. (A) Schematic overview of 
experimental workflow. The diagram, created using BioRender, illustrates the workflow starting with the collection of PM muscle tissue, 
indicated an arrow pointing to the anatomical site clearly demarcated through shaded surrounding areas. DNA was bisulfite-converted and 
analyzed using the Infinium Methylation EPIC array to identify age-associated CpGs. Cryptic and target CpGs were examined via NGS, while 
only target CpGs were used for SBE. (B) Two-way hierarchical clustering heatmap of methylation profiles from 23 male PM muscle samples 
profiled by the EPIC array. Samples are color-coded by age group. The heatmap displays 500 randomly selected CpGs from 91,899 
significant age-related CpGs (p < 0.05), with beta values normalized to Z-scores (yellow for higher, blue for lower values). (C) Volcano plot 
showing regression coefficients (β₁) from age-related linear regression. Each dot represents a CpG with p < 0.05. Yellow and blue dots 
indicate CpGs with methylation gain and loss with age, respectively. (D) Enrichment of significant CpGs by genomic context. The Venn 
diagram shows the distribution of methylation accelerated (yellow) and decelerated (blue) CpGs among 91,899 significant CpGs. Bar plots 
display CpG distributions relative to CpG islands (left bar graph) and chromatin regions (right bar graph) using raw counts (the number of 
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CpG sites) and the Chi-square (χ²) test. Statistical significance is denoted as *p < 0.05, **p < 0.01 and **p < 0.001. (E) Filtering of CpGs 
through multi-step criteria. The Venn diagram displays the overlap of CpGs filtered by effect size (Δβ ≥ 0.2), model fit (R2 > 0.65), and prior 
muscle-specific clocks (MEAT v.1 and v.2). Twelve and eight final CpGs (underlined) were selected for NGS- and SBE-based modeling. (F) 
Heatmap of the final 20 CpGs selected for age prediction, grouped by age. Beta values are Z-score normalized; age groups are color-coded. 

 

Table 1. Age-related genetic, epigenetic, and transcriptomic changes at skeletal muscle-specific CpG markers. 

Marker CpG_ID 
Genomic Epigenetic Transcriptomic 

RefGene CpG_Island Position β changes R² Δβ p-value mRNA Exp. p-value References 

MA_01 cg06458239 ZNF549 Island TSS200 + 0.702 0.291 6.0E-07 + 0.035 [22, 23] 

MA_02 cg02426178 SLC44A2 Island Body − 0.696 0.218 7.4E-07 + 0.033 [21] 

MA_03 cg11456906 CFAP74  Body − 0.688 0.231 1.0E-06 + 0.244  

MA_04 cg07743451 TPM3 N_Shelf Body − 0.686 0.305 1.1E-06 + 0.011  

MA_05 cg14812508 TWF2  Body − 0.676 0.276 1.5E-06 − 0.011 [21, 22] 

MA_06 cg07188513 MNX1-AS1 N_Shelf Body + 0.672 0.235 1.7E-06 + 0.046  

MA_07 cg07502461 TWF2  Body − 0.667 0.327 2.0E-06 − 0.011  

MA_08 cg09926178 ACTA1 Island 5'UTR − 0.658 0.227 2.6E-06 − 0.004 [22] 

MA_09 cg15730967 CAND2 Island Body − 0.658 0.418 2.7E-06 − 0.869 [22] 

MA_10 cg07303143 KIF15 Island Body + 0.656 0.228 2.8E-06 + 0.019  

MA_11 cg17722263 MYCNUT  TSS200 + 0.653 0.214 3.1E-06 + 0.037  

MA_12 cg05543030    + 0.651 0.294 3.3E-06 . .  

MA_13 cg08390209 CDKN2B N_Shore 3'UTR + 0.613 0.321 1.0E-05 + 0.063 [22, 23] 

MA_14 cg19145398 FOXS1 S_Shore TSS1500 + 0.426 0.223 7.4E-04 + 0.008  

MA_15 cg26149678 IL18BP  TSS200 + 0.342 0.230 3.4E-03 + 0.001 [22] 

MA_16 cg12966875 SLPI  TSS1500 − 0.337 0.269 3.7E-03 + 0.025 [22] 

MA_17 cg06059810 RUFY3  Body + 0.320 0.268 4.9E-03 + 0.001  

MA_18 cg17922226 CLCN1  Body − 0.304 0.291 6.4E-03 + 0.000  

MA_19 cg06144905 PIPOX  TSS200 + 0.287 0.233 8.5E-03 + 0.004  

MA_20 cg13985639 
HOGA1 

(DHDPSL) 
 Body − 0.279 0.241 9.6E-03 + 0.011  

Genomic information was obtained from the Illumina EPIC array manifest, aligned with data from the UCSC Genome Browser. Methylation 
changes were derived from EPIC array analyses, with age-related regression results presented as statistical indicators with R-squared (R²) 
values and the difference between maximum and minimum beta value (Δβ). Methylation acceleration with aging is indicated by + sign, 
while methylation deceleration is indicated by - sign. mRNA expression changes between young and old groups, identified in this study, 
align with trends reported in previous research, highlighting consistent age-associated alterations. An increase in mRNA expression levels in 
the older group is denoted by + sign, while a decrease is denoted by - sign. 

 

R2 < 0.65, enhancing applicability across various 

populations and muscle types (Figure 1E and Table 1). 

The final set of 20 muscle-specific CpGs, labeled 

MA_01 to MA_20, represents the Muscle Age 

numbering (Table 1). Of these, 10 markers displayed 

age-related methylation acceleration, while the 

remaining 10 showed deceleration as determined from 

the EPIC array data (Figure 1F). We compared the 20 

markers with probes from GEO datasets to determine if 

they were previously reported or novel. Methylation 

data from these markers were compared with 

GSE50498, which contains VL muscle samples from 24 

young and 24 elderly individuals [15], and GSE114763, 

consisting of VL muscle samples from 8 Europeans [22] 

(Supplementary Figure 2). Nine markers showed similar 

methylation patterns, with R2 differences below 0.4 

between VL muscle data from Caucasian donors and 

PM muscle data from Korean samples. The remaining 

markers, however, showed marked discrepancies. These 

results suggest that while methylation patterns are 

generally consistent, differences in predictive accuracy 

may reflect anatomical and population variations. This 

highlights the need for new, robust age-related CpG 

markers and a better understanding of their genomic 

context. 

 

Genomic analysis and functional implications of the 

20 aging-associated CpG markers 

 

Among the target 20 CpGs, 10 markers exhibited 

methylation acceleration. Nine of these were mapped to 

genes including ZNF549, MNX1-AS1, KIF15, 

MYCNUT, CDKN2B, FOXS1, IL18BP, RUFY3, and 
PIPOX (Table 1), while one marker (MA_12) was not 
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associated with any annotated gene. Conversely, the 10 

CpGs showing methylation deceleration were linked to 

nine genes including SLC44A2, CFAP74, TPM3, TWF2, 
ACTA1, CAND2, SLPI, CLCN1, and DHDPSL. The 

biological functions and age-associated disease 

relevance of these differentially methylated genes were 

evaluated using the Ingenuity Pathway Analysis (IPA) 

platform to reveal distinct biological pathways 

influenced by methylation changes with aging. 

 

Functional analysis identified statistically significant 

differences across 21 canonical pathways (p < 0.05), 

with the top eight pathways (p < 0.01) predominantly 

influenced by five key molecules: ACTA1, TPM3, 
HOGA1, PIPOX, and KIF15 (Figure 2A). These 

molecules were linked to muscle functions, contraction, 

and metabolism. Furthermore, 276 diseases associated 

with transcriptional changes driven by differential 

methylation (p < 0.05) were identified, with 23 showing 

stronger significance (p < 0.001), including 13 directly 

related to myopathy (Figure 2B). Notably, three muscle-

specific genes, ACTA1, TPM3, and CLCN1, were 

associated with hereditary skeletal myopathy and 

congenital myopathy. 

 

To examine how methylation affects transcription, RNA 

expression of the 18 genes associated with the 20 target 

CpGs were analyzed using RT-qPCR (Figure 2C). 

Significant differences between young and old 

individuals were observed for 14 of these genes. In 

particular, expression of the CLCN1, IL18BP, and 

RUFY3 genes exhibited more than two-fold changes, 

with highly significant statistical differences (p < 

0.001). Notably, with advancing aging, mRNA levels of 

genes exhibiting methylation change in regulatory 

regions, including the 5′UTR and TSS positions, 

displayed a positive correlation, except for the SLPI 
gene (Table 1). This trend is potentially explained by 

DNA methylation occurring within regulatory regions 

characterized by low CpG density [23]. The RNA 

expression findings for these 20 genes are consistent 

with previous transcriptome and proteome investiga-

tions [24–26] (Table 1). 

 

Construction and validation of age prediction model 

using NGS data 

 

To develop an age prediction model representative of 

muscle aging, we analyzed NGS data from 20 selected 

CpG markers. MiSeq sequencing generated 

approximately 39 million reads that passed the initial 

quality assessment, with an average of 249,133 read 

pairs per sample, ranging from 95,134 to 608,471. 
Following processing with CLC software, the average 

read count per sample was reduced to 50,892, ranging 

from 18,043 to 130,532 (Supplementary Figure 3A). 

Among the 20 target amplicons, 14 demonstrated 

average coverages between 1,276 and 8,967 reads per 

CpG, exceeding the 1,000 read threshold for reliable 

methylation quantification (Supplementary Figure 3B). 

Although the other six amplicons satisfied the 

theoretical coverage required for a 90% confidence 

interval [27], four amplicons with coverage below 700 

reads per CpG were excluded from model construction 

to maintain data reliability. 

 

An overview of the machine learning workflow based 

on NGS and SBE data is illustrated in Figure 3A. In 

addition to the 16 primary CpGs from the EPIC array, 

adjacent cryptic CpGs were detected and considered as 

supplementary candidate loci for model development, 

potentially capturing subtle but informative age-

associated methylation changes (Figure 1A). Model 

construction included all 16 amplicons, comprising the 

16 target CpGs and 54 additional cryptic CpGs. A total 

of nine models were constructed using various machine 

learning approaches. Each model was fitted using a 

training dataset (n = 71) and evaluated on an 

independent test set (n = 32), resulting in mean absolute 

error (MAE) values ranging from 5.537 to 7.017 in the 

test set (Figure 3B). The detailed formulas of all models 

are presented in Supplementary Table 2. Of these, the 

Elastic-net (Ela) model, optimized with an alpha of 

0.0178 and an L1 ratio of 0.9852, selected 9 target 

CpGs and 12 cryptic CpGs across 12 amplicons (Table 

2). This model achieved a MAE of 3.184 in the training 

set and 5.537 in the test set. Although the performance 

was robust, the discrepancy between training and test 

MAE implies a risk of overfitting. To address this, we 

attempted to reduce overfitting by applying stronger 

regularization and post hoc feature selection, however, 

these approaches did not improve model performance 

(Supplementary Table 3). To further evaluate reliability, 

Leave-One-Out Cross-Validation (LOOCV) was 

performed on the training set, yielding a MAE of 3.916. 

Additionally, we performed 5-fold and 10-fold cross-

validation, which resulted in MAE values of 3.8629 and 

3.8743, respectively. To further assess robustness and 

determine whether the Ela model captures true age-

associated signals rather than random noise, we 

performed permutation testing, which demonstrated that 

the model is not simply overfitting to random structure 

(Supplementary Figure 4). The Elastic Net model was 

identified as the best-performing approach, exhibiting 

the lowest MAE in the test set and reduced overfitting 

compared with other models. Remarkably, the Ela 

model achieved strong predictive accuracy using  

only 21 CpGs across 11 amplicons, highlighting the 

efficiency of a compact marker panel. Collectively, 
these results establish the Ela model with 21 CpGs as a 

practical and robust tool for predicting chronological 

age (Figure 3C and Table 2). 
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Figure 2. Functional enrichment and transcriptional analysis of aging-associated skeletal muscle-specific CpG loci. (A, B) 

Ingenuity canonical pathways of aging-related CpGs and classification of diseases and functions. Canonical pathways are ranked by -log(p-
value) (right x-axis) and associated molecules shown (A). Disease and function categories are similarly ranked and visualized (B). Pathways 
directly linked to muscle functions are marked with an asterisk (*). These pathways were identified through IPA program. (C) mRNA 
Transcriptional Levels of Genes Associated with Aging-Related CpGs. Nine genes showed methylation deceleration at the target CpG sites 
with aging, while nine others displayed methylation acceleration. mRNA transcription levels of the methylation-decelerated genes are 
presented in the left graph, and the methylation-accelerated genes are shown in the right graph. All mRNA levels correspond to genes with 
muscle-specific CpGs associated with aging, measured using RT-qPCR in pectoralis major muscle. Tissue samples from 11 individuals were 
used and categorized into two age groups. The young group (n = 6) consisted of individuals aged 21, 24, 27, 29, 33, and 35 years, including 
three males and three females. The old group (n = 5) included individuals aged 63, 65, 68, 74, and 77 years, comprising four males and one 
female. Genes with target CpGs located in the regulatory regions TSS1500, TSS200, and 5'UTR are marked with a hash (#). Statistical 
significance was assessed using Student’s t-test, with significant differences indicated as *p < 0.05, **p < 0.01, and ***p < 0.001. Data are 
presented as the mean ± standard error of the mean (SEM), highlighting significant differences across groups. IGR, intergenic region. 

2814



www.aging-us.com 7 AGING 

 
 

Figure 3. Development and validation of age prediction models using the NGS system. (A) Schematic of the data processing 

workflow for NGS and SBE-based models, created using BioRender. Data were divided into training and test sets at a 7:3 ratio. Supervised 
feature selection involved correlation analysis and multicollinearity filtering, followed by model construction using forward selection, 
stepwise selection, penalized regression, and decision tree models with optimized parameters. Model validation was performed through 
LOOCV, with performance evaluated by Pearson’s r, R2, MAE, and RMSE. Finally, the validated prediction model was applied to test sets. (B) 
Performance heatmap of nine machine learning models developed from NGS data. Models differ by algorithm (LR, SLR, Ela, Las, Rid, RF, GB, 
XGB) and CpG set. Metrics (r, R², MAE, RMSE) were calculated for both training and test sets (n = 103). LOOCV was used for training 
validation. Heatmap color scale reflects relative performance for each column criterion and the top NGS model is indicated in bold. (C) 
Prediction accuracy of the best-performing NGS model. The best model’s accuracy was evaluated by comparing predicted age with 
chronological age for 103 samples in both the training (orange) and test (blue) sets (left plot). Residuals between DNA methylation (DNAm) 
age and chronological age are plotted (right plot). Regression lines are shown with each color, with 95% confidence intervals shaded. Model 
performance metrics are summarized in the accompanying table. Abbreviations: LOOCV: Leave one out cross validation; LR: Linear 
regression; SLR: Stepwise Linear Regression; Ela: ElasticNet; Las: Lasso regression; Rid: Ridge regression; XGB: XGBoost; RF: RandomForest; 
GB: GradientBoosting. 
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Table 2. Regression coefficients of best-performing SBE and NGS-based age prediction models. 

Marker Amplicon Chr:Position SBE coefficient NGS coefficient 

Intercept . . 25.31137334 105.9722 

MA_01 

target chr19:57527206 87.9153 30.6368 

cryptic chr19:57527208 . 8.2441 

cryptic chr19:57527211 . 15.3597 

cryptic chr19:57527218 . 24.8859 

MA_02 
target chr19:10636467 . −24.7511 

cryptic chr19:10636497 . 7.3709 

MA_03 cryptic chr1:1937587 . 10.4319 

MA_04 target chr1:154179209 8.7945 −3.3927 

MA_08 
target chr1:229433354 −40.7868 0.0001 

cryptic chr1:229433453 . 12.7462 

MA_09 

cryptic chr3:12815282 . −29.4345 

cryptic chr3:12815338 . −11.4447 

cryptic chr3:12815426 . −40.0636 

cryptic chr3:12815466 . −30.3562 

MA_10 

cryptic chr3:44761956 . 9.3494 

target chr3:44761961 132.3527 53.4929 

cryptic chr3:44761965 . 29.5532 

MA_11 target chr2:15920273 . 14.5369 

MA_13 target chr9:22005565 28.4466 17.2336 

MA_18 target chr7:143316521 −56.2316 −23.7932 

MA_19 target chr17:29042762 48.0441 38.6166 

This table presents the regression coefficients for the CpG markers used in the best-performing age prediction models: the 
SBE-based 7CpGs_SLR model and the NGS-based 21CpGs_Ela model. The amplicon column indicates whether the CpG marker 
was part of the skeletal muscle specific CpGs discovered from EPIC array (target) or was additionally identified within the 
same amplicon using NGS (cryptic). The Chr:Position column shows the chromosomal location of each CpG marker. The 
coefficients in the SBE and NGS columns represent the contribution of each marker to the final age estimation formula. 

 

Construction and validation of age prediction model 

using multiplex SBE data 

 

To ensure practical applicability, we aimed to develop 

a multiplex SBE system. Initially, we generated 

methylation data from 68 samples using four 

multiplexed sets on the SBE platform (Supplementary 

Figure 5). The association between age and methylation 

levels at each marker was evaluated using Pearson’s r 

from linear regression analysis. Among the 20 target 

CpG markers identified in this study, 3 demonstrated 

strong correlations (r > 0.7), including MA_05 (r = 

0.7488), MA_10 (r = 0.8174), and MA_19 (r = 0.7865), 

and 12 exhibited moderate correlations (0.5 < r < 0.7) 

(Supplementary Figure 6). Before constructing pre-

dictive models, the methylation data were evaluated for 

adherence to statistical assumptions and normality. 

Values for skewness (−0.059) and kurtosis (−0.476) 

indicated a normal distribution (Supplementary Figure 

7A). Normality of residuals was confirmed through a Q-

Q plot, and the Durbin-Watson test (1.684) supported 

the independence of errors without autocorrelation 

(Supplementary Figure 7B). Through the multi-

collinearity test, marker MA_14 was excluded due to a 

variance inflation factor of 11.25, exceeding the 

threshold of 10 (Supplementary Figure 7C). 

 

To identify the most significant markers, 10 distinct 

models were developed using the remaining 19 CpGs 

with various machine learning techniques. All models 

achieved strong performance, with r > 0.902 and R² > 

0.754 in training set, and r > 0.824 and R² > 0.623 in the 

test set (Figure 4A). LOOCV applied to the training set 

resulted in MAEs ranging from 3.231 to 6.197 years, 

while the test set showed MAEs between 5.161 and 

9.120 years. Stepwise linear regression (SLR) identified 

a 7 CpG subset, overlapping with the top-performing 

21CpG_Ela model derived from NGS data. The SLR 

model provided the best balance of predictive accuracy 

and practical simplicity, achieving an MAE of 5.463 

and RMSE of 6.894 in the test set (Figure 4A). Three of 

these 7 CpGs (MA_13, MA_18, MA_19) coincided 
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Figure 4. Development and validation of age prediction models using the SBE system. (A) Performance heatmap of 10 machine 

learning models based on the SBE platform. Models differ by algorithm (LR, SLR, Ela, Las, Rid, RF, GB, XGB) and number of CpGs used. The 
performance metrics such as r, R2, MAE, and RMSE values were calculated for both training and test sets. A total of 68 samples were used, 
with 43 assigned to the training set and 25 to the test set. An additional 35 samples were later included, resulting in a final dataset of 103 
samples, consisting of 71 samples for training and 32 for testing, which were used for the final modeling. The heatmap displays relative 
values using a red-to-blue gradient for each column criterion. The top-performing SBE model is shown in bold. (B) Electropherogram of a 
unified SBE system using seven CpGs selected from both NGS and SBE models. Capillary electrophoresis was performed using a 3500 
genetic analyzer (upper plot). The log10(RFU) values for each peak are shown in a box plot, displaying the mean ± SEM (lower plot). Blue 
fluorescence represents Guanine (G), representing methylated cytosine, while green fluorescence indicates Adenine (A), representing 
unmethylated cytosine. (C) Age prediction performance of the best-performing SBE model. The best model’s accuracy was assessed by 
comparing predicted age with chronological age for 103 individuals in the training and test sets, represented by orange and blue points, 
respectively (left plot). Residuals between DNAm age and chronological age were plotted (right plot). Regression lines and 95% confidence 
intervals are shown. Performance metrics for the model are summarized in the accompanying table. 
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with previously identified MEAT markers, while the 

other four (MA_01, MA_04, MA_08, MA_10) were 

novel to this study. 

 

To ensure accuracy and usability, a unified SBE system 

was established, targeting only the 7 CpGs (Figure 4B). 

Utilizing this consolidated system, methylation data 

from 103 samples were collected, and split into a 

training set (70%, n = 71) and a test set (30%, n = 32). 

The SLR_7CpG model underwent additional 

optimization, improving predictive accuracy with r 

values of 0.951 for both sets. The refined model 

achieved MAEs of 4.018 years in the training set and 

3.797 years in the test set, demonstrating strong 

robustness for age prediction (Figure 4C). The 

coefficients and intercept for the final model are 

presented in Table 2. 

 

Assessment of histological applicability and model 

validity 

 

To confirm the model’s accuracy and versatility, we 

expanded the evaluation to include different muscle 

tissue types. Since tissue-specific cellular composition 

leads to unique methylation patterns, the model’s 

performance was tested on cardiac and smooth muscle 

samples from the heart and uterus, respectively. When 

the SBE-based skeletal muscle age prediction system 

(SLR_7CpG) was applied, the heart yielded a high 

MAE of approximately 24.3 years, indicating  

poor performance (Figure 5). Similarly, the uterus 

demonstrated limited accuracy with a MAE of 

approximately 16.2 years (Figure 5). To assess tissue 

specificity, EPIC array data were analyzed using linear 

regression to examine the relationship between 

chronological age and beta values for the 20 skeletal 

muscle-specific CpG markers in cardiac and PM muscle 

tissues. Except for MA_10 and MA_19, the R² values 

revealed substantial differences between cardiac and 

skeletal muscle types ranging from 0.261 to 0.683 

(Supplementary Figure 8). These findings confirm that 

the 20 CpG markers and the prediction model are highly 

specific to skeletal muscle. The diminished accuracy in 

cardiac and smooth muscle likely arises from 

differences in cellular composition, such as myocardial 

cells in the heart and uterine myocytes in the 

myometrium, which create distinct methylation profiles. 

 

To evaluate the robustness of the assay, we examined 

the effect of varying DNA input amounts on 

methylation accuracy and age prediction. Methylation 

values were calculated from the ratio of methylated to 

unmethylated sequences generated via PCR 

amplification. The methylation consistency of the 7 core 

CpGs included in both SBE and NGS models was 

assessed using artificially methylated DNA controls 

(Supplementary Figure 9). The average R2 values were 

0.9922 for NGS and 0.9871 for SBE, demonstrating 

minimal PCR bias. Importantly, when DNA inputs were 

at least 1.67 ng, the median methylation differences 

remained under 5% for all markers, except MA_04 in 

the SBE system (Supplementary Figure 10A). However, 

MA_13 and MA_18 in the NGS system, as well as 

MA_19 in the SBE system, showed comparatively 

greater variability, with standard error of the mean 

(SEM) values exceeding 0.01 in methylation differences 

at the 1.67 ng input level. Consistent with previous 

reports, DNA inputs of at least 10 ng showed reliable 

performance [28]. Reducing DNA input from 13.33 ng 

to 6.67 ng increased the MAE by 1.46 years in the SBE 

model and 2.61 years in the NGS model, both of which 

were constructed using the same set of 7 CpG markers

 

 
 

Figure 5. Applicability of the best-performing SBE model to cardiac and smooth muscle tissues. Plots compare DNAm age and 

chronological age using the best SBE model across tissue types. Left: skeletal (gray) vs. cardiac muscle (red, n = 19); right: skeletal vs. 
smooth muscle from uterus (purple, n = 19). Skeletal muscle samples (n = 103) are shown in gray on both plots. Solid lines represent the 
regression relationships for each tissue type, with 95% confidence intervals shaded in corresponding colors. Performance metrics for each 
tissue are summarized in the accompanying table. 

2818



www.aging-us.com 11 AGING 

(Supplementary Figure 10B). Collectively, these results 

highlight the importance of controlling DNA input to 

maintain prediction accuracy, with MAEs remaining 

below 6 years. 

 

DISCUSSION 
 

Skeletal muscles are composed of various types of 

fibers, generally classified into six types (I, IC, IIC, IIA, 

IIAB, and IIB) based on standard myofibrillar 

adenosine triphosphatase histochemistry [29]. Most 

skeletal muscles possess a mixed fiber composition, 

with slow-twitch fibers (Type I) and fast-twitch fibers 

(Type II) being the most prevalent [12, 30]. Despite this 

diversity, studies investigating skeletal muscle have 

primarily concentrated on the VL muscle, which 

features a heterogeneous distribution of Type I, IIA, and 

IIB fibers [19]. This heterogeneity has been reported to 

reflect significant variability in fiber composition, 

which may contribute to sex-specific differences and 

complicate the interpretation of fiber-type-specific 

molecular and epigenetic alterations [29]. These 

complexities highlight the need to elucidate the 

molecular and epigenetic characteristics of individual 

muscle fiber types and specific muscle groups, 

particularly in research concerning muscle aging and 

functional regulation. Conversely, the PM muscle in 

broiler chickens, which is composed almost exclusively 

of Type IIB fibers, represents a highly homogeneous 

system, making it suitable for studying the unique 

aspects of fast-twitch fibers [31]. Despite its potential, 

the comprehensive epigenetic profile of PM tissue is 

still insufficiently characterized. Within this framework, 

utilizing methylation profiling of an aging-gradient 

group of human PM samples offers an opportunity to 

enhance molecular investigations and gain a more 

detailed understanding of fiber-type-specific adaptations 

and dysfunctions linked to aging and disease. 

 

In various mammalian species, especially in rodents 

such as rats and mice, aging is associated with distinct 

fiber type transitions, including a shift from Type IIA to 

Type I in slow-twitch soleus muscles and from Type 

IIB to Type IIX in fast-twitch muscles [32–34]. In 

contrast, in humans, the proportion of fast-twitch 

MyHC IIa and IIx isoforms diminishes with age, mainly 

due to the preferential atrophy of Type II fibers, while 

Type I fibers are relatively maintained [35–38]. 

Thereby, histochemical myofibrillar type profiles 

appear to remain relatively stable during aging, despite 

underlying structural and functional changes [30, 39, 

40]. These observations suggest that aging primarily 

impacts muscle functionality and integrity through the 

selective atrophy of Type II fibers rather than through 

pronounced fiber-type switching. Notably, Type IIB 

fibers, with low oxidative and high glycolytic capacity, 

are more susceptible to aging-related changes than Type 

I fibers, which have greater oxidative capacity and 

resistance to cellular stress [41, 42]. Given these 

differences in susceptibility, epigenetic changes in Type 

IIB fibers may further contribute to the age-related 

decline in muscle function. In this study, we observed 

that aging in PM muscle samples resulted in 2.4 times 

more hypermethylated CpGs compared to hypo-

methylated CpGs, highlighting the potential role of 

epigenetic modifications in the regulation of muscle 

function with aging (Figure 1D). 

 

In this study, 20 CpG markers showing age-related 

hypermethylation or hypomethylation were identified as 

skeletal muscle-specific markers (Figure 1E, 1F). These 

markers were associated with 15 genes linked to 

myopathies and Type IIB fiber function (Figure 2A, 

2B). Many of these genes are linked to aging-related 

functional decline, influencing metabolism, structural 

integrity, and stress response. Aging process is closely 

tied to declines in mitochondrial function and oxidative 

capacity, likely driven by epigenetic changes [43, 44]. 

Among those genes related to oxidative metabolism, 

such as ACTA1, IL18BP, and HOGA1, the hyper-

methylation of HOGA1 gene may suppress its 

expression, contributing to the reduced oxidative 

efficiency observed in Type IIB fibers (Table 1 and 

Figure 2C). In contrast, glycolytic activity in Type IIB 

fibers may be sustained to compensate for this decline, 

as seen in the expression of genes like CLCN1, TPM3, 

TWF2, and PIPOX. Notably, hypomethylation of 

TPM3, which encodes a major component involved in 

glycolytic muscle contraction, corresponds with 

increased mRNA expression in the PM muscle samples 

from elderly individuals (Table 1 and Figure 2C). 

Additionally, genes such as CDKN2B and KIF15 impact 

energy metabolism, with hypomethylation of CDKN2B 

potentially promoting muscle cell senescence. Structural 

genes including ZNF549, RUFY3, and SLC44A2 are 

involved in muscle fiber identity, with the 

hypermethylation of SLC44A2 potentially disrupting 

cellular transport, further contributing to muscle 

deterioration. To provide a broader aging perspective, 

we aligned these genes with the hallmarks of aging, as 

summarized in Supplementary Table 4 [31]. 

 

FOXS1 regulates protective stress-response pathway in 

aging muscles, while SLPI acts as an anti-inflammatory 

mediator and controls cell proliferation. Despite 

expectations that transcriptional of these genes would 

decline with age, we observed increased expression in 

PM muscle samples from older individuals (Table 1, 

Figure 2C). This may reflect the influence of the 
myofibrotic phenotype. Similarly, the pro-IL-18BP 

exhibited increased mRNA expression despite 

accelerated methylation, underscoring that DNA 
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methylation and gene expression are not invariably 

inversely related [45]. This discrepancy may be 

explained by the low CpG density in its promoter 

region. 

 

Although some CpGs are located within CpG islands in 

the transcription region, several exhibited a positive 

association between methylation and gene expression. 

For example, despite hypomethylation of ACTA1, its 

mRNA expression decreased. Impaired ACTA1 

function may reduce contractile efficiency, resulting in 

an increased dependence on anaerobic pathways. These 

observations highlight the multidimensional effects of 

DNA methylation on gene transcription and the intricate 

interplay of epigenetic mechanisms. This complexity 

necessitates further investigation into the structural 

dynamics of gene regulation in aging skeletal muscle, 

particularly regarding muscle fiber types and specific 

genetic loci. 

 

Skeletal muscle is composed of various cell types, 

including satellite cells, myoblasts, and mature muscle 

fibers, among others [46, 47]. Although the single-cell 

analysis, which would precisely characterize 

methylation patterns specific to each cell subtype, was 

not performed on PM muscle in this study, we 

employed stringent procedures during tissue sampling 

to minimize contamination from non-muscle cells. 

Blood and visually distinguishable adipose tissue were 

meticulously removed with precision, and despite 

these rigorous precautions, some degree of sample 

heterogeneity could have affected the methylation 

outcomes. To gain a deeper understanding of 

methylation alterations at a single-cell resolution, future 

investigations incorporating single-cell epigenomic 

approaches are warranted. We additionally applied a 

novel, skeletal muscle-specific epigenetic predictor to 

cardiac and smooth muscles to examine inter-muscle 

epigenetic differences (Figure 5). Our findings revealed 

significant differences in predictive accuracy, 

suggesting that skeletal, cardiac, and smooth muscles 

have distinct DNA methylation profiles. The differences 

could be driven by their developmental origins, 

functional demands, regenerative capacities, metabolic 

requirements, and responses to stress [33, 48–51]. These 

differences highlight the tissue-specific nature of 

epigenetic regulation. 

 

While previous studies on muscle diseases have focused 

on genetic mutations, this study offers methylation 

patterns during natural aging, identifying potential 

epigenetic factors contributing to muscle loss and 

disease. For example, sarcopenia predominantly 
impacts Type IIB fibers, likely due to epigenetic 

processes such as hypermethylation-driven suppression 

of anabolic pathways and hypomethylation of genes 

promoting inflammation [21, 52–54]. In the 

Hertfordshire Sarcopenia Study, comparison of the 

muscle transcriptome between older individuals with 

sarcopenia and age-matched healthy controls revealed 

that mitochondrial dysfunction was the predominant 

transcriptional signature associated with sarcopenia 

[55]. In this context, mitochondrial dysfunction–related 

genes such as SLC44A2, TPM3, PIPOX, and DHDPSL, 

which are represented among the 20 CpGs identified in 

our study, may play a contributory role in the 

pathophysiology of sarcopenia. Additionally, DNA 

methylation, histone modifications, and non-coding 

RNAs may act coordinately to regulate gene expression 

in models of skeletal muscle atrophy [56]. This raises 

the possibility that CpG loci mapping to genes involved 

in inflammation, stress response, and metabolic 

regulation, including the 20 CpGs identified in our 

study, could predispose skeletal muscle to accelerated 

atrophy under age-associated stressors. In this regard, if 

the methylation status of the 20 age-related CpG 

markers identified in this study can be precisely 

modulated, it may help alleviate or delay muscular 

diseases such as sarcopenia. While technically 

demanding, modulating targeted DNA methylation will 

offer a potential therapeutic avenue. This underscores 

the importance of epigenetic interventions in the 

prevention or treatment of aging-related muscle 

diseases, paving the way for future research into 

targeted epigenetic therapies. 

 

From a practical perspective, developing an epigenetic 

age predictor based on skeletal muscle holds significant 

promise, especially in forensic science. Unlike Voisin’s 

MEAT clock, which is based on biopsy-derived VL 

muscle samples from European populations, the models 

introduced in this study mark the use of post-mortem 

PM muscle samples from a Korean population 

(Table 2). While the array-based MEAT model showed 

considerable prediction accuracy in Korean PM muscle 

samples [20], its broader application is hindered by 

stringent requirements for DNA quantity, high costs, 

and limited practical feasibility. By contrast, the newly 

developed SBE and NGS models are expected to 

overcome these limitations by optimizing DNA input, 

the number of CpG markers, and cost-effectiveness. 

Notably, our models could aid in identifying victims by 

enabling accurate estimation of DNA methylation age 

from degraded human remains in forensic science. 

 

In summary, this study identified 20 skeletal muscle-

specific CpG markers with aging by analyzing genome-

wide methylation data from pectoralis major muscle 

autopsy samples using the EPIC array. These markers 
are expected to be pivotal in furthering insight into the 

genetic and epigenetic underpinnings of aging and their 

connection to age-related genetic disorders. Based on 
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these markers, skeletal muscle-specific age prediction 

models with high prediction accuracy were constructed 

using both SBE and NGS platforms. These models 

exhibited robust performance, demonstrated skeletal 

muscle tissue specificity, as evidenced by the reduced 

predictive accuracy in smooth and cardiac muscle 

tissues, and showed cost-effectiveness, highlighting 

their practical utility. The methylation profiles and 

prediction tools developed in this study present valuable 

resources for researchers, clinicians, and forensic 

scientists, offering novel insights for investigating 

skeletal muscle biology, age-related muscular disease, 

and human aging. 

 

MATERIALS AND METHODS 
 

Study samples 

 

Ethical approval for this study was obtained from the 

Institutional Review Board of Seoul National University 

Hospital (IRB NO. C–1912–053-1087). PM muscle 

samples were collected via autopsy from 103 deceased 

human individuals of South Korean descent, aged 18 to 

85 years, comprising 80 males and 23 females 

(Supplementary Figure 1). Cardiac (heart) and smooth 

muscle (uterus) samples were also collected from the 23 

female donors. To minimize the effect of post-mortem 

interval (PMI) on DNA integrity and methylation status, 

samples were isolated from non-lesioned tissue areas of 

uncompromised tissues to ensure integrity with PMIs 

ranging from 1 to 12 days, averaging 2.4 days. After 

excision, all tissue samples were promptly stored at 

−80°C to preserve their molecular stability until further 

processing. 

 

Genomic DNA extraction 
 

Genomic DNA (gDNA) was extracted from tissue 

samples using the QIAamp® DNA Mini Kit (Qiagen, 

Hilden, Germany). Key adjustments to the protocol 

included processing 25 mg of tissue with a 4-hour lysis 

step, optimized to maximize extraction efficiency. The 

purified gDNA was quantified using the Qubit™ dsDNA 

HS Assay Kit on a Qubit™ Flex Fluorometer (Thermo 

Fisher Scientific, Waltham, MA, USA) and 

subsequently stored at −20°C. 

 

Identification of skeletal muscle-specific aging-

related CpG sites 
 

To identify age-associated CpG sites in skeletal muscle, 

DNA methylation profiles from 23 male PM muscle 

samples were analyzed, including twenty from the 
GSE244996 dataset and three newly generated for this 

study (GSE294234). Genome-wide DNA methylation 

profiling was conducted using the Illumina Infinium 

Methylation EPIC BeadChip array version 1 (Illumina, 

San Diego, CA, USA) in collaboration with Macrogen 

Inc. Bisulfite conversion was performed on 250 ng of 

gDNA to facilitate methylation-specific analysis, 

followed by amplification to ensure sufficient DNA 

quantity for hybridization. The DNA was enzymatically 

fragmented, hybridized to sequence-specific probes on 

the array, and underwent single-base extension 

incorporating labeled nucleotides. After staining, arrays 

were scanned on an Illumina scanner. Fluorescent 

intensity data were extracted and preprocessed in R with 

the lumi package to perform background correction and 

dye bias equalization. Probes with detection p-value ≥ 

0.05 in more than 25% of samples or missing values 

(NA) in any sample were excluded. Beta Mixture 

Quantile (BMIQ) normalization was implemented to 

standardize methylation values. The resulting Beta and 

M-values were calculated, and CpG site selection was 

further refined using statistical criteria, including 

detection p-value, a maximum beta value difference 

(Δβ) and R2 values from regression between beta values 

and chronological age. For comparison, VL muscle data 

from GSE114763 (n = 8) and GSE50498 (n = 47), and 

cardiac muscle data from GSE244996 (n = 20), were 

obtained from the Gene Expression Omnibus (GEO). 

 

Genomic analysis of aging-associated genes 

 

To identify enriched signaling and metabolic pathways, 

as well as to predict the activation or inhibition of 

upstream regulators and evaluate downstream 

consequences on diseases, biological functions, and 

phenotypes, the IPA plugin version 23.0 (Qiagen, 

Frederick, MD, USA) was utilized. Inferences for 

expression and pathway analysis were made indirectly 

using raw p-values and regression coefficients obtained 

from EPIC array data. Statistical significance was 

determined by a −log10 (p-value) > 1.3, corresponding 

to a p-value < 0.05. 

 

mRNA expression analysis by quantitative real-time 

PCR 

 

Total mRNA was extracted from 10 mg of muscle 

tissue using QIAzol and the RNeasy Plus Universal 

Mini Kit (Qiagen) and quantified using a NanoDrop 

spectrophotometer (Thermo Fisher Scientific, Waltham, 

MA, USA). Relative mRNA expression levels were 

analyzed through Real-Time quantitative PCR (RT-

qPCR) on a CFX Connect Real-Time PCR System 

(Bio-Rad Laboratories, Hercules, CA, USA), utilizing 

the SensiFAST SYBR Lo-ROX One-Step Kit (Meridian 

Bioscience, Cincinnati, OH, USA) and custom-designed 

primer sets (Supplementary Table 5). To better assess 

the correlation between methylation of the target CpGs 

and mRNA transcription levels, custom primers were 
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designed to amplify mRNA regions encompassing or 

adjacent to the 20 CpG sites of interest. 

 

Bisulfite conversion 

 

Bisulfite conversion was performed on 200 ng of gDNA 

using the EZ DNA Methylation-Lightning Kit (Zymo 

Research, Irvine, CA, USA), following the 

manufacturer’s instructions. The resulting bisulfite-

converted DNA (bcDNA) was eluted in 15 µl of buffer, 

yielding 13.33 ng/μl, assuming 100% recovery [57]. 

Sensitivity was assessed by serial dilutions down to 

12.5 ng of gDNA input, resulting in 0.83 ng/µl of 

bcDNA. To validate methylation accuracy, standards 

were created by mixing fully methylated (100%) and 

unmethylated (0%) DNA in 10% increments using the 

EpiTect PCR Control DNA Set (Qiagen). 

 

Primer design for methylation analysis 

 

Bisulfite sequencing primers were designed using 

Pyromark Assay Design Software version 2.0 (Qiagen) 

and Bisearch (http://bisearch.enzim.hu), with optimal 

parameters including a melting temperature range of 

56–62°C, 100 bp amplicon size, 25 bp primer length, 

and exclusion of degeneracy and secondary structures 

(Supplementary Table 6). SBE primers with extended 

T-tails for multiplex analysis were designed 

(Supplementary Table 7), and the final primer sets used 

in the model are detailed in Supplementary Table 8. 

 

Bisulfite sequencing using single base extension 

 

For the SBE assay, 1 µL of bcDNA (13.33 ng/µL) was 

amplified in a 20 µL multiplex PCR reaction containing 

2 µL of 10× Gold ST*R Buffer (Promega, Madison, 

WI, USA), 3.5 U of AmpliTaq Gold DNA Polymerase 

(Applied Biosystems, Foster City, CA, USA), and 

sequence-specific primers. The PCR protocol began 

with an initial denaturation at 95°C for 11 minutes, 

followed by 34 cycles of 94°C for 20 s, 56°C for 60 s, 

and 72°C for 30 s, concluding with a final extension at 

72°C for 7 min. The amplified PCR products were first 

purified using EXOSAP-IT™ (Applied Biosystems) at 

37°C for 45 min, then heat-inactivated at 65°C for 15 

min. DNA methylation detection by SBE was 

performed in a 10 ul reaction mixture containing 1 µL 

of 10× SNaPshot Multiplex Ready Reaction Mix, 2 µL 

of 5× BigDye™ Terminator v.1.1 and 3.1 Sequencing 

Buffer (both from Applied Biosystems), SBE primers, 

and 1 µL of purified PCR product. SBE thermal cycling 

conditions consisted of 96°C for 10 s, 50°C for 5 s, and 

60°C for 30 s, repeated for a total of 28 cycles. The SBE 
products were then purified using recombinant SAP 

(Applied Biosystems) under the identical conditions as 

the previous purification. All PCR and SBE reactions 

were conducted on a Veriti 96-Well Thermal Cycler 

(Applied Biosystems, Waltham, MA, USA), and 

sequencing was performed using a 3500 Genetic 

Analyzer (Thermo Fisher Scientific) equipped with a 36 

cm capillary and POP-4 polymer. 

 

Bisulfite sequencing using next generation 

sequencing 

 

For targeted NGS, libraries were prepared using the 

KAPA HyperPrep Kit, KAPA Universal Adapters, and 

KAPA Unique-Dual Indexed (UDI) Primer Mixes, in 

accordance with the manufacturer’s guidelines provided 

in the KAPA HyperPrep Kit technical datasheet. Initially, 

13.33 ng of bcDNA underwent targeted multiplex PCR 

with specific primer sets (Supplementary Table 3). PCR 

products exceeding 300 ng were then subjected to end-

repair and A-tailing procedures. The reaction mixture 

was incubated with a universal adapter at 20°C for 1 

hour. Following adapter ligation, each library was 

purified using AMPure XP beads (Beckman Coulter, 

Brea, CA, USA). Libraries were then amplified using 

UDI primer mixes through 13 cycles of PCR and 

subsequently purified again with AMPure XP beads. The 

concentration and quality of the libraries were assessed 

using the 2100 Bioanalyzer and 4150 TapeStation 

(Agilent, Santa Clara, CA, USA), and all samples were 

pooled into a single batch for further processing. Double-

size selection was performed using SPRIselect beads 

(Beckman Coulter) to ensure the desired fragment size. 

The final library was quantified using KAPA Library 

Quantification Kits (Roche, Basel, Switzerland), 

following the provided instructions. The pooled library 

was adjusted to 4 nM, denatured with 0.2 N NaOH, and 

adjusted to 20 pM with Illumina prechilled hybridization 

buffer. The denatured library was subsequently diluted to 

7–9 pM with a spike-in of 2.5% PhiX control v.3. 

Sequencing was performed on an Illumina MiSeq system 

using the MiSeq Reagent Kit v.3, with a 2 × 300 cycle 

configuration (Verogen, San Diego, CA, USA). 

 

Methylation data processing 

 

SBE methylation data were analyzed using GeneMapper 

Software 5 (Thermo Fisher Scientific). Methylation 

values were calculated from the peak height, 

representing the relative fluorescence units (RFU) of C 

or G nucleotides corresponding to methylated DNA, 

normalized by the total DNA, determined as the sum of 

C+T or G+A nucleotides. Raw sequencing data from 

NGS (FASTQ files) were processed on CLC Genomics 

Workbench 21.0.5 (Qiagen). The analysis workflow 

included merging paired-end reads, trimming low-
quality bases based on Phred scores reflecting a 1% error 

probability, and excluding reads containing two or more 

ambiguous bases or measuring less than 10 bp in length. 
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Processed reads were aligned to the reference genome 

(Human GRCh38), and methylation calling was 

performed, omitting loci with coverage below 20. The 

resulting methylation values were utilized for subsequent 

machine learning modeling. 

 

Machine learning 

 

Machine learning analyses to develop age prediction 

models were performed using Python 3.8.8. Linear 

regression (LR), stepwise linear regression (SLR), 

Lasso Regression (Las), ridge regression (Rid), and 

elastic-net regression (Ela) were implemented. Tree-

based decision models, including XGBoost (XGB), 

gradient boosting (GB), and random forest (RF), were 

implemented using the Scikit-learn and XGBoost 

libraries in Python. Hyperparameters were optimized 

with GridSearchCV, and model performance was 

evaluated with metrics including the Pearson correlation 

coefficient (r), R-squared (R²), mean absolute error 

(MAE) and root mean square error (RMSE). 

 

Statistical analysis 

 

Statistical comparisons for mRNA expression were 

performed using the Chi-square test and the unpaired  

t-test. Data are presented as mean ± standard error of the 

mean (SEM) and were analyzed using GraphPad Prism 

5.01 (GraphPad, La Jolla, CA, USA). Levels of 

statistical significance are denoted by asterisks with the 

following thresholds: *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001. 

 

Availability of data 

 

All data supporting the findings of this study are 

available within the paper and its Supplementary files. 

Raw data underlying the main and supplementary 

figures and tables have been deposited in the Gene 

Expression Omnibus (GEO) under accession numbers 

GSE244996 and GSE294234. A source data file 

containing statistical analyses and p-values is provided 

as Supplementary Table 1. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. Distribution of samples by age group and gender. The distribution of 103 samples across age groups and 

gender is shown. The age groups and sample sizes are as follows: 18–19 years (n = 2), 20–29 years (n = 9), 30–39 years (n = 10), 40–49 years 
(n = 27), 50–59 years (n = 22), 60–69 years (n = 17), 70–79 years (n = 11), and 80–89 years (n = 5). Male samples are depicted by blue boxes, 
and female samples by red boxes. The number of samples in each age group is indicated as the gray lines. 
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Supplementary Figure 2. Comparison of array beta values between pectoralis major muscle and vastus lateralis muscle 
across skeletal muscle-specific 20 CpG markers. Linear regression was performed to assess the relationship between beta values 
(ranging from 0 to 1) and chronological age for 12 newly identified CpG markers (A) and 8 CpG markers overlapping with MEAT [11] (B). 
Publicly available datasets were used to assess age-related associations, with linear regression between beta values and age. Vastus 
lateralis muscle data were obtained from GSE114763 (n = 8) using the HM450 array and GSE50498 (n = 47) using the HMEPIC array. Both 
datasets were used for the MEAT, with samples represented as brown dots, and R² values highlighted in brown. Pectoralis major muscle 
data were obtained from GSE244996 (n = 20) and GSE294234 (n = 3) generated in this study, with samples represented by gray dots and 
the corresponding R² values in gray. Solid lines represent the regression relationships for each tissue type, with 95% confidence intervals 
shaded in corresponding colors. 
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Supplementary Figure 3. Quality assessment of data obtained via NGS. (A) Sample Coverage Analysis. Sequencing depth was 
assessed for all 103 samples, with coverage values plotted on the Y-axis and samples arranged on the X-axis in descending order of 
coverage. (B) Marker Coverage Analysis. Coverage across the 20 target CpG amplicons was evaluated for each marker. Box plots, generated 
using the Seaborn library in Python, illustrate the distribution of coverage, with gray dots representing individual sample values for each 
marker. 
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Supplementary Figure 4. Permutation test of the 21_Ela model. Null distributions of prediction accuracies were generated by 
randomly permuting age labels 10,000 times while keeping the CpG feature matrix fixed. (A) Distribution of MAE values under the null. (B) 
Distribution of RMSE values under the null. (C) Distribution of R² values under the null. The red dashed line indicates the observed 
performance of the 21_Ela model. The blue distributions represent the null performance obtained from 10,000 permutations. 
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Supplementary Figure 5. Electropherogram of four multiplex groups for muscle-specific aging-related 20 CpGs on SBE. The 

electropherograms were obtained using a 3500 Genetic Analyzer, showcasing four multiplex groups for the 20 muscle-specific aging-related 
CpGs. Each group is represented in a separate row. Blue fluorescence corresponds to Guanine (G), indicative of methylated Cytosine (5mC), 
while green fluorescence represents Adenine (A), signaling unmethylated Cytosine (C). The peaks for each CpG marker are shown, with the 
x-axis indicating the relative fragment size, and the y-axis representing the relative fluorescence units (RFU). The markers are displayed 
within each multiplex group, as indicated by their respective labels (MA_01, MA_02, etc.). 
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Supplementary Figure 6. Linear regression analysis of 20 muscle-specific age-associated CpG markers. Linear regression was 
conducted to assess the relationship between DNA methylation levels (ranging from 0 to 1) and chronological age for 20 skeletal muscle-
specific CpG markers. Each sample is depicted as a blue dot. The statistical results including correlation coefficient (r) and R² values for each 
marker are shown on the respective plots. 
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Supplementary Figure 7. Quality assessment of data obtained via SBE. (A) Density Estimation and Normal Distribution Check. 
Density estimation was performed to evaluate the distribution of the data, where the height of each bar represents the density of Y values, 
not the count. The kernel density estimate (KDE) curve provides a smoothed representation of the data distribution. Skewness (−0.059) and 
kurtosis (−0.476) values confirmed that the data follows a normal distribution. (B) Normality of Residuals in Linear Regression. Linear 
regression assumes that residuals follow a normal distribution. A Q-Q plot was used to compare the quantiles of the residuals against 
theoretical quantiles from a normal distribution. Deviations from the diagonal line indicate departures from normality. (C) Correlation and 
Multicollinearity Assessment. A correlation and multicollinearity test were conducted to identify high intercorrelations among independent 
variables. The heatmap illustrates correlation levels, ranging from high (red) to low (blue). Strong correlations (coefficient ≥0.8) were 
observed in three variable pairs. Additionally, a variance inflation factor exceeding the threshold of 10 was identified for the MA_14 
marker, highlighting potential multicollinearity concerns. 
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Supplementary Figure 8. Comparison of array beta values between skeletal muscle and cardiac muscle on skeletal muscle-
specific 20 CpG markers. Linear regression was performed to assess the relationship between beta values (ranging from 0 to 1) and 
chronological age for 20 skeletal muscle-specific CpG markers. Pectoralis major muscle data were obtained from GSE244996 (n = 20) and 
GSE294234 (n = 3) from this study, with samples represented as gray dots and corresponding statistical R² values shown in gray. Cardiac 
muscle data were obtained from GSE244996 (n = 20), with samples presented as red dots, and corresponding R² values are shown in red. 
Solid lines represent the regression relationships for each tissue type, with 95% confidence intervals shaded in their respective colors. 
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Supplementary Figure 9. Calibration curves for amplification bias in target CpGs. Calibrated curves were generated by analyzing 

artificially methylated DNA standards (ranging from 0% to 100% in 10% intervals) for target CpGs using SBE (green) and NGS (blue) systems. 
Polynomial regression lines were fitted to the scatter plots, with the correlation coefficients (r) for each marker displayed on the plots. 
Confidence intervals are displayed as semi-transparent bands around the regression lines. Dots represent the average duplicate 
observations, with error bars indicating standard deviations. 
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Supplementary Figure 10. Age prediction accuracy across DNA input concentrations using SBE and NGS systems.  (A) 

Sensitivity analysis for methylation levels based on DNA input concentration. Sensitivity tests were conducted for the SBE and NGS systems 
using varying concentrations of bisulfite converted DNA. Methylation levels at 7 core CpGs were compared to a 13.33 ng input, with 
methylation differences shown on the Y-axis. In the SBE system, a 13.33 ng input was tested in duplicate for all samples, and the mean 
value was used as the reference. In the NGS system, 13.33 ng input was tested once per sample and used as the reference. Box plots were 
generated using the Seaborn library in Python, with individual sample values presented as dots. (B) Age prediction accuracy based on DNA 
input concentration. Age prediction was performed using models based on the same set of 7 CpG markers, including the best-performing 
model in SBE (Figure 4C) and the linear regression model using 7 CpGs in NGS platform (Figure 3B). Box plots, generated with the Seaborn 
library, illustrate the distribution of age estimation differences across varying DNA input concentrations. The Y-axis represents the 
difference in age estimates compared to those obtained using the 13.33ng of bcDNA input, while the X-axis denotes the bcDNA input 
concentrations. The accompanying table summarizes the statistical results, including the median and standard error of the mean (SEM) for 
each DNA input concentration. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1 and 2. 

 

Supplementary Table 1. Statistical results of linear regression between age and beta values from 23 samples 
using the EPIC array. 
 

Supplementary Table 2. Detailed formulas of NGS-based age prediction models. 
 

Supplementary Table 3. Summary of reduced CpG models: performance metrics under elastic net regularization 
and post-hoc thresholding. 

Methods Alpha regularization Alpha regularization Post-hoc thresholding 

Modeling 
Elastic net; alpha = 0.5,  

l1_ratio = 0.9852 
Elastic net; alpha = 0.8,  

l1_ratio = 0.9852 
Elastic net; alpha = 0.0178,  

l1_ratio = 0.9852 

n of CpG 8 5 6 

train 

MAE 9.377 11.509 5.052 

RMSE 12.0175 14.4748 5.943 

r 0.8109 0.7299 0.934 

R-squared 0.4479 0.1991 0.865 

test 

MAE 10.4848 11.9844 7.364 

RMSE 12.7364 14.6885 11.3 

r 0.7628 0.6897 0.726 

R-squared 0.3742 0.1677 0.507 

Formula Position Coefficient Position Coefficient Position Coefficient 

 

intercept 55.5899595 intercept 44.53694062 intercept 163.3170259 

chr3:12815297 −6.566861612 chr19:10636467 −6.493581544 chr3:44761961 53.498989 

chr19:10636467 −15.12568411 chr9:22005565 8.777387791 chr17:29042762 38.623448 

chr3:12815285 −9.302902911 chr9:22005510 3.293509568 chr3:12815466 −30.351224 

chr3:12815282 −2.1355773 chr9:22005577 5.634173089 chr3:44761965 29.531605 

chr9:22005565 13.39037812 chr7:143316521 −2.470404842 chr19:57527206 30.667327 

chr9:22005510 6.784154861   chr3:12815426 −40.055187 

chr9:22005577 10.73001316     

chr7:143316521 −9.800951957     

 

 

Supplementary Table 4. Hallmarks of Aging and functional annotations of the 20 skeletal muscle–specific CpG 
markers. 

Marker CpG_ID RefGene Hallmark of aging Functional annotation 
Supplementary 

References 

MA_01 cg06458239 ZNF549 Epigenetic Alteration Zinc finger transcription factor [1, 2] 

MA_02 cg02426178 SLC44A2 
Mitochondrial 
Dysfunction 

Choline transporter, Mitochondrial 
choline transporter regulating ATP 
production, oxidative stress, and 

metabolic homeostasis. 

[3, 4] 

MA_03 cg11456906 CFAP74 
Altered Intercellular 

Communication 
Ciliary and flagellar motility [5] 

MA_04 cg07743451 TPM3 
Mitochondrial 
Dysfunction 

Thin filament stabilization  
(actin-binding) 

[6, 7] 

MA_05 cg14812508 TWF2 Cytoskeletal Integrity 
Actin-binding protein involved in cell 

motility 
[8] 
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MA_06 cg07188513 MNX1-AS1 . .  

MA_07 cg07502461 TWF2 Cytoskeletal Integrity 
Actin-binding protein involved in cell 

motility 
[8] 

MA_08 cg09926178 ACTA1 Cytoskeletal Integrity Muscle contraction regulation [9, 10] 

MA_09 cg15730967 CAND2 
Altered Intercellular 

Communication 
Heart muscle development, cAMP 

signaling pathway 
[11] 

MA_10 cg07303143 KIF15 Stem Cell Exhaustion 
Mitotic spindle and proliferation 

regulation 
[12] 

MA_11 cg17722263 MYCNUT Proteostasis Loss 
Ubiquitin–proteasome system and 

protein degradation 
[13] 

MA_12 cg05543030 . . .  

MA_13 cg08390209 CDKN2B Cellular Senescence 
Cell cycle arrest via INK4 family 

inhibition 
[14–17] 

MA_14 cg19145398 FOXS1 Epigenetic Alteration 
Transcriptional regulation via Forkhead 

box pathway 
[18] 

MA_15 cg26149678 IL18BP Inflammaging 
Immune signaling modulation, 

antagonist of IL-18 
[19] 

MA_16 cg12966875 SLPI Inflammaging 
Protease inhibitor, innate immune 

response modulator 
[20] 

MA_17 cg06059810 RUFY3 
Altered Intercellular 

Communication 
Vesicle trafficking and autophagy 

regulation 
[21, 22] 

MA_18 cg17922226 CLCN1 
Neuromuscular Junction 

Dysfunction 
Chloride ion channel in skeletal muscle 

excitability 
[23] 

MA_19 cg06144905 PIPOX 
Mitochondrial 
Dysfunction 

Peroxisomal amino acid and redox 
metabolism 

[24] 

MA_20 cg13985639 DHDPSL 
Mitochondrial 
Dysfunction 

Amino acid metabolism, mitochondrial 
enzymatic function 

[25] 

 

Supplementary Table 5. Primers for quantitative real-time reverse transcription PCR (qRT-PCR). 

Related CpG RefGene Forward primer sequence (5′→3′) Reverse primer sequence (5′→3′) Size (bp) 

cg06458239 ZNF549 CTTTACCGCCCGCCTTTC GGCACCTTTGAGCTTCATCA 155 

cg02426178 SLC44A2 TCATGTTCTTCTGGTTGGCC ATCTGCACAATGGCCAGGAT 199 

cg11456906 CFAP74 AAGGCCGAGGAACACAGATT GCGGCAAACTTGATCTGGTA 128 

cg07743451 TPM3 GAAGTTGAGGGAGAAAGGCG CTCCTGAGCACGGTCCAG 105 

cg14812508 TWF2 CCTGGTCGCCTGATAACTCC ACAGGACGACAGGTGTTTCT 164 

cg07188513 MNX1-AS1 CAAAGCTCTGCAGGTCGAAC TGCATGTGTTTGGTGGCTAC 113 

cg09926178 ACTA1 GGACAGCGCCAAGTGAAG CGTCTTCGTCGCACATTGT 111 

cg15730967 CAND2 AGGATAGTGAATTCAGTGAGCAA AGCCTTGACGTTCTCCTCG 200 

cg07303143 KIF15 GGCTGCATTGTTTTCGGGAT TCTTTCTGCAGGAGGACGAA 154 

cg17722263 MYCNUT CCGATGTACAGGCAGAACTTG GACCACAGAACTCAGCCAGA 245 

cg08390209 CDKN2B CTGGAACCTAGATCGCCGAT GGTGAGAGTGGCAGGGTC 140 

cg19145398 FOXS1 GAAGCTGAGCCTGACCCA CTTGGTTGGCTCAGTTGTGG 104 

cg26149678 IL18BP AAGGAAGGCTCTTCAGGACC AGGAGCAGGACCCACAAAG 147 

cg12966875 SLPI AGAGTCACTCCTGCCTTCAC TGGGCAGATTTCTTAGGAGGA 145 

cg06059810 RUFY3 CTCACCGCTGCCCTTCCT CAGCTTGGCCATGTTCATGA 127 

cg17922226 CLCN1 GGACTGCCCTCTGAGAATGG CCTATGTCCTGCTCCCTGTC 130 

cg06144905 PIPOX GCCTGTCTTTGCTTGCCTTT CCTCGGGAGTGTGGTAGAAA 195 

cg13985639 DHDPSL GGGAAGAAGGTGGACATTGC TGCTGGTCAGGAAAGGAAAC 172 

 GAPDH CCACTCCTCCACCTTTGACG CCACCACCCTGTTGCTGTAG 211 
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Supplementary Table 6. Primers used for PCR with bisulfite-converted DNA as the template. 

Marker CpG_ID Forward primer sequence (5′→3′) Reverse primer sequence (5′→3′) Size (bp) 

MA_01 cg06458239 AGGTGTTTTTTTTTTGGGTAATGAT CCTCTCTTTCTTAAATTAAATCCTCAC 129 

MA_02 cg02426178 AGGGTTTAGTAGTAGGAGGTAAAG ACCCTACTAAACCTACAAATCTTCA 116 

MA_03 cg11456906 AGGTATAGAGGAATTTAGGGTAGAA CTACACCTCCCTAAACCTAAAAAC 308 

MA_04 cg07743451 GGGAGAGGTAGATAGTTTTT CTATACTCACAAATACATTACCC 154 

MA_05 cg14812508 GTTTAAAGTAGGGTGTGGTT CCCCTACAAAATAACCTCT 208 

MA_06 cg07188513 AGTTATTTTTTGTGTTAGGGGTAAG CCCAAACACATTAATCCTATCCTAC 181 

MA_07 cg07502461 TTGTTTTGGGGGTAGAGGT ACAACTTTATACCTTCCCTTACT 197 

MA_08 cg09926178 GAATTAGGAAAAGGGGTATAGG CCCAACAAACAAACAATAC 207 

MA_09 cg15730967 AGTGGTTGGGTAGGTAAAT CACTACACCCTAACACCTATAC 286 

MA_10 cg07303143 GGATATTGAAGGAAGGGATGAGTTT CCCTATTTTTACCCCCAAATACAAC 176 

MA_11 cg17722263 GAGATTAGGGGAAAGGTT CCATCACTATCTTTAATCATTC 101 

MA_12 cg05543030 TGTTGTTTTTGGGAGAGTTATTG AAACTTTCAATATCTAAATCCCTATCT 222 

MA_13 cg08390209 GAGTGGGAGAAGGTAGTGATTA CCTCCACTTTATCCTCAATCTT 142 

MA_14 cg19145398 TTGGGGAGGGATAGGATGTG CTCCCTCTTTCTCCCTCTTATAAT 144 

MA_15 cg26149678 GGTTGGTTTTYGAGTTTGTGTGTTAGT CACTAATAATCCCAAACTCCTACCTA 211 

MA_16 cg12966875 AGGTATAGAATAGGTATTGGGGATA ACCAAACACAAACTCCCTACTA 214 

MA_17 cg06059810 GTTGGGATGTTGAGTTTTTATAGGA CTCCCAACATCAACAACATCTATA 168 

MA_18 cg17922226 GTGAAAATGAGGAATTGGGTGAAAAGA ACATACTTAAATAAACCCAAACTTTCAA 124 

MA_19 cg06144905 GGAGGTGGGTTTTATTTTGG CCTACTAATTTTCCCCTCTTC 95 

MA_20 cg13985639 AGGGGAGATTGGTTTGGAGTTA CAACCACATACCTTCACATCTACA 211 

 

Supplementary Table 7. Four sets of primers used for single base extension (SBE). 

Group Marker SBE primer sequence (5′→3′) Size (bp) 

G1 MA_15 (T)50 TCCTCCTTATCTATAAAACTCTCAC 75 

 MA_07 (T)41 AAACTAAAAATCTACAACRAAAAAC 66 

 MA_17 (T)32 TTTTAATCAACACCCTACTTACTAC 57 

 MA_13 (T)23 CTCCTCAACAAACATTAAAATAAAC 48 

 MA_01 (T)14 CTTTCTTAAATTAAATCCTCACAAC 39 

 MA_02 (T)5 CATATTCTTCTAATTAACCAACTTC 30 

G2 MA_09 (T)50 ATACTCATCCRCCRCTTCAAAAAAC 75 

 MA_20 (T)41 TAACAAAATTAACAAAAACTTTCAC 66 

 MA_10 (T)32 TATAAAAAAATAACAACCTCRAACC 57 

 MA_14 (T)23 CTCATTTTATTTTTATCTCTATCCC 48 

 MA_18 (T)14 TTTCATATTTTAAACACATCACCAC 39 

 MA_19 (T)5 TACTTTAAAAATTCTAAAAAACCCC 30 

G3 MA_06 (T)45 AATCTTCRAAAACTCATACAATTCC 70 

 MA_08 (T)35 ACAAAAAACTTCTCAATAAAATCTC 60 

 MA_05 (T)25 TTACTAAATACCAAAAACACCTATC 50 

 MA_16 (T)15 CTTAATTCCCTAAAATATTTACACC 40 

 MA_12 (T)5 CTCAAAAAACTTAAATTAAAACCC 29 

G4 MA_11 (T)35 TTCAAAATACAACCRCATACRCTAC 60 

 MA_04 (T)20 CAAATACATTACCCAAAAAAATACC 45 

 MA_03 (T)5 TAAATTCTTATTACTACTAAAACC 29 
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Supplementary Table 8. Primers for single multiplexes of markers in the highest performance model for SBE. 

Marker SBE Primer Sequence (5′→3′) Size (bp) 

MA_19 (T)1 TACTTTAAAAATTCTAAAAAACCCC 26 

MA_13 (T)10 CTCCTCAACAAACATTAAAATAAAC 35 

MA_04 (T)20 CAAATACATTACCCAAAAAAATACC 45 

MA_01 (T)30 CTTTCTTAAATTAAATCCTCACAAC 55 

MA_08 (T)41 ACAAAAAACTTCTCAATAAAATCTC 66 

MA_18 (T)52 TTTCATATTTTAAACACATCACCAC 77 

MA_10 (T)62 TATAAAAAAATAACAACCTCRAACC 87 
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