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ABSTRACT

Aging causes progressive molecular and cellular changes that impair skeletal muscle function. DNA methylation
is a key epigenetic regulator of this process, but its role in skeletal muscle, especially in Asian populations and
postmortem samples, remains underexplored. We analyzed DNA methylation profiles from 103 pectoralis
major muscle samples from autopsies of South Korean individuals (18-85 years) using the Infinium EPIC array.
Targeted validation and age prediction modeling were performed with Next-Generation Sequencing (NGS) and
Single Base Extension (SBE). We identified 20 age-associated CpG markers linked to genes involved in muscle
structure, metabolism, and stress response. Machine learning models built on these CpG sites showed high
prediction accuracy, with mean absolute errors of 5.537 years in sequencing and 3.797 years in extension
platforms, and strong correlation with chronological age.

This study introduces the skeletal muscle epigenetic clocks in an Asian population using postmortem skeletal
muscle tissue. These novel prediction models, based on 20 common CpG markers using SBE and NGS platforms,
provide a robust framework for forensic applications and enable population-tailored epigenetic profiling.
Beyond predictive utility, the identified age-associated methylation signatures offer valuable insights into the
molecular pathways of muscle aging and hold promise as biomarkers for translational research and age-related
clinical interventions.

INTRODUCTION aging that extends beyond chronological age alone
[4, 5].

Aging is a multifaceted biological phenomenon

characterized by a progressive decline in cellular The potential to estimate age through DNA methylation
function and regenerative capacity, which ultimately patterns has led to significant attention, resulting in the
contributes to the onset of age-related diseases and a development of several epigenetic clocks, including
reduction in overall physiological resilience [1, 2]. Of Horvath’s pan-tissue clock [6], the skin and blood
the many biomarkers indicative of the aging trajectory, clock [7], GrimAge [8], Levine’s PhenoAge [9] and
DNA methylation has been recognized as a notably Voisin’s Muscle Epigenetic Age Test (MEAT) [10,
robust epigenetic marker [3]. These methylation 11]. These epigenetic clocks serve as robust tools for
patterns, which influence gene expression without estimating biological or chronological age, with each
altering the DNA sequence itself, are shaped by both model specifically designed for either a single tissue
genetic predispositions and environmental factors, type or multiple tissues. Although these clocks
providing a nuanced molecular profile of biological have demonstrated notable utility, their predictive

www.aging-us.com 2809 AGING


https://www.aging-us.com

performance typically declines when used outside the
tissue context for which they were developed. For
example, Horvath’s pan-tissue clock exhibited poor
calibration in histologically muscular tissues, such as
breast, uterine endometrium, skeletal muscle, and heart,
underscoring the tissue specificity of DNA methylation
profiles [6]. Therefore, biological age, reflecting
molecular and physiological changes, does not always
coincide with chronological age, which underscores the
need for tissue- and context-specific epigenetic clocks.

In particular, skeletal muscle presents distinct
challenges for epigenetic age prediction because of its
intricate cellular composition and its vital roles in
mobility, metabolism, and health across the lifespan
[12]. The cellular heterogeneity of skeletal muscle,
encompassing myofibers, satellite cells, and various
supportive cells, contributes to distinct DNA
methylation profiles that differ from those of other
tissues [13, 14]. Zykovich’s group identified age-related
methylation changes in skeletal muscle from young and
older Canadian-Americans, providing insights into
muscle-specific aging [15]. To improve age prediction,
Voisin’s team established the MEAT clock, an
epigenetic clock specifically for skeletal muscle, which
enhanced age estimation accuracy in muscle tissue [10,
11]. More recently, proteomic clocks have demonstrated
good performance in muscle as well as in various other
tissues [16—18]. However, previous studies mostly
relied on biopsy samples from limited regions, mainly
the vastus lateralis (VL) muscle, and could not fully
capture the methylation patterns of different muscle
fiber types [19]. Moreover, previous studies have
primarily focused on individuals of European ancestry,
limiting their applicability to other populations, like
Asians, and post-mortem contexts. Given the influence
of genetics and environmental factors on epigenetics,
further research involving diverse populations and a
broader range of anatomical muscle regions is needed to
improve muscle-specific epigenetic age models [20].

In this study, we aimed to address current limitations by
utilizing pectoralis major (PM) muscle tissue, allowing
us to analyze a wider range of muscle tissues from
different anatomical locations. This approach helps
capture regional variability in DNA methylation
patterns within skeletal muscle. Additionally, by
focusing on an Asian population, specifically Koreans,
we sought to improve the accuracy and applicability of
muscle-specific epigenetic clocks, bridging gaps in
population diversity overlooked by previous research.
This study aimed to identify skeletal muscle—specific
CpG markers for age prediction and to develop robust
CpG-based epigenetic models. In addition to
constructing a novel prediction model from selected
CpG methylation sites, we evaluated its robustness

under varying DNA input conditions and examined the
mRNA expression of genes associated with these CpGs
to assess their biological relevance. To further establish
tissue specificity, we compared DNA methylation
patterns and model performance across skeletal, cardiac,
and smooth muscle tissues. Our findings underscore the
importance of tissue-specific DNA methylation in age
estimation and support the development of practical
tools for research and forensic use.

RESULTS

Discovery of aging-associated CpG markers from
skeletal muscle

Among the 103 PM muscle samples, 23 male samples
aged 18 and 35-78 years were examined using the EPIC
array to identify aging-associated CpG markers for Next
Generation Sequencing (NGS) and Single Base
Extension (SBE)-based model construction (Figure 1A
and Supplementary Figure 1). Probes with detection p-
value greater than 0.05 were excluded, leaving a total of
91,899 high-quality CpG probes for analysis
(Supplementary Table 1). Of these, 105 CpG sites met
the threshold of an FDR-adjusted p-value < O0.1.
Initially, a two-way hierarchical clustering heatmap of
500 randomly selected CpGs based on linear regression
was  generated, revealing distinct age-related
methylation patterns (Figure 1B). In particular, among
CpGs with a regression coefficient (Bi) > 0.005,
accelerated sites were 1.5 times more prevalent than
decelerated ones (181 vs. 122) (Figure 1C). Overall,
70.7% (64,995 CpGs) showed age-related methylation
acceleration, while 29.3% (26,904 CpGs) showed
deceleration, which aligns with previous findings [21].
Next, enrichment analysis based on CpG island and
genomic position was performed using the Chi-square
test. Examination of probe counts revealed that
accelerated CpGs were widespread across genomic
regions classified by CpG density and transcriptional
activity, compared to decelerated sites (Figure 1D).
Regarding proportion, 30.8% of accelerated CpGs and
21.7% of decelerated CpGs were identified within
transcriptional regulatory sites, such as the transcription
start site (TSS), including TSS1500 and TSS200, as
well as the 5" untranslated region (UTR) (Figure 1D).

Among the 91,899 filtered CpGs, 12 CpGs were
selected as candidate age-associated markers according
to the criteria of a maximum to minimum beta value
difference (AB) > 0.2, R? > 0.65 from linear regression
between age and beta value, and an FDR-adjusted p-
value < 0.08 (Figure 1E and Table 1). To improve
marker diversity and generalizability, eight additional
CpGs overlapping with MEAT v.1 and v.2 were
selected from 24,050 sites with AP > 0.2, despite
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Figure 1. Identification and characterization of aging-related skeletal muscle-specific CpGs. (A) Schematic overview of
experimental workflow. The diagram, created using BioRender, illustrates the workflow starting with the collection of PM muscle tissue,
indicated an arrow pointing to the anatomical site clearly demarcated through shaded surrounding areas. DNA was bisulfite-converted and
analyzed using the Infinium Methylation EPIC array to identify age-associated CpGs. Cryptic and target CpGs were examined via NGS, while
only target CpGs were used for SBE. (B) Two-way hierarchical clustering heatmap of methylation profiles from 23 male PM muscle samples
profiled by the EPIC array. Samples are color-coded by age group. The heatmap displays 500 randomly selected CpGs from 91,899
significant age-related CpGs (p < 0.05), with beta values normalized to Z-scores (yellow for higher, blue for lower values). (C) Volcano plot
showing regression coefficients (B;) from age-related linear regression. Each dot represents a CpG with p < 0.05. Yellow and blue dots
indicate CpGs with methylation gain and loss with age, respectively. (D) Enrichment of significant CpGs by genomic context. The Venn
diagram shows the distribution of methylation accelerated (yellow) and decelerated (blue) CpGs among 91,899 significant CpGs. Bar plots
display CpG distributions relative to CpG islands (left bar graph) and chromatin regions (right bar graph) using raw counts (the number of
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CpG sites) and the Chi-square (x?) test. Statistical significance is denoted as “p < 0.05, *"p < 0.01 and **p < 0.001. (E) Filtering of CpGs
through multi-step criteria. The Venn diagram displays the overlap of CpGs filtered by effect size (AB = 0.2), model fit (R2 > 0.65), and prior
muscle-specific clocks (MEAT v.1 and v.2). Twelve and eight final CpGs (underlined) were selected for NGS- and SBE-based modeling. (F)
Heatmap of the final 20 CpGs selected for age prediction, grouped by age. Beta values are Z-score normalized; age groups are color-coded.

Table 1. Age-related genetic, epigenetic, and transcriptomic changes at skeletal muscle-specific CpG markers.

Genomic Epigenetic Transcriptomic

Marker CpG_ID

RefGene CpG_Island Position f changes R? AB p-value mRNA Exp. p-value References
MA 01 cg06458239  ZNF549 Island TSS200 + 0.702  0.291 6.0E-07 0.035 [22, 23]
MA_02 ¢g02426178  SLC44A42 Island Body - 0.696 0.218 7.4E-07 + 0.033 [21]
MA 03 cgl1456906  CFAP74 Body - 0.688 0.231 1.0E-06 + 0.244
MA 04 cg07743451 TPM3 N_Shelf Body - 0.686 0.305 1.1E-06 + 0.011
MA_05 cgl4812508 TWF2 Body - 0.676 0.276 1.5E-06 - 0.011 [21,22]
MA 06 cg07188513 MNXI-ASI N_Shelf Body + 0.672 0.235 1.7E-06 + 0.046
MA 07 cg07502461 TWF2 Body - 0.667 0.327 2.0E-06 - 0.011
MA_08 ¢g09926178  ACTAI Island 5'UTR - 0.658 0.227 2.6E-06 - 0.004 [22]
MA 09 ¢cgl5730967  CAND?2 Island Body - 0.658 0418 2.7E-06 - 0.869 [22]
MA 10 cg07303143 KIF15 Island Body + 0.656 0.228 2.8E-06 0.019
MA_11  cgl7722263 MYCNUT TSS200 + 0.653 0.214 3.1E-06 0.037
MA 12 cg05543030 + 0.651 0.294 3.3E-06 .
MA_ 13 ¢g08390209 CDKN2B N_Shore 3'UTR + 0.613 0.321 1.0E-05 + 0.063 [22, 23]
MA_14  ¢gl19145398 FOXS1 S_Shore TSS1500 + 0.426 0.223 7.4E-04 + 0.008
MA 15 ¢g26149678  ILI8BP TSS200 + 0.342 0.230 3.4E-03 + 0.001 [22]
MA 16  cgl2966875 SLPI TSS1500 0.337 0.269 3.7E-03 + 0.025 [22]
MA_17 ¢g06059810  RUFY3 Body + 0.320 0.268 4.9E-03 + 0.001
MA 18 ¢gl17922226 CLCNI Body 0.304 0.291 6.4E-03 + 0.000
MA 19  cg06144905 PIPOX TSS200 + 0.287 0.233 8.5E-03 + 0.004
MA 20 ¢cgl13985639 (g}?g;;u Body - 0.279 0.241 9.6E-03 + 0.011

Genomic information was obtained from the Illlumina EPIC array manifest, aligned with data from the UCSC Genome Browser. Methylation
changes were derived from EPIC array analyses, with age-related regression results presented as statistical indicators with R-squared (R?)
values and the difference between maximum and minimum beta value (AB). Methylation acceleration with aging is indicated by + sign,
while methylation deceleration is indicated by - sign. mMRNA expression changes between young and old groups, identified in this study,
align with trends reported in previous research, highlighting consistent age-associated alterations. An increase in mRNA expression levels in
the older group is denoted by + sign, while a decrease is denoted by - sign.

R? < 0.65, enhancing applicability across various PM muscle data from Korean samples. The remaining
populations and muscle types (Figure 1E and Table 1). markers, however, showed marked discrepancies. These
The final set of 20 muscle-specific CpGs, labeled results suggest that while methylation patterns are
MA 01 to MA 20, represents the Muscle Age generally consistent, differences in predictive accuracy
numbering (Table 1). Of these, 10 markers displayed may reflect anatomical and population variations. This
age-related methylation acceleration, while the highlights the need for new, robust age-related CpG
remaining 10 showed deceleration as determined from markers and a better understanding of their genomic
the EPIC array data (Figure 1F). We compared the 20 context.

markers with probes from GEO datasets to determine if

they were previously reported or novel. Methylation Genomic analysis and functional implications of the
data from these markers were compared with 20 aging-associated CpG markers

GSES50498, which contains VL muscle samples from 24

young and 24 elderly individuals [15], and GSE114763, Among the target 20 CpGs, 10 markers exhibited
consisting of VL muscle samples from 8 Europeans [22] methylation acceleration. Nine of these were mapped to
(Supplementary Figure 2). Nine markers showed similar genes including ZNF549, MNXI-AS1, KIFI5,
methylation patterns, with R? differences below 0.4 MYCNUT, CDKN2B, FOXSI, ILI8BP, RUFY3, and
between VL muscle data from Caucasian donors and PIPOX (Table 1), while one marker (MA_12) was not
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associated with any annotated gene. Conversely, the 10
CpGs showing methylation deceleration were linked to
nine genes including SLC44A42, CFAP74, TPM3, TWF2,
ACTA1, CAND2, SLPI, CLCNI, and DHDPSL. The
biological functions and age-associated disease
relevance of these differentially methylated genes were
evaluated using the Ingenuity Pathway Analysis (IPA)
platform to reveal distinct biological pathways
influenced by methylation changes with aging.

Functional analysis identified statistically significant
differences across 21 canonical pathways (p < 0.05),
with the top eight pathways (p < 0.01) predominantly
influenced by five key molecules: ACTAI, TPM3,
HOGAI, PIPOX, and KIFI5 (Figure 2A). These
molecules were linked to muscle functions, contraction,
and metabolism. Furthermore, 276 diseases associated
with transcriptional changes driven by differential
methylation (p < 0.05) were identified, with 23 showing
stronger significance (p < 0.001), including 13 directly
related to myopathy (Figure 2B). Notably, three muscle-
specific genes, ACTAI, TPM3, and CLCNI, were
associated with hereditary skeletal myopathy and
congenital myopathy.

To examine how methylation affects transcription, RNA
expression of the 18 genes associated with the 20 target
CpGs were analyzed using RT-qPCR (Figure 2C).
Significant differences between young and old
individuals were observed for 14 of these genes. In
particular, expression of the CLCNI, ILISBP, and
RUFY3 genes exhibited more than two-fold changes,
with highly significant statistical differences (p <
0.001). Notably, with advancing aging, mRNA levels of
genes exhibiting methylation change in regulatory
regions, including the 5'UTR and TSS positions,
displayed a positive correlation, except for the SLPI
gene (Table 1). This trend is potentially explained by
DNA methylation occurring within regulatory regions
characterized by low CpG density [23]. The RNA
expression findings for these 20 genes are consistent
with previous transcriptome and proteome investiga-
tions [24-26] (Table 1).

Construction and validation of age prediction model
using NGS data

To develop an age prediction model representative of
muscle aging, we analyzed NGS data from 20 selected
CpG  markers. MiSeq sequencing  generated
approximately 39 million reads that passed the initial
quality assessment, with an average of 249,133 read
pairs per sample, ranging from 95,134 to 608,471.
Following processing with CLC software, the average
read count per sample was reduced to 50,892, ranging
from 18,043 to 130,532 (Supplementary Figure 3A).

Among the 20 target amplicons, 14 demonstrated
average coverages between 1,276 and 8,967 reads per
CpG, exceeding the 1,000 read threshold for reliable
methylation quantification (Supplementary Figure 3B).
Although the other six amplicons satisfied the
theoretical coverage required for a 90% confidence
interval [27], four amplicons with coverage below 700
reads per CpG were excluded from model construction
to maintain data reliability.

An overview of the machine learning workflow based
on NGS and SBE data is illustrated in Figure 3A. In
addition to the 16 primary CpGs from the EPIC array,
adjacent cryptic CpGs were detected and considered as
supplementary candidate loci for model development,
potentially capturing subtle but informative age-
associated methylation changes (Figure 1A). Model
construction included all 16 amplicons, comprising the
16 target CpGs and 54 additional cryptic CpGs. A total
of nine models were constructed using various machine
learning approaches. Each model was fitted using a
training dataset (n = 71) and evaluated on an
independent test set (n = 32), resulting in mean absolute
error (MAE) values ranging from 5.537 to 7.017 in the
test set (Figure 3B). The detailed formulas of all models
are presented in Supplementary Table 2. Of these, the
Elastic-net (Ela) model, optimized with an alpha of
0.0178 and an L1 ratio of 0.9852, selected 9 target
CpGs and 12 cryptic CpGs across 12 amplicons (Table
2). This model achieved a MAE of 3.184 in the training
set and 5.537 in the test set. Although the performance
was robust, the discrepancy between training and test
MAE implies a risk of overfitting. To address this, we
attempted to reduce overfitting by applying stronger
regularization and post hoc feature selection, however,
these approaches did not improve model performance
(Supplementary Table 3). To further evaluate reliability,
Leave-One-Out  Cross-Validation (LOOCV) was
performed on the training set, yielding a MAE of 3.916.
Additionally, we performed 5-fold and 10-fold cross-
validation, which resulted in MAE values of 3.8629 and
3.8743, respectively. To further assess robustness and
determine whether the Ela model captures true age-
associated signals rather than random noise, we
performed permutation testing, which demonstrated that
the model is not simply overfitting to random structure
(Supplementary Figure 4). The Elastic Net model was
identified as the best-performing approach, exhibiting
the lowest MAE in the test set and reduced overfitting
compared with other models. Remarkably, the Ela
model achieved strong predictive accuracy using
only 21 CpGs across 11 amplicons, highlighting the
efficiency of a compact marker panel. Collectively,
these results establish the Ela model with 21 CpGs as a
practical and robust tool for predicting chronological
age (Figure 3C and Table 2).
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Figure 2. Functional enrichment and transcriptional analysis of aging-associated skeletal muscle-specific CpG loci. (A, B)
Ingenuity canonical pathways of aging-related CpGs and classification of diseases and functions. Canonical pathways are ranked by -log(p-
value) (right x-axis) and associated molecules shown (A). Disease and function categories are similarly ranked and visualized (B). Pathways
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www.aging-us.com 2814 AGING



A Multiple Regression Learning Model Validated Prediction Model

I
\ @ Model validation

Validation Metrics

o
e R?
* MAE
¢ RMSE

Test
set

arameter: adjusted R? 1
X X0 K i — p j T
z = T
embedded * penalized regression B
——>| e decisiontree :

! |

@ Data preparation ! @ Supervised Feature Selection @ Model Construction A

! " Output !

_’: » Correlation Analysis « Multiple Linear Regression . Model : s |

i * Multicollinearity Test « ElasticNet/Ridge/Lasso Regression ., Vainingset ; Model !

: « RandomForest/GradientBoosting/ = B & Test set !

AN | XGBoost S ! e :
Training ! f g ! ¢ |5

@ I b |

set [ ;| 5 . e ;

| optimized 2 ol :

| parameters & features : i g .

584 | : x| o B | el | : Actual age [X] |

:3 data split 1 — ,

Datasets ! filtered e = (@) Model validation 1 ; Prefhct‘lion !

) variables wrapper  Forward selection e il 1 evaluation |

! ——T" 5| e stepwise selection Loocv Validation Metrics | 1 |

1 ; ;

1 : ! 1

| 1 I 1

| 1 ! |

| | ! 1

| 1 ! 1

! ) | 1

parameter: MAE ——1 MAE’, 'EZF:/ISE
B Train Test
LOOCV
n of CpGs Modeling r R? MAE RMSE MAE RMSE r R? MAE RMSE
21 Ela 0.971 | 0.940 | 3.184 | 3.954 | 3.916 | 4.839 | 0.842 e
64 XGB 4.631 5.796 | 0.826 | 0.650 9.521 ,
median
30 GB 4.379 | 5.602
30 RF 0.991 0.976 | 2.045 | 2.527 | 4971 | 6.204 0.651 | 5.674 | 9.515 L min
18 Las 0.979 | 0.958 | 2.713 | 3.324 0.835 | 0.666 | 5.891 9.307
7 LR 0.907 | 4.072 4610 | 5584 | 0.830 | 0.665 | 6.476 | 9.324
21 SLR 0.993 | 0.987 | 1.438 | 1.836 | 4.180 | 5.303 0.668 | 6.480
36 SLR 0.994 | 0.987 | 1.465 | 1.853 | 3.971 | 4.855 | 0.856 | 6.753 | 9.279
29 Rid 0.853 0.645 9.597
C 90 = 20
. e o} e Training
70 (—‘: o Test
(]
Q i
D 60 =
® O 21 _Ela
S | :
g 50 5 Model Train Test
g B ok r 0971 0.842
%0 £ RZ  0.940 0.694
20 % =~ MAE 3.184 5.537
10 -40 ’ RMSE 3.954 8.911
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
Chronological age Chronological age

Figure 3. Development and validation of age prediction models using the NGS system. (A) Schematic of the data processing
workflow for NGS and SBE-based models, created using BioRender. Data were divided into training and test sets at a 7:3 ratio. Supervised
feature selection involved correlation analysis and multicollinearity filtering, followed by model construction using forward selection,
stepwise selection, penalized regression, and decision tree models with optimized parameters. Model validation was performed through
LOOCV, with performance evaluated by Pearson’s r, R2, MAE, and RMSE. Finally, the validated prediction model was applied to test sets. (B)
Performance heatmap of nine machine learning models developed from NGS data. Models differ by algorithm (LR, SLR, Ela, Las, Rid, RF, GB,
XGB) and CpG set. Metrics (r, R%, MAE, RMSE) were calculated for both training and test sets (n = 103). LOOCV was used for training
validation. Heatmap color scale reflects relative performance for each column criterion and the top NGS model is indicated in bold. (C)
Prediction accuracy of the best-performing NGS model. The best model’s accuracy was evaluated by comparing predicted age with
chronological age for 103 samples in both the training (orange) and test (blue) sets (left plot). Residuals between DNA methylation (DNAm)
age and chronological age are plotted (right plot). Regression lines are shown with each color, with 95% confidence intervals shaded. Model
performance metrics are summarized in the accompanying table. Abbreviations: LOOCV: Leave one out cross validation; LR: Linear
regression; SLR: Stepwise Linear Regression; Ela: ElasticNet; Las: Lasso regression; Rid: Ridge regression; XGB: XGBoost; RF: RandomForest;
GB: GradientBoosting.
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Table 2. Regression coefficients of best-performing SBE and NGS-based age prediction models.

Marker Amplicon Chr:Position SBE coefficient NGS coefficient
Intercept . . 2531137334 105.9722
target chr19:57527206 87.9153 30.6368
MA 01 crypt%c chr19:57527208 8.2441
- cryptic chr19:57527211 15.3597
cryptic chr19:57527218 24.8859
MA 02 targe't chr19:10636467 —24.7511
- cryptic chr19:10636497 7.3709
MA 03 cryptic chr1:1937587 . 10.4319
MA 04 target chr1:154179209 8.7945 —3.3927
MA 08 target chrl1:229433354 —40.7868 0.0001
- cryptic chrl1:229433453 12.7462
cryptic chr3:12815282 —29.4345
cryptic chr3:12815338 —11.4447
MA 09 .
- cryptic chr3:12815426 —40.0636
cryptic chr3:12815466 -30.3562
cryptic chr3:44761956 . 9.3494
MA 10 target chr3:44761961 132.3527 53.4929
cryptic chr3:44761965 29.5532
MA 11 target chr2:15920273 . 14.5369
MA 13 target chr9:22005565 28.4466 17.2336
MA 18 target chr7:143316521 —56.2316 —23.7932
MA 19 target chr17:29042762 48.0441 38.6166

This table presents the regression coefficients for the CpG markers used in the best-performing age prediction models: the
SBE-based 7CpGs_SLR model and the NGS-based 21CpGs_Ela model. The amplicon column indicates whether the CpG marker
was part of the skeletal muscle specific CpGs discovered from EPIC array (target) or was additionally identified within the
same amplicon using NGS (cryptic). The Chr:Position column shows the chromosomal location of each CpG marker. The
coefficients in the SBE and NGS columns represent the contribution of each marker to the final age estimation formula.

Construction and validation of age prediction model
using multiplex SBE data

To ensure practical applicability, we aimed to develop
a multiplex SBE system. Initially, we generated
methylation data from 68 samples using four
multiplexed sets on the SBE platform (Supplementary
Figure 5). The association between age and methylation
levels at each marker was evaluated using Pearson’s r
from linear regression analysis. Among the 20 target
CpG markers identified in this study, 3 demonstrated
strong correlations (r > 0.7), including MA 05 (r =
0.7488), MA_10 (r = 0.8174), and MA_19 (r = 0.7865),
and 12 exhibited moderate correlations (0.5 <r < 0.7)
(Supplementary Figure 6). Before constructing pre-
dictive models, the methylation data were evaluated for
adherence to statistical assumptions and normality.
Values for skewness (—0.059) and kurtosis (—0.476)
indicated a normal distribution (Supplementary Figure
7A). Normality of residuals was confirmed through a Q-
Q plot, and the Durbin-Watson test (1.684) supported

the independence of errors without autocorrelation
(Supplementary Figure 7B). Through the multi-
collinearity test, marker MA 14 was excluded due to a
variance inflation factor of 11.25, exceeding the
threshold of 10 (Supplementary Figure 7C).

To identify the most significant markers, 10 distinct
models were developed using the remaining 19 CpGs
with various machine learning techniques. All models
achieved strong performance, with » > 0.902 and R? >
0.754 in training set, and » > 0.824 and R? > 0.623 in the
test set (Figure 4A). LOOCYV applied to the training set
resulted in MAEs ranging from 3.231 to 6.197 years,
while the test set showed MAEs between 5.161 and
9.120 years. Stepwise linear regression (SLR) identified
a 7 CpG subset, overlapping with the top-performing
21CpG_Ela model derived from NGS data. The SLR
model provided the best balance of predictive accuracy
and practical simplicity, achieving an MAE of 5.463
and RMSE of 6.894 in the test set (Figure 4A). Three of
these 7 CpGs (MA_13, MA 18, MA 19) coincided
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A Train Test
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15 RF 5.397 | 5.031 ). !
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7 Las 0.967 | 0.934 | 2.646 | 3.516 0.670 | 8.633
10 Rid 0.912
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Figure 4. Development and validation of age prediction models using the SBE system. (A) Performance heatmap of 10 machine
learning models based on the SBE platform. Models differ by algorithm (LR, SLR, Ela, Las, Rid, RF, GB, XGB) and number of CpGs used. The
performance metrics such as r, R2, MAE, and RMSE values were calculated for both training and test sets. A total of 68 samples were used,
with 43 assigned to the training set and 25 to the test set. An additional 35 samples were later included, resulting in a final dataset of 103
samples, consisting of 71 samples for training and 32 for testing, which were used for the final modeling. The heatmap displays relative
values using a red-to-blue gradient for each column criterion. The top-performing SBE model is shown in bold. (B) Electropherogram of a
unified SBE system using seven CpGs selected from both NGS and SBE models. Capillary electrophoresis was performed using a 3500
genetic analyzer (upper plot). The logio(RFU) values for each peak are shown in a box plot, displaying the mean + SEM (lower plot). Blue
fluorescence represents Guanine (G), representing methylated cytosine, while green fluorescence indicates Adenine (A), representing
unmethylated cytosine. (C) Age prediction performance of the best-performing SBE model. The best model’s accuracy was assessed by
comparing predicted age with chronological age for 103 individuals in the training and test sets, represented by orange and blue points,
respectively (left plot). Residuals between DNAm age and chronological age were plotted (right plot). Regression lines and 95% confidence
intervals are shown. Performance metrics for the model are summarized in the accompanying table.
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with previously identified MEAT markers, while the
other four (MA 01, MA 04, MA 08, MA 10) were
novel to this study.

To ensure accuracy and usability, a unified SBE system
was established, targeting only the 7 CpGs (Figure 4B).
Utilizing this consolidated system, methylation data
from 103 samples were collected, and split into a
training set (70%, n = 71) and a test set (30%, n = 32).
The SLR 7CpG model underwent additional
optimization, improving predictive accuracy with r
values of 0.951 for both sets. The refined model
achieved MAEs of 4.018 years in the training set and
3.797 years in the test set, demonstrating strong
robustness for age prediction (Figure 4C). The
coefficients and intercept for the final model are
presented in Table 2.

Assessment of histological applicability and model
validity

To confirm the model’s accuracy and versatility, we
expanded the evaluation to include different muscle
tissue types. Since tissue-specific cellular composition
leads to unique methylation patterns, the model’s
performance was tested on cardiac and smooth muscle
samples from the heart and uterus, respectively. When
the SBE-based skeletal muscle age prediction system
(SLR_7CpG) was applied, the heart yielded a high
MAE of approximately 24.3 years, indicating
poor performance (Figure 5). Similarly, the uterus
demonstrated limited accuracy with a MAE of
approximately 16.2 years (Figure 5). To assess tissue
specificity, EPIC array data were analyzed using linear
regression to examine the relationship between
chronological age and beta values for the 20 skeletal
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muscle-specific CpG markers in cardiac and PM muscle
tissues. Except for MA_10 and MA_19, the R? values
revealed substantial differences between cardiac and
skeletal muscle types ranging from 0.261 to 0.683
(Supplementary Figure 8). These findings confirm that
the 20 CpG markers and the prediction model are highly
specific to skeletal muscle. The diminished accuracy in
cardiac and smooth muscle likely arises from
differences in cellular composition, such as myocardial
cells in the heart and uterine myocytes in the
myometrium, which create distinct methylation profiles.

To evaluate the robustness of the assay, we examined
the effect of varying DNA input amounts on
methylation accuracy and age prediction. Methylation
values were calculated from the ratio of methylated to
unmethylated  sequences  generated via PCR
amplification. The methylation consistency of the 7 core
CpGs included in both SBE and NGS models was
assessed using artificially methylated DNA controls
(Supplementary Figure 9). The average R2 values were
0.9922 for NGS and 0.9871 for SBE, demonstrating
minimal PCR bias. Importantly, when DNA inputs were
at least 1.67 ng, the median methylation differences
remained under 5% for all markers, except MA 04 in
the SBE system (Supplementary Figure 10A). However,
MA 13 and MA 18 in the NGS system, as well as
MA 19 in the SBE system, showed comparatively
greater variability, with standard error of the mean
(SEM) values exceeding 0.01 in methylation differences
at the 1.67 ng input level. Consistent with previous
reports, DNA inputs of at least 10 ng showed reliable
performance [28]. Reducing DNA input from 13.33 ng
to 6.67 ng increased the MAE by 1.46 years in the SBE
model and 2.61 years in the NGS model, both of which
were constructed using the same set of 7 CpG markers

e Cardiac muscle
e Smooth muscle
o Skeletal muscle

Cardiac Smooth
muscle muscle

r 0.805 0.374
. MAE 24253 16.193
RMSE 25.792 19.341

Metrics

0
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90

Chronological age

Chronological age

Figure 5. Applicability of the best-performing SBE model to cardiac and smooth muscle tissues. Plots compare DNAm age and
chronological age using the best SBE model across tissue types. Left: skeletal (gray) vs. cardiac muscle (red, n = 19); right: skeletal vs.
smooth muscle from uterus (purple, n = 19). Skeletal muscle samples (n = 103) are shown in gray on both plots. Solid lines represent the
regression relationships for each tissue type, with 95% confidence intervals shaded in corresponding colors. Performance metrics for each

tissue are summarized in the accompanying table.
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(Supplementary Figure 10B). Collectively, these results
highlight the importance of controlling DNA input to
maintain prediction accuracy, with MAEs remaining
below 6 years.

DISCUSSION

Skeletal muscles are composed of various types of
fibers, generally classified into six types (I, IC, IIC, 1IA,
IIAB, and IIB) based on standard myofibrillar
adenosine triphosphatase histochemistry [29]. Most
skeletal muscles possess a mixed fiber composition,
with slow-twitch fibers (Type I) and fast-twitch fibers
(Type II) being the most prevalent [12, 30]. Despite this
diversity, studies investigating skeletal muscle have
primarily concentrated on the VL muscle, which
features a heterogeneous distribution of Type I, I1A, and
IIB fibers [19]. This heterogeneity has been reported to
reflect significant variability in fiber composition,
which may contribute to sex-specific differences and
complicate the interpretation of fiber-type-specific
molecular and epigenetic alterations [29]. These
complexities highlight the need to -elucidate the
molecular and epigenetic characteristics of individual
muscle fiber types and specific muscle groups,
particularly in research concerning muscle aging and
functional regulation. Conversely, the PM muscle in
broiler chickens, which is composed almost exclusively
of Type IIB fibers, represents a highly homogeneous
system, making it suitable for studying the unique
aspects of fast-twitch fibers [31]. Despite its potential,
the comprehensive epigenetic profile of PM tissue is
still insufficiently characterized. Within this framework,
utilizing methylation profiling of an aging-gradient
group of human PM samples offers an opportunity to
enhance molecular investigations and gain a more
detailed understanding of fiber-type-specific adaptations
and dysfunctions linked to aging and disease.

In various mammalian species, especially in rodents
such as rats and mice, aging is associated with distinct
fiber type transitions, including a shift from Type IIA to
Type 1 in slow-twitch soleus muscles and from Type
IIB to Type IIX in fast-twitch muscles [32-34]. In
contrast, in humans, the proportion of fast-twitch
MyHC Ila and IIx isoforms diminishes with age, mainly
due to the preferential atrophy of Type Il fibers, while
Type 1 fibers are relatively maintained [35-38].
Thereby, histochemical myofibrillar type profiles
appear to remain relatively stable during aging, despite
underlying structural and functional changes [30, 39,
40]. These observations suggest that aging primarily
impacts muscle functionality and integrity through the
selective atrophy of Type II fibers rather than through

are more susceptible to aging-related changes than Type
I fibers, which have greater oxidative capacity and
resistance to cellular stress [41, 42]. Given these
differences in susceptibility, epigenetic changes in Type
IIB fibers may further contribute to the age-related
decline in muscle function. In this study, we observed
that aging in PM muscle samples resulted in 2.4 times
more hypermethylated CpGs compared to hypo-
methylated CpGs, highlighting the potential role of
epigenetic modifications in the regulation of muscle
function with aging (Figure 1D).

In this study, 20 CpG markers showing age-related
hypermethylation or hypomethylation were identified as
skeletal muscle-specific markers (Figure 1E, 1F). These
markers were associated with 15 genes linked to
myopathies and Type IIB fiber function (Figure 2A,
2B). Many of these genes are linked to aging-related
functional decline, influencing metabolism, structural
integrity, and stress response. Aging process is closely
tied to declines in mitochondrial function and oxidative
capacity, likely driven by epigenetic changes [43, 44].
Among those genes related to oxidative metabolism,
such as ACTAI, ILI8BP, and HOGAI, the hyper-
methylation of HOGAI gene may suppress its
expression, contributing to the reduced oxidative
efficiency observed in Type IIB fibers (Table 1 and
Figure 2C). In contrast, glycolytic activity in Type 1IB
fibers may be sustained to compensate for this decline,
as seen in the expression of genes like CLCNI, TPM3,
TWF2, and PIPOX. Notably, hypomethylation of
TPM3, which encodes a major component involved in
glycolytic muscle contraction, corresponds with
increased mRNA expression in the PM muscle samples
from elderly individuals (Table 1 and Figure 2C).
Additionally, genes such as CDKN2B and KI/F'15 impact
energy metabolism, with hypomethylation of CDKN2B
potentially promoting muscle cell senescence. Structural
genes including ZNF549, RUFY3, and SLC44A2 are
involved 1in muscle fiber identity, with the
hypermethylation of SLC4442 potentially disrupting
cellular transport, further contributing to muscle
deterioration. To provide a broader aging perspective,
we aligned these genes with the hallmarks of aging, as
summarized in Supplementary Table 4 [31].

FOXSI1 regulates protective stress-response pathway in
aging muscles, while SLPI acts as an anti-inflammatory
mediator and controls cell proliferation. Despite
expectations that transcriptional of these genes would
decline with age, we observed increased expression in
PM muscle samples from older individuals (Table 1,
Figure 2C). This may reflect the influence of the
myofibrotic phenotype. Similarly, the pro-IL-18BP

pronounced fiber-type switching. Notably, Type IIB exhibited increased mRNA expression despite
fibers, with low oxidative and high glycolytic capacity, accelerated methylation, underscoring that DNA
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methylation and gene expression are not invariably
inversely related [45]. This discrepancy may be
explained by the low CpG density in its promoter
region.

Although some CpGs are located within CpG islands in
the transcription region, several exhibited a positive
association between methylation and gene expression.
For example, despite hypomethylation of ACTAI, its
mRNA expression decreased. Impaired ACTA1l
function may reduce contractile efficiency, resulting in
an increased dependence on anaerobic pathways. These
observations highlight the multidimensional effects of
DNA methylation on gene transcription and the intricate
interplay of epigenetic mechanisms. This complexity
necessitates further investigation into the structural
dynamics of gene regulation in aging skeletal muscle,
particularly regarding muscle fiber types and specific
genetic loci.

Skeletal muscle is composed of various cell types,
including satellite cells, myoblasts, and mature muscle
fibers, among others [46, 47]. Although the single-cell
analysis, which would precisely characterize
methylation patterns specific to each cell subtype, was
not performed on PM muscle in this study, we
employed stringent procedures during tissue sampling
to minimize contamination from non-muscle cells.
Blood and visually distinguishable adipose tissue were
meticulously removed with precision, and despite
these rigorous precautions, some degree of sample
heterogeneity could have affected the methylation
outcomes. To gain a deeper understanding of
methylation alterations at a single-cell resolution, future
investigations incorporating single-cell epigenomic
approaches are warranted. We additionally applied a
novel, skeletal muscle-specific epigenetic predictor to
cardiac and smooth muscles to examine inter-muscle
epigenetic differences (Figure 5). Our findings revealed
significant  differences in predictive accuracy,
suggesting that skeletal, cardiac, and smooth muscles
have distinct DNA methylation profiles. The differences
could be driven by their developmental origins,
functional demands, regenerative capacities, metabolic
requirements, and responses to stress [33, 48—51]. These
differences highlight the tissue-specific nature of
epigenetic regulation.

While previous studies on muscle diseases have focused
on genetic mutations, this study offers methylation
patterns during natural aging, identifying potential
epigenetic factors contributing to muscle loss and
disease. For example, sarcopenia predominantly
impacts Type IIB fibers, likely due to epigenetic
processes such as hypermethylation-driven suppression
of anabolic pathways and hypomethylation of genes

promoting inflammation [21, 52-54]. In the
Hertfordshire Sarcopenia Study, comparison of the
muscle transcriptome between older individuals with
sarcopenia and age-matched healthy controls revealed
that mitochondrial dysfunction was the predominant
transcriptional signature associated with sarcopenia
[55]. In this context, mitochondrial dysfunction—related
genes such as SLC44A42, TPM3, PIPOX, and DHDPSL,
which are represented among the 20 CpGs identified in
our study, may play a contributory role in the
pathophysiology of sarcopenia. Additionally, DNA
methylation, histone modifications, and non-coding
RNAs may act coordinately to regulate gene expression
in models of skeletal muscle atrophy [56]. This raises
the possibility that CpG loci mapping to genes involved
in inflammation, stress response, and metabolic
regulation, including the 20 CpGs identified in our
study, could predispose skeletal muscle to accelerated
atrophy under age-associated stressors. In this regard, if
the methylation status of the 20 age-related CpG
markers identified in this study can be precisely
modulated, it may help alleviate or delay muscular
diseases such as sarcopenia. While technically
demanding, modulating targeted DNA methylation will
offer a potential therapeutic avenue. This underscores
the importance of epigenetic interventions in the
prevention or treatment of aging-related muscle
diseases, paving the way for future research into
targeted epigenetic therapies.

From a practical perspective, developing an epigenetic
age predictor based on skeletal muscle holds significant
promise, especially in forensic science. Unlike Voisin’s
MEAT clock, which is based on biopsy-derived VL
muscle samples from European populations, the models
introduced in this study mark the use of post-mortem
PM muscle samples from a Korean population
(Table 2). While the array-based MEAT model showed
considerable prediction accuracy in Korean PM muscle
samples [20], its broader application is hindered by
stringent requirements for DNA quantity, high costs,
and limited practical feasibility. By contrast, the newly
developed SBE and NGS models are expected to
overcome these limitations by optimizing DNA input,
the number of CpG markers, and cost-effectiveness.
Notably, our models could aid in identifying victims by
enabling accurate estimation of DNA methylation age
from degraded human remains in forensic science.

In summary, this study identified 20 skeletal muscle-
specific CpG markers with aging by analyzing genome-
wide methylation data from pectoralis major muscle
autopsy samples using the EPIC array. These markers
are expected to be pivotal in furthering insight into the
genetic and epigenetic underpinnings of aging and their
connection to age-related genetic disorders. Based on
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these markers, skeletal muscle-specific age prediction
models with high prediction accuracy were constructed
using both SBE and NGS platforms. These models
exhibited robust performance, demonstrated skeletal
muscle tissue specificity, as evidenced by the reduced
predictive accuracy in smooth and cardiac muscle
tissues, and showed cost-effectiveness, highlighting
their practical utility. The methylation profiles and
prediction tools developed in this study present valuable
resources for researchers, clinicians, and forensic
scientists, offering novel insights for investigating
skeletal muscle biology, age-related muscular disease,
and human aging.

MATERIALS AND METHODS
Study samples

Ethical approval for this study was obtained from the
Institutional Review Board of Seoul National University
Hospital (IRB NO. C-1912-053-1087). PM muscle
samples were collected via autopsy from 103 deceased
human individuals of South Korean descent, aged 18 to
85 years, comprising 80 males and 23 females
(Supplementary Figure 1). Cardiac (heart) and smooth
muscle (uterus) samples were also collected from the 23
female donors. To minimize the effect of post-mortem
interval (PMI) on DNA integrity and methylation status,
samples were isolated from non-lesioned tissue areas of
uncompromised tissues to ensure integrity with PMIs
ranging from 1 to 12 days, averaging 2.4 days. After
excision, all tissue samples were promptly stored at
—80°C to preserve their molecular stability until further
processing.

Genomic DNA extraction

Genomic DNA (gDNA) was extracted from tissue
samples using the QIAamp® DNA Mini Kit (Qiagen,
Hilden, Germany). Key adjustments to the protocol
included processing 25 mg of tissue with a 4-hour lysis
step, optimized to maximize extraction efficiency. The
purified gDNA was quantified using the Qubit™ dsDNA
HS Assay Kit on a Qubit™ Flex Fluorometer (Thermo
Fisher Scientific, Waltham, MA, USA) and
subsequently stored at —20°C.

Identification of skeletal muscle-specific aging-
related CpG sites

To identify age-associated CpG sites in skeletal muscle,
DNA methylation profiles from 23 male PM muscle
samples were analyzed, including twenty from the
GSE244996 dataset and three newly generated for this
study (GSE294234). Genome-wide DNA methylation
profiling was conducted using the Illumina Infinium

Methylation EPIC BeadChip array version 1 (Illumina,
San Diego, CA, USA) in collaboration with Macrogen
Inc. Bisulfite conversion was performed on 250 ng of
gDNA to facilitate methylation-specific analysis,
followed by amplification to ensure sufficient DNA
quantity for hybridization. The DNA was enzymatically
fragmented, hybridized to sequence-specific probes on
the array, and underwent single-base extension
incorporating labeled nucleotides. After staining, arrays
were scanned on an Illumina scanner. Fluorescent
intensity data were extracted and preprocessed in R with
the lumi package to perform background correction and
dye bias equalization. Probes with detection p-value >
0.05 in more than 25% of samples or missing values
(NA) in any sample were excluded. Beta Mixture
Quantile (BMIQ) normalization was implemented to
standardize methylation values. The resulting Beta and
M-values were calculated, and CpG site selection was
further refined using statistical criteria, including
detection p-value, a maximum beta value difference
(AB) and R? values from regression between beta values
and chronological age. For comparison, VL muscle data
from GSE114763 (n = 8) and GSES50498 (n = 47), and
cardiac muscle data from GSE244996 (n = 20), were
obtained from the Gene Expression Omnibus (GEO).

Genomic analysis of aging-associated genes

To identify enriched signaling and metabolic pathways,
as well as to predict the activation or inhibition of
upstream  regulators and evaluate downstream
consequences on diseases, biological functions, and
phenotypes, the IPA plugin version 23.0 (Qiagen,
Frederick, MD, USA) was utilized. Inferences for
expression and pathway analysis were made indirectly
using raw p-values and regression coefficients obtained
from EPIC array data. Statistical significance was
determined by a —logio (p-value) > 1.3, corresponding
to a p-value < 0.05.

mRNA expression analysis by quantitative real-time
PCR

Total mRNA was extracted from 10 mg of muscle
tissue using QIAzol and the RNeasy Plus Universal
Mini Kit (Qiagen) and quantified using a NanoDrop
spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, USA). Relative mRNA expression levels were
analyzed through Real-Time quantitative PCR (RT-
gPCR) on a CFX Connect Real-Time PCR System
(Bio-Rad Laboratories, Hercules, CA, USA), utilizing
the SensiFAST SYBR Lo-ROX One-Step Kit (Meridian
Bioscience, Cincinnati, OH, USA) and custom-designed
primer sets (Supplementary Table 5). To better assess
the correlation between methylation of the target CpGs
and mRNA transcription levels, custom primers were
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designed to amplify mRNA regions encompassing or
adjacent to the 20 CpG sites of interest.

Bisulfite conversion

Bisulfite conversion was performed on 200 ng of gDNA
using the EZ DNA Methylation-Lightning Kit (Zymo
Research, Irvine, CA, USA), following the
manufacturer’s instructions. The resulting bisulfite-
converted DNA (bcDNA) was eluted in 15 pl of buffer,
yielding 13.33 ng/pl, assuming 100% recovery [57].
Sensitivity was assessed by serial dilutions down to
12.5 ng of gDNA input, resulting in 0.83 ng/ul of
bcDNA. To validate methylation accuracy, standards
were created by mixing fully methylated (100%) and
unmethylated (0%) DNA in 10% increments using the
EpiTect PCR Control DNA Set (Qiagen).

Primer design for methylation analysis

Bisulfite sequencing primers were designed using
Pyromark Assay Design Software version 2.0 (Qiagen)
and Bisearch (http://bisearch.enzim.hu), with optimal
parameters including a melting temperature range of
56-62°C, 100 bp amplicon size, 25 bp primer length,
and exclusion of degeneracy and secondary structures
(Supplementary Table 6). SBE primers with extended
T-tails for multiplex analysis were designed
(Supplementary Table 7), and the final primer sets used
in the model are detailed in Supplementary Table 8.

Bisulfite sequencing using single base extension

For the SBE assay, 1 pL of bcDNA (13.33 ng/uL) was
amplified in a 20 pL multiplex PCR reaction containing
2 puL of 10x Gold ST*R Buffer (Promega, Madison,
WI, USA), 3.5 U of AmpliTag Gold DNA Polymerase
(Applied Biosystems, Foster City, CA, USA), and
sequence-specific primers. The PCR protocol began
with an initial denaturation at 95°C for 11 minutes,
followed by 34 cycles of 94°C for 20 s, 56°C for 60 s,
and 72°C for 30 s, concluding with a final extension at
72°C for 7 min. The amplified PCR products were first
purified using EXOSAP-IT™ (Applied Biosystems) at
37°C for 45 min, then heat-inactivated at 65°C for 15
min. DNA methylation detection by SBE was
performed in a 10 ul reaction mixture containing 1 uL
of 10x SNaPshot Multiplex Ready Reaction Mix, 2 pL.
of 5x BigDye™ Terminator v.1.1 and 3.1 Sequencing
Buffer (both from Applied Biosystems), SBE primers,
and 1 pL of purified PCR product. SBE thermal cycling
conditions consisted of 96°C for 10 s, 50°C for 5 s, and
60°C for 30 s, repeated for a total of 28 cycles. The SBE
products were then purified using recombinant SAP
(Applied Biosystems) under the identical conditions as
the previous purification. All PCR and SBE reactions

were conducted on a Veriti 96-Well Thermal Cycler
(Applied Biosystems, Waltham, MA, USA), and
sequencing was performed using a 3500 Genetic
Analyzer (Thermo Fisher Scientific) equipped with a 36
cm capillary and POP-4 polymer.

Bisulfite
sequencing

sequencing using next generation

For targeted NGS, libraries were prepared using the
KAPA HyperPrep Kit, KAPA Universal Adapters, and
KAPA Unique-Dual Indexed (UDI) Primer Mixes, in
accordance with the manufacturer’s guidelines provided
in the KAPA HyperPrep Kit technical datasheet. Initially,
13.33 ng of bcDNA underwent targeted multiplex PCR
with specific primer sets (Supplementary Table 3). PCR
products exceeding 300 ng were then subjected to end-
repair and A-tailing procedures. The reaction mixture
was incubated with a universal adapter at 20°C for 1
hour. Following adapter ligation, each library was
purified using AMPure XP beads (Beckman Coulter,
Brea, CA, USA). Libraries were then amplified using
UDI primer mixes through 13 cycles of PCR and
subsequently purified again with AMPure XP beads. The
concentration and quality of the libraries were assessed
using the 2100 Bioanalyzer and 4150 TapeStation
(Agilent, Santa Clara, CA, USA), and all samples were
pooled into a single batch for further processing. Double-
size selection was performed using SPRIselect beads
(Beckman Coulter) to ensure the desired fragment size.
The final library was quantified using KAPA Library
Quantification Kits (Roche, Basel, Switzerland),
following the provided instructions. The pooled library
was adjusted to 4 nM, denatured with 0.2 N NaOH, and
adjusted to 20 pM with Illumina prechilled hybridization
buffer. The denatured library was subsequently diluted to
7-9 pM with a spike-in of 2.5% PhiX control v.3.
Sequencing was performed on an Illumina MiSeq system
using the MiSeq Reagent Kit v.3, with a 2 x 300 cycle
configuration (Verogen, San Diego, CA, USA).

Methylation data processing

SBE methylation data were analyzed using GeneMapper
Software 5 (Thermo Fisher Scientific). Methylation
values were calculated from the peak height,
representing the relative fluorescence units (RFU) of C
or G nucleotides corresponding to methylated DNA,
normalized by the total DNA, determined as the sum of
C+T or G+A nucleotides. Raw sequencing data from
NGS (FASTQ files) were processed on CLC Genomics
Workbench 21.0.5 (Qiagen). The analysis workflow
included merging paired-end reads, trimming low-
quality bases based on Phred scores reflecting a 1% error
probability, and excluding reads containing two or more
ambiguous bases or measuring less than 10 bp in length.
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Processed reads were aligned to the reference genome
(Human GRCh38), and methylation calling was
performed, omitting loci with coverage below 20. The
resulting methylation values were utilized for subsequent
machine learning modeling.

Machine learning

Machine learning analyses to develop age prediction
models were performed using Python 3.8.8. Linear
regression (LR), stepwise linear regression (SLR),
Lasso Regression (Las), ridge regression (Rid), and
elastic-net regression (Ela) were implemented. Tree-
based decision models, including XGBoost (XGB),
gradient boosting (GB), and random forest (RF), were
implemented using the Scikit-learn and XGBoost
libraries in Python. Hyperparameters were optimized
with GridSearchCV, and model performance was
evaluated with metrics including the Pearson correlation
coefficient (r), R-squared (R?), mean absolute error
(MAE) and root mean square error (RMSE).

Statistical analysis

Statistical comparisons for mRNA expression were
performed using the Chi-square test and the unpaired
t-test. Data are presented as mean + standard error of the
mean (SEM) and were analyzed using GraphPad Prism
5.01 (GraphPad, La Jolla, CA, USA). Levels of
statistical significance are denoted by asterisks with the
following thresholds: “p < 0.05; *p <0.01; **'p < 0.001.

Availability of data

All data supporting the findings of this study are
available within the paper and its Supplementary files.
Raw data underlying the main and supplementary
figures and tables have been deposited in the Gene
Expression Omnibus (GEO) under accession numbers
GSE244996 and GSE294234. A source data file
containing statistical analyses and p-values is provided
as Supplementary Table 1.
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SUPPLEMENTARY MATERIALS

Supplementary Figures
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Supplementary Figure 1. Distribution of samples by age group and gender. The distribution of 103 samples across age groups and
gender is shown. The age groups and sample sizes are as follows: 18—-19 years (n = 2), 20-29 years (n = 9), 30—39 years (n = 10), 40—-49 years
(n=27), 50-59 years (n = 22), 60—69 years (n = 17), 70-79 years (n = 11), and 80—-89 years (n = 5). Male samples are depicted by blue boxes,
and female samples by red boxes. The number of samples in each age group is indicated as the gray lines.
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Supplementary Figure 2. Comparison of array beta values between pectoralis major muscle and vastus lateralis muscle
across skeletal muscle-specific 20 CpG markers. Linear regression was performed to assess the relationship between beta values
(ranging from 0 to 1) and chronological age for 12 newly identified CpG markers (A) and 8 CpG markers overlapping with MEAT [11] (B).
Publicly available datasets were used to assess age-related associations, with linear regression between beta values and age. Vastus
lateralis muscle data were obtained from GSE114763 (n = 8) using the HM450 array and GSE50498 (n = 47) using the HMEPIC array. Both
datasets were used for the MEAT, with samples represented as brown dots, and R? values highlighted in brown. Pectoralis major muscle
data were obtained from GSE244996 (n = 20) and GSE294234 (n = 3) generated in this study, with samples represented by gray dots and
the corresponding R? values in gray. Solid lines represent the regression relationships for each tissue type, with 95% confidence intervals
shaded in corresponding colors.
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Supplementary Figure 3. Quality assessment of data obtained via NGS. (A) Sample Coverage Analysis. Sequencing depth was
assessed for all 103 samples, with coverage values plotted on the Y-axis and samples arranged on the X-axis in descending order of
coverage. (B) Marker Coverage Analysis. Coverage across the 20 target CpG amplicons was evaluated for each marker. Box plots, generated
using the Seaborn library in Python, illustrate the distribution of coverage, with gray dots representing individual sample values for each
marker.
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Supplementary Figure 4. Permutation test of the 21_Ela model. Null distributions of prediction accuracies were generated by
randomly permuting age labels 10,000 times while keeping the CpG feature matrix fixed. (A) Distribution of MAE values under the null. (B)
Distribution of RMSE values under the null. (C) Distribution of R? values under the null. The red dashed line indicates the observed
performance of the 21_Ela model. The blue distributions represent the null performance obtained from 10,000 permutations.
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Supplementary Figure 5. Electropherogram of four multiplex groups for muscle-specific aging-related 20 CpGs on SBE. The
electropherograms were obtained using a 3500 Genetic Analyzer, showcasing four multiplex groups for the 20 muscle-specific aging-related
CpGs. Each group is represented in a separate row. Blue fluorescence corresponds to Guanine (G), indicative of methylated Cytosine (5mC),
while green fluorescence represents Adenine (A), signaling unmethylated Cytosine (C). The peaks for each CpG marker are shown, with the
x-axis indicating the relative fragment size, and the y-axis representing the relative fluorescence units (RFU). The markers are displayed
within each multiplex group, as indicated by their respective labels (MA_01, MA_02, etc.).
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Supplementary Figure 6. Linear regression analysis of 20 muscle-specific age-associated CpG markers. Linear regression was
conducted to assess the relationship between DNA methylation levels (ranging from 0 to 1) and chronological age for 20 skeletal muscle-
specific CpG markers. Each sample is depicted as a blue dot. The statistical results including correlation coefficient (r) and R? values for each
marker are shown on the respective plots.
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Supplementary Figure 7. Quality assessment of data obtained via SBE. (A) Density Estimation and Normal Distribution Check.
Density estimation was performed to evaluate the distribution of the data, where the height of each bar represents the density of Y values,
not the count. The kernel density estimate (KDE) curve provides a smoothed representation of the data distribution. Skewness (-0.059) and
kurtosis (-0.476) values confirmed that the data follows a normal distribution. (B) Normality of Residuals in Linear Regression. Linear
regression assumes that residuals follow a normal distribution. A Q-Q plot was used to compare the quantiles of the residuals against
theoretical quantiles from a normal distribution. Deviations from the diagonal line indicate departures from normality. (C) Correlation and
Multicollinearity Assessment. A correlation and multicollinearity test were conducted to identify high intercorrelations among independent
variables. The heatmap illustrates correlation levels, ranging from high (red) to low (blue). Strong correlations (coefficient 20.8) were
observed in three variable pairs. Additionally, a variance inflation factor exceeding the threshold of 10 was identified for the MA_14
marker, highlighting potential multicollinearity concerns.
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Supplementary Figure 8. Comparison of array beta values between skeletal muscle and cardiac muscle on skeletal muscle-
specific 20 CpG markers. Linear regression was performed to assess the relationship between beta values (ranging from 0 to 1) and
chronological age for 20 skeletal muscle-specific CpG markers. Pectoralis major muscle data were obtained from GSE244996 (n = 20) and
GSE294234 (n = 3) from this study, with samples represented as gray dots and corresponding statistical R? values shown in gray. Cardiac
muscle data were obtained from GSE244996 (n = 20), with samples presented as red dots, and corresponding R? values are shown in red.
Solid lines represent the regression relationships for each tissue type, with 95% confidence intervals shaded in their respective colors.
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Supplementary Figure 9. Calibration curves for amplification bias in target CpGs. Calibrated curves were generated by analyzing
artificially methylated DNA standards (ranging from 0% to 100% in 10% intervals) for target CpGs using SBE (green) and NGS (blue) systems.
Polynomial regression lines were fitted to the scatter plots, with the correlation coefficients (r) for each marker displayed on the plots.
Confidence intervals are displayed as semi-transparent bands around the regression lines. Dots represent the average duplicate
observations, with error bars indicating standard deviations.
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Supplementary Figure 10. Age prediction accuracy across DNA input concentrations using SBE and NGS systems. (A)
Sensitivity analysis for methylation levels based on DNA input concentration. Sensitivity tests were conducted for the SBE and NGS systems
using varying concentrations of bisulfite converted DNA. Methylation levels at 7 core CpGs were compared to a 13.33 ng input, with
methylation differences shown on the Y-axis. In the SBE system, a 13.33 ng input was tested in duplicate for all samples, and the mean
value was used as the reference. In the NGS system, 13.33 ng input was tested once per sample and used as the reference. Box plots were
generated using the Seaborn library in Python, with individual sample values presented as dots. (B) Age prediction accuracy based on DNA
input concentration. Age prediction was performed using models based on the same set of 7 CpG markers, including the best-performing
model in SBE (Figure 4C) and the linear regression model using 7 CpGs in NGS platform (Figure 3B). Box plots, generated with the Seaborn
library, illustrate the distribution of age estimation differences across varying DNA input concentrations. The Y-axis represents the
difference in age estimates compared to those obtained using the 13.33ng of bcDNA input, while the X-axis denotes the bcDNA input
concentrations. The accompanying table summarizes the statistical results, including the median and standard error of the mean (SEM) for
each DNA input concentration.
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Supplementary Tables

Please browse Full Text version to see the data of Supplementary Tables 1 and 2.

Supplementary Table 1. Statistical results of linear regression between age and beta values from 23 samples

using the EPIC array.

Supplementary Table 2. Detailed formulas of NGS-based age prediction models.

Supplementary Table 3. Summary of reduced CpG models: performance metrics under elastic net regularization
and post-hoc thresholding.

Methods Alpha regularization Alpha regularization Post-hoc thresholding
Modeling Elastic ne.t; 3lpha =0.5, Elastic ne.t; Elpha =0.8, Elastic net;.all_)ha =0.0178,
11_ratio = 0.9852 11_ratio = 0.9852 11_ratio = 0.9852
n of CpG 8 5 6
MAE 9.377 11.509 5.052
train RMSE 12.0175 14.4748 5.943
r 0.8109 0.7299 0.934
R-squared 0.4479 0.1991 0.865
MAE 10.4848 11.9844 7.364
RMSE 12.7364 14.6885 11.3
fest r 0.7628 0.6897 0.726
R-squared 0.3742 0.1677 0.507
Formula Position Coefficient Position Coefficient Position Coefficient
intercept 55.5899595 intercept 44.53694062 intercept 163.3170259
chr3:12815297 —6.566861612 chr19:10636467  —6.493581544 chr3:44761961 53.498989
chr19:10636467  —15.12568411 chr9:22005565 8.777387791 chr17:29042762 38.623448
chr3:12815285 —9.302902911 chr9:22005510 3.293509568 chr3:12815466 —30.351224
chr3:12815282 —2.1355773 chr9:22005577 5.634173089 chr3:44761965 29.531605
chr9:22005565 13.39037812 chr7:143316521  —2.470404842  chr19:57527206 30.667327
chr9:22005510 6.784154861 chr3:12815426 —40.055187

chr9:22005577
chr7:143316521

10.73001316
—9.800951957

Supplementary Table 4. Hallmarks of Aging and functional annotations of the 20 skeletal muscle—specific CpG

markers.
Marker CpG_ID RefGene Hallmark of aging Functional annotation Supplementary
_ References
MA 01 cg06458239 ZNF549 Epigenetic Alteration Zinc finger transcription factor [1,2]
Choline transporter, Mitochondrial
Mitochondrial choline transporter regulating ATP
MA_02 cg02426178 SLC4442 Dysfunction production, oxidative stress, and 3. 4]
metabolic homeostasis.
Altered Intercellular . .
MA_03 cg11456906 CFAP74 Communication Ciliary and flagellar motility [5]
Mitochondrial Thin filament stabilization
MA_04 cg07743451 TPM3 Dysfunction (actin-binding) (6, 7]
MA 05 cgl4812508 TWF? Cytoskeletal Tntegrity ~ /*ctin-binding protein involved in cell 8]
motility
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MA 06 cg07188513 MNXI-AS1

MA_07 cg07502461 TWF2 Cytoskeletal Integrity ~ **ctin-binding P ‘(’)tt‘i"llirz;nv"”ed in cell 8]

MA 08 cg09926178 ACTAI Cytoskeletal Integrity Muscle contraction regulation [9,10]

MA 09 cg15730967 CAND2 Altered Inte'rce!lular Heart mu§c1e Qevelopment, cAMP (1]

Communication signaling pathway

MA_10 cg07303143 KIFIS Stem Cell Exhaustion Mitotic spindle and proliferation [12]

regulation

MA_11 cgl7722263  MYCNUT Proteostasis Loss Ubiquitin-proteasome system and [13]

protein degradation

MA_12 cg05543030

MA 13 cg08390209 CDKN2B Cellular Senescence Cell cycle arrest via INK4 family [14-17]

inhibition

MA 14 cgl9145398 FOXSI Epigenctic Alteration | ranscriptional regulation via Forkhead [18]

box pathway
. Immune signaling modulation,

MA 15 cg26149678 IL18BP Inflammaging antagonist of [L-18 [19]

MA 16 cg12966875 SLPI Inflammaging Protease inhibitor, innate immune [20]

response modulator

MA 17 ¢206059810 RUFY3 Altered Inte_rce!lular Vesicle trafficking gnd autophagy [21,22]

Communication regulation
Neuromuscular Junction  Chloride ion channel in skeletal muscle
MA_18 cgl17922226 CLCNI Dysfunction excitability [23]
MA 19 006144905 PIPOX Mltochon(_lrlal Peroxisomal amino _ac1d and redox [24]
Dysfunction metabolism
MA 20 0213985639 DHDPSL Mltochon(_lrlal Amino acid metabgllsm, n_ntochondrlal [25]
Dysfunction enzymatic function
Supplementary Table 5. Primers for quantitative real-time reverse transcription PCR (qRT-PCR).

Related CpG RefGene Forward primer sequence (5'—3") Reverse primer sequence (5'—3’) Size (bp)
cg06458239 ZNF549 CTTTACCGCCCGCCTTTC GGCACCTTTGAGCTTCATCA 155
cg02426178 SLC4442 TCATGTTCTTCTGGTTGGCC ATCTGCACAATGGCCAGGAT 199
cg11456906 CFAP74 AAGGCCGAGGAACACAGATT GCGGCAAACTTGATCTGGTA 128
cg07743451 TPM3 GAAGTTGAGGGAGAAAGGCG CTCCTGAGCACGGTCCAG 105
cgl14812508 TWF?2 CCTGGTCGCCTGATAACTCC ACAGGACGACAGGTGTTTCT 164
cg07188513 MNXI1-AS1 CAAAGCTCTGCAGGTCGAAC TGCATGTGTTTGGTGGCTAC 113
cg09926178 ACTAI GGACAGCGCCAAGTGAAG CGTCTTCGTCGCACATTGT 111
cgl15730967 CAND?2 AGGATAGTGAATTCAGTGAGCAA AGCCTTGACGTTCTCCTCG 200
cg07303143 KIF15 GGCTGCATTGTTTTCGGGAT TCTTTCTGCAGGAGGACGAA 154
cgl17722263 MYCNUT CCGATGTACAGGCAGAACTTG GACCACAGAACTCAGCCAGA 245
¢g08390209 CDKN2B CTGGAACCTAGATCGCCGAT GGTGAGAGTGGCAGGGTC 140
cg19145398 FOXS1 GAAGCTGAGCCTGACCCA CTTGGTTGGCTCAGTTGTGG 104
cg26149678 IL18BP AAGGAAGGCTCTTCAGGACC AGGAGCAGGACCCACAAAG 147
cg12966875 SLPI AGAGTCACTCCTGCCTTCAC TGGGCAGATTTCTTAGGAGGA 145
¢g06059810 RUFY3 CTCACCGCTGCCCTTCCT CAGCTTGGCCATGTTCATGA 127
cgl17922226 CLCNI GGACTGCCCTCTGAGAATGG CCTATGTCCTGCTCCCTGTC 130
cg06144905 PIPOX GCCTGTCTTTGCTTGCCTTT CCTCGGGAGTGTGGTAGAAA 195
cg13985639 DHDPSL GGGAAGAAGGTGGACATTGC TGCTGGTCAGGAAAGGAAAC 172

GAPDH CCACTCCTCCACCTTTGACG CCACCACCCTGTTGCTGTAG 211
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Supplementary Table 6. Primers used for PCR with bisulfite-converted DNA as the template.

Marker CpG_ID Forward primer sequence (5'—3’) Reverse primer sequence (5'—3’) Size (bp)
MA 01  ¢cg06458239 AGGTGTTTTTTTTTTGGGTAATGAT CCTCTCTTTCTTAAATTAAATCCTCAC 129
MA 02 cg02426178 AGGGTTTAGTAGTAGGAGGTAAAG ACCCTACTAAACCTACAAATCTTCA 116
MA 03 ¢gl1456906  AGGTATAGAGGAATTTAGGGTAGAA CTACACCTCCCTAAACCTAAAAAC 308
MA 04 cg07743451 GGGAGAGGTAGATAGTTTTT CTATACTCACAAATACATTACCC 154
MA 05 cgl4812508 GTTTAAAGTAGGGTGTGGTT CCCCTACAAAATAACCTCT 208
MA 06 cg07188513 AGTTATTTTTTGTGTTAGGGGTAAG CCCAAACACATTAATCCTATCCTAC 181
MA 07  ¢g07502461 TTGTTTTGGGGGTAGAGGT ACAACTTTATACCTTCCCTTACT 197
MA 08  ¢cg09926178 GAATTAGGAAAAGGGGTATAGG CCCAACAAACAAACAATAC 207
MA 09  cgl5730967 AGTGGTTGGGTAGGTAAAT CACTACACCCTAACACCTATAC 286
MA 10 cg07303143 GGATATTGAAGGAAGGGATGAGTTT CCCTATTTTTACCCCCAAATACAAC 176
MA 11  cgl7722263 GAGATTAGGGGAAAGGTT CCATCACTATCTTTAATCATTC 101
MA 12 ¢g05543030 TGTTGTTTTTGGGAGAGTTATTG AAACTTTCAATATCTAAATCCCTATCT 222
MA 13 ¢cg08390209 GAGTGGGAGAAGGTAGTGATTA CCTCCACTTTATCCTCAATCTT 142
MA 14  cgl9145398 TTGGGGAGGGATAGGATGTG CTCCCTCTTTCTCCCTCTTATAAT 144
MA 15 ¢g26149678 GGTTGGTTTTYGAGTTTGTGTGTTAGT CACTAATAATCCCAAACTCCTACCTA 211
MA 16 ¢gl2966875  AGGTATAGAATAGGTATTGGGGATA ACCAAACACAAACTCCCTACTA 214
MA 17  cg06059810 GTTGGGATGTTGAGTTTTTATAGGA CTCCCAACATCAACAACATCTATA 168
MA 18 ¢gl7922226 GTGAAAATGAGGAATTGGGTGAAAAGA  ACATACTTAAATAAACCCAAACTTTCAA 124
MA 19  cg06144905 GGAGGTGGGTTTTATTTTGG CCTACTAATTTTCCCCTCTTC 95
MA 20 cgl3985639 AGGGGAGATTGGTTTGGAGTTA CAACCACATACCTTCACATCTACA 211
Supplementary Table 7. Four sets of primers used for single base extension (SBE).
Group Marker SBE primer sequence (5'—3") Size (bp)
G1 MA 15 (T)so TCCTCCTTATCTATAAAACTCTCAC 75
MA 07 (T)as AAACTAAAAATCTACAACRAAAAAC 66
MA 17 (T)3 TTTTAATCAACACCCTACTTACTAC 57
MA 13 (T)23 CTCCTCAACAAACATTAAAATAAAC 48
MA 01 (T)14 CTTTCTTAAATTAAATCCTCACAAC 39
MA 02 (T)s CATATTCTTCTAATTAACCAACTTC 30
G2 MA 09 (T)so ATACTCATCCRCCRCTTCAAAAAAC 75
MA 20 (T)as TAACAAAATTAACAAAAACTTTCAC 66
MA 10 (T);» TATAAAAAAATAACAACCTCRAACC 57
MA 14 (T)23 CTCATTTTATTTTTATCTCTATCCC 48
MA 18 (T)1sa TTTCATATTTTAAACACATCACCAC 39
MA 19 (T)s TACTTTAAAAATTCTAAAAAACCCC 30
G3 MA_06 (T)as AATCTTCRAAAACTCATACAATTCC 70
MA 08 (T)3s ACAAAAAACTTCTCAATAAAATCTC 60
MA_05 (T)2s TTACTAAATACCAAAAACACCTATC 50
MA_16 (T)1sCTTAATTCCCTAAAATATTTACACC 40
MA 12 (T)s CTCAAAAAACTTAAATTAAAACCC 29
G4 MA 11 (T);s TTCAAAATACAACCRCATACRCTAC 60
MA 04 (T)20 CAAATACATTACCCAAAAAAATACC 45
MA_ 03 (T)s TAAATTCTTATTACTACTAAAACC 29
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Supplementary Table 8. Primers for single multiplexes of markers in the highest performance model for SBE.

Marker SBE Primer Sequence (5'—3") Size (bp)
MA 19 (T); TACTTTAAAAATTCTAAAAAACCCC 26
MA 13 (T)1oCTCCTCAACAAACATTAAAATAAAC 35
MA 04 (T)20 CAAATACATTACCCAAAAAAATACC 45
MA 01 (T)30 CTTTCTTAAATTAAATCCTCACAAC 55
MA 08 (T)ss ACAAAAAACTTCTCAATAAAATCTC 66
MA 18 (T)s; TTTCATATTTTAAACACATCACCAC 77
MA 10 (T)s TATAAAAAAATAACAACCTCRAACC 87
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