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ABSTRACT

Great efforts have been devoted to discovering rejuvenation strategies that counteract age-related functional
decline and improve cellular functions in humans. However, new discoveries are currently driven by expert
knowledge and require large amounts of resources. Here, we present REVIVE (Rejuvenation Estimation Via
Insightful Virtual Experiments), the first computational framework for systematically predicting chemical and
genetic perturbations that can restore a youthful transcriptional state based on gene expression data. REVIVE
leverages age predictions to detect significant rejuvenating effects and quantifies the impact of perturbations
on the hallmarks of aging. When applied to a large-scale in silico screen of more than 10000 compounds and
genetic perturbations, REVIVE recapitulates known interventions as well as 477 novel compounds that restore a
more youthful transcriptional state improving multiple aging hallmarks. Finally, we demonstrate the utility of
REVIVE for repurposing perturbations to revert aged transcriptional states.

INTRODUCTION

Aging is a heterogeneous process that manifests in
molecular and cellular aberrations leading to impaired
tissue functioning. In this regard, the aging phenotype
has been characterized by a set of hallmarks responsible
for the functional decline, including cellular senescence,
stem cell exhaustion and genomic instability [1, 2].
Although first evidence has been presented that the
aging process is malleable almost a century ago, it has
long been considered to be irreversible [3]. However,
several intervention strategies have been discovered in
recent years that can partially revert the hallmarks of
aging, such as heterochronic parabiosis, rapamycin,
senolytics and partial reprogramming [4]. In spite of the
fact that these strategies have been shown to be effective

in preclinical animal models, their translation to humans
remains a challenge. For instance, heterochronic
parabiosis, in which the blood streams of young and old
individuals are connected, counteracts the aging
phenotype across several tissues of an organism but is
not translatable to the clinics. In addition, significant
safety concerns have been raised in the context of
senolytics and partial reprogramming. While the
accumulation of senescent cells with age can induce
inflammation, it can also exert beneficial effects on other
cells such as the secretion of growth factors [5]. Thus,
the complete and untargeted inhibition of senescent cells
is considered to be detrimental. Moreover, partial
reprogramming bears the risk of neoplasm formation due
to the dedifferentiation of cells and their concomitant
loss of cell identity [6]. Hence, there is a need for
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alternative rejuvenation interventions that are safe,
effective and translatable to the clinics.

The discovery of rejuvenating interventions has
traditionally been driven by experimental efforts that
are laborious and require vast amounts of resources as
well as prior knowledge about the cells and tissues to be
targeted. Although computational methods have been
developed in recent years, they aimed at characterizing
the aging process and identifying novel biomarkers [7].
However, one notable exception is a computational
method introduced by Janssens et al., which uses
machine learning-based classifiers for distinguishing
tissue samples from young and old individuals, which
are subsequently applied to identify compounds that
could rejuvenate cells [8]. Nevertheless, this approach
establishes arbitrary thresholds to separate young and
old samples and can only inform whether an
intervention exceeds these thresholds. Moreover, the
definition of young and old individuals influences the
results and classifiers typically lose power around the
group boundaries. An alternative to classification was
introduced in a seminal study that built a machine
learning-based method (aging clock) for measuring the
age of human tissues and cell types from the
methylation state of 353 CpG sites across the human
genome [9]. Since then, the concept of measuring
cellular age from molecular features has been
generalized and led to the development of multiple
predictors that exploit different modalities, such as
chromatin accessibility, proteomics or transcriptomics
[10]. Nevertheless, their utility was limited to serve as
biomarkers of aging. However, a pioneering study
demonstrated recently the use of a transcriptional aging
clock as a readout of a genetic perturbation screen and
identified SRSF1 as a novel rejuvenation strategy in
human cells and animal models [11].

In this study, we generalize the concept of using a
transcriptional aging clock for identifying novel
rejuvenation intervention candidates and developed
REVIVE, the first computational framework for
predicting chemical and genetic perturbations able to
restore a youthful transcriptional state in human cells.
REVIVE relies on transcriptional profiles of treated and
untreated cell types to determine significant changes of
their age. To achieve that, we built on a previously
introduced transcriptional multi-tissue clock that
measures the age of cells and provides insights into the
processes declining throughout aging [12]. Moreover,
REVIVE ensures that cells revert the ageing hallmarks
while maintaining their identity upon perturbation. To
demonstrate the utility of our framework, we manually
curated a dataset of more than 150,000 human
transcriptional profiles of cells treated with more than
10000 perturbagens across different cell types and

performed an exploratory analysis to discover per-
turbations with rejuvenating effects. Indeed, we found
that REVIVE recapitulates a significant amount of
known perturbations with a lifespan extending
effect. Importantly, REVIVE also identifies 477 novel
candidate rejuvenating compounds that affect different
aging hallmarks. Finally, we demonstrate the utility of
our framework to repurpose perturbations that are able
to restore youthful transcriptional states for reverting
aging phenotypes of different cell types. In summary,
we expect this computational framework for predicting
chemical and genetic perturbations that can restore a
youthful transcriptional state to facilitate the design of
new rejuvenation strategies. In this regard, our study
provides a novel set of candidates rejuvenating
perturbations that prompts the validation in additional
human cell types and preclinical animal models.

RESULTS

Development of a framework to assess the
rejuvenating effect of perturbations

In this work, we propose REVIVE, a computational
framework for discovering chemical and genetic
perturbations that have rejuvenating effects. REVIVE
can be employed in two different ways, namely to
detect rejuvenating effects of a given perturbation or to
repurpose perturbations with known rejuvenating
effects for reverting a transcriptional aging phenotype
(Figure 1A, 1B).

Specifically, in the first use-case, REVIVE relies on
transcriptomic profiles of treated and untreated samples
and employs a transcriptional aging clock to quantify
the age of both samples. In brief, we built a
transcriptional aging clock based on a Generalized Linear
Modeling framework with lasso regularization similar to
a previously published method [12]. As a training dataset,
we employed a previously collected set of RNA-seq
samples with available donor age information and
restricted it to genes that have been found to be
differentially expressed between young (20-29 years old)
and old (60-79 years old) donors in at least one tissue
in the Genotype-Tissue Expression cohort [12, 13].
Moreover, we removed samples from donors that are
younger than 20 years and that have less than 10 million
counts resulting in 1350 high-quality observations across
41 different cell or tissue types from diverse organs such
as the colon, brain and liver (Supplementary Table 1).
The raw RNA-seq counts were subsequently log-
normalized and frozen surrogate variable analysis (FSVA)
was applied to identify covariates that are not related to
chronological age [14]. Automated detection revealed 45
hidden sources of variation, which have been removed
from the training dataset. Importantly, processing the data
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with FSVA allows to overcome a widespread issue with
aging clocks, namely the generalizability to new samples
without re-training them. For instance, a previous study
demonstrated that epigenetic clocks suffer from this issue
and significantly benefit from joint normalization [15].
Similarly, transcriptional clocks have been observed to be
affected as well, since batch effects produced the
strongest signals in a large aging dataset such that their
correction was deemed essential [16]. The processed
data was then used to train the Generalized Linear
Model and thereby select a subset of genes that are most
informative about donor age. As a result, a total of 668
genes were selected (Supplementary Table 2 and
Supplementary Figure 1). These genes belong to various
Gene Ontology terms including general and cell/tissue
specific cellular processes (Supplementary Table 3). In
particular, the process with the highest number of
contributing genes is “Regulation of Cell Migration”
followed by “Nervous System Development”, “Positive
Regulation of Cell Population Proliferation” and
“Negative Regulation of Apoptotic Process”, although
no term is significantly enriched (Supplementary Table
3). Interestingly, there is a strong correlation between
the number of clock genes in each process and the sum
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of their importances (Pearson correlation: 0.899). Like
for the original clock, we performed 10-fold cross
validation on the training data and obtained an increased
performance (r-squared: 0.73, range: 0.69 — 0.76)
(Figure 2A). To wverify our clock on completely
independent datasets, we collected RNA-seq profiles of
four different cell types with available donor age
information and assessed the correlation with the
predicted age. As a result, we obtained correlations of
0.52 for hematopoietic stem cells, 0.53 for epithelial
cells, 0.66 for neurons and 0.86 for hepatocytes (Figure
2B). Due to the importance of the clock to detect age
differences of pro- and anti-aging interventions, we
applied our clock to a compiled gold-standard dataset of
80 conditions with known effects. As a result, we found
that the direction of the changes in the predicted ages
was consistent in 64 out of 80 conditions (binomial test
p-value: 5.871e-8), although it needs to be noted that
the predicted age differences were small in many cases
(Supplementary Table 4).

Finally, REVIVE provides information about the aging
hallmarks that are affected by the perturbation as well
as a potential loss of cell identity. To achieve that,
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Figure 1. Workflow of REVIVE. REVIVE has two different modes: (A) Based on a set of transcriptomic samples from perturbation
experiments and corresponding control samples, REVIVE estimates the change in the predicted age and the enrichment of aging hallmarks in
both groups. Perturbations that show a significant decrease in the predicted age and that rescue at least one aging hallmark are considered
to be able to restore a more youthful transcriptional state. (B) In order to repurpose perturbations to restore youthful transcriptional states,
REVIVE requires a set of differentially expressed genes between a young and old cell type or tissue sample and ranks perturbations based on
their potential to revert the expression of the observed differentially expressed genes.
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we obtained sets of genes associated with each aging
hallmark from Aging Atlas [17] (Supplementary Table 5)
and performed gene set enrichment analysis [18].

To allow for the discovery of known perturbations
that can revert a given aging phenotype, we
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generalized a recently developed approach that relies
on differentially expressed transcription factors
to identify repurposable drugs [19]. Importantly,
due to the fact that aging-related molecular dys-
regulations do not only manifest in transcription
factors, but we also consider the expression of all
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Figure 2. Transcriptional aging clock validation and characteristics of collected transcriptomic perturbation data. (A) Boxplot of
the 10-fold cross-validation performed during training the transcriptional aging clock. The solid lines represent the median and whiskers
extend to +/- 1.5%IQR (interquartile range) (B) Predicted versus chronological age of independent validation samples in four different cell
types: Hematopoietic stem cells (HSC, orange), hepatocytes (purple), epithelial cells (blue) and neurons (yellow). Solid lines represent the
regression lines across all points of the same cell type. (C) Bar chart depicting the number of cell annotations matching each homogenized cell
or tissue type. These annotations subsume different cell lines as well as orthographic representations of the same cell/tissue type. We
observed the highest number of annotations for Fibroblasts, Epithelial and Endothelial cells whereas bone marrow stem cells annotations
were a priori unique. (D) Treemap of the number of perturbations performed in each cell or tissue type. More than 50% of the collected
experiments have been performed in epithelial, followed by kidney, neural progenitor, adipose-derived stem and endothelial cells. In total,
more than 80% of experiments have been performed in these 5 cell/tissue types. (E) Radar plot represents the number of experiments per

perturbation type. Values are on a log10-scale.
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genes across the genome. In particular, REVIVE
employs a single-sample gene set enrichment analysis
to quantify the similarity of the observed aging
phenotype and the effect of known rejuvenating
perturbations.

Collection of transcriptional chemical and genetic
perturbation datasets

In order to apply REVIVE and validate its ability to
predict the effect of perturbations to induce a youthful
transcriptional state, we obtained publicly available
datasets of treated and untreated human samples from
LINCS [20]. Importantly, only experiments from non-
cancer cells and non-disease samples were considered.
Since the experimental data has been derived from the
L1000 platform (ligation mediated amplification and
capture of its products on fluorescent microspheres),
which measures only 978 landmark genes, we obtained
pseudo-RNA-seq profiles of all samples from a
previously developed generative adversarial network
approach [21]. Moreover, we homogenized the sample
annotation into 11 cell types and required the presence of
appropriate control samples for each perturbation (Figure
2C). As a result, we collected 158,046 transcriptional
profiles of cells treated with 10,330 perturbagens.
Aggregation of all samples by cell/tissue type,
perturbagen, perturbation type, dosage and perturbation
time into 34,923 unique groups (Figure 2D). On average,
each group contained 4.5 treated (range: 3 — 1175) and
1994.9 control samples (range: 6 — 4104) with the highest
groups being epithelial cell control samples. Due to the
possibility of multiplexing the experiments, the vast
majority of collected perturbations are based on
chemicals followed by shRNA-based perturbations
and gene overexpression (Figure 2E). Ligand-based
experiments, on the contrary, are highly underrepresented
(Figure 2E). The complete set of considered samples can
be found in Supplementary Table 6.

Discovery of known and novel perturbations with
rejuvenation effects

Starting from the collected dataset of chemical and
genetic perturbations, we applied REVIVE in an
exploratory analysis to all individual transcriptomic
profiles and computed the perturbations leading to a
reduction of the predicted age (Figure 3A and
Supplementary Table 8). The condition was deemed
rejuvenating if a t-test resulted in a p-value below 0.01
after multiple testing correction and the mean age
difference was negative. As a result, we discovered
1558 conditions that showed a substantial reduction of
the predicted cellular age, which corresponds to 742
different perturbations. Importantly, we deliberately
distinguish between perturbations and conditions, the

latter being defined by the cell type, the perturbation,
the perturbation type, and the timepoint after treatment
that was measured. Of these, 123 are shRNA-based
perturbations, 69 are genetic overexpression, one is
ligand-based and 524 are chemical compounds. In
contrast, 1132 conditions, corresponding to 655
perturbations, showed a substantially increased cellular
age (Figure 3B). Nevertheless, no change was detected
for the vast majority of conditions (32233).

To demonstrate the utility of REVIVE, we sought to
interrogate whether the effects of perturbations that are
supported by experimental studies are correctly
recapitulated. In this regard, we obtained experimental
data from DrugAge [22] where we consider both
counteracting the functional cellular decline as well
as lifespan extension in at least one experiment
as rejuvenating effects. Compounds for which
transcriptional samples of treated and untreated cells are
included in our perturbation dataset were retained for
comparison. As a result, we found that 47 out of 525
compounds predicted to rejuvenate by REVIVE were
supported by DrugAge (Supplementary Table 7).
Conversely, 12 out of 336 compounds predicted to be
pro-aging showed lifespan-reducing effects in DrugAge
(Supplementary Table 7). Although 27 compounds have
been shown to possess opposing effects, the predictions
are significantly associated with the experimental
evidence provided by DrugAge (Fisher test p-value:
0.005, Figure 3C). Thus, we expect REVIVE to produce
reliable, testable hypotheses of perturbations that can
rejuvenate the transcriptome of cells.

Among these perturbations are well-known compounds,
such as alpha-estradiol and resveratrol, which show a
decrease of 8.7 and 6.1 years, respectively. Notably,
aspirin and metformin did generally not show a
significant change in the predicted cellular age upon
perturbation. On the contrary, higher doses of aspirin
(>10 uM) showed increasing transcriptional ages in
epithelial cells in a dose-dependent manner. Moreover,
although both drugs demonstrated lifespan extending
effects in model organisms including mice, C. elegans
and D. melanogaster, the rejuvenating effect on human
cells and organs remains elusive [23].

Next, we assessed which conditions could improve the
hallmarks of aging by performing gene set enrichment
analysis of the log-fold-changes of each condition in
curated gene sets for each hallmark [24]. As a result, we
found that 329 of 1558 conditions predicted to rejuvenate
improve at least one aging hallmark. The top 5
interventions affecting each of the hallmarks are shown
in Figure 3D. In this regard, it is important to note that
“stem cell exhaustion” is a hallmark that only applies to
stem and progenitor cells. Nevertheless, since 9160 out of
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the more than 34000 perturbations have been conducted The compound that alleviates the most aging hallmarks

in stem/progenitor cells, we consider it important to (five) is BRD-K40224283, a chemical compound
include it in this assessment as well. For instance, whose mode of action is unknown. In particular, the
dasatinib applied to HSCs shows significant negative compound showed an age reduction of 7.3 years after
enrichment in  “Senescence-associated  Secretory 6 hours of treatment in epithelial cells and its effect are
Phenotype” and “NF-kB Related Genes”, which is enriched in  “Senescence-associated  Secretory
supported by previous studies due to the proven effect of Phenotype”, “Loss of Proteostasis”, “Epigenetic
dasatinib+quercitin as a senolytic [25]. Interestingly, of Alterations”, “Mitochondrial Dysfunction” as well as
the 329 conditions that improve at least one aging “Deregulated Nutrient Sensing”. Interestingly, the
hallmark, 115 alleviate the senescence-associated rejuvenating effect of BRD-K40224283 seems stable
secretory phenotype while the remaining conditions show after 24h (-9.9 years) although no statistical
no or negative, pro-aging, effects. significance was attained.
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Figure 3. Screening for perturbations that restore a youthful transcriptional state. (A) Scatter plot of age differences for more than
39000 conditions. Positive values correspond to a pro-aging effect on the transcriptome while negative values signify a more youthful
transcriptional state. Significant differences are colored yellow. Significance was determined based on an adjusted p-value of less than 0.01
(t-test, Benjamini-Hochberg correction) (B) While most of the tested conditions did not show a significant change in their predicted age, more
than 1000 conditions led to a more aged transcriptional state. In contrast, a more youthful transcriptional state could be restored in 1558
conditions. Of these, the vast majority is based on chemical compounds (purple). (C) Comparison of compounds that are considered
significant in DrugAge (i.e. increasing the lifespan of the treated model organism) with their counterparts in REVIVE. Compounds that showed
an adjusted p-value less than 0.01 in any condition were considered significant. The comparison was restricted to compounds (i) that were
included in DrugAge and (ii) for which transcriptional samples before and after treatment in any cell type were included in the assembled
dataset. Each tile is annotated and colored with the number of cases falling into each category. (D) Process enrichment for 12 aging hallmark
gene sets for the top 5 effectors of each process among the interventions that restore a more youthful transcriptional state. Negative values
(blue) represent the rescuing of a hallmark while positive values (yellow) indicate a pro-aging effect. X- and Y-axis labels are color coded to
visualize the processes that are most rejuvenated by each intervention. (E) Heatmap of predicted age differences across multiple timepoints
for interventions predicted to rejuvenate cells. Higher values (yellow) represent a pro-aging effect whereas lower values (blue) indicate age
reversal.
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Finally, we set out to interrogate the time-dependent
changes of the rejuvenating or pro-aging effects of
perturbations for which multiple timepoints were
measured. Although only nine interventions had
multiple timepoints of which all showed significant age
difference, we made an interesting observation (Figure
3E). In particular, one perturbation, the overexpression
of TP53 in Kidney cells, showed a consistent pro-aging
effect. In contrast, five compounds resulted in a
persisting rejuvenation effect including colforsin
(forskolin), everolimus, SU-4312, bromocriptine and
danazol. On the contrary, the rejuvenating effect of
vorinostat (HDAC  inhibitor), =~ BRD-A19037878
(trichostatin A; HDAC inhibitor) and PHA-793887
(CDK inhibitor) on epithelial cells reverses into a pro-
aging effect in the second timepoint suggesting that a
continuous supply of the drug is needed to sustain its
effect. However, it remains elusive whether these
observations are due to intrinsic cell type specific
differences or are inherent to the mechanisms of action
of the drugs.

Repurposing chemical and genetic perturbations for
reverting aging phenotypes

In addition to predicting the effect of chemical and
genetic perturbations, REVIVE allows for the repurpose
of perturbagens to counteract aging phenotypes, i.e.
the transcriptional differences of a cell type in old
individuals compared to young ones. In this regard,
REVIVE compares the differentially expressed genes
between old and young cell types that are related to
aging hallmarks with the phenotypes induced by
perturbations that were predicted to induce a more
youthful transcriptional state (Figure 1B, see methods
for details). To support this approach, we obtained
differentially expressed genes of 45 cell type and tissue
samples between young (0-19 years of age) and old (60-
100 years of age) donors from AgeAnno [26] (Figure
4A). After applying REVIVE to obtain the perturbations
that resemble the age-related differences best, we
observe several cases in which interventions with a
demonstrated effect have been predicted (Figure 4B and
Supplementary Table 9). For instance, among the top-
ranking interventions to induce a younger phenotypic
state in immune cells is everolimus. Indeed, mTOR
inhibitors, as is everolimus, have been shown to
improve immunity in older human beings in clinical
trials [27]. Another intervention that showed high
enrichment scores in different skin cell types is
colforsin (forskolin). Indeed, topical forskolin treatment
of the skin has been shown to induce melanization,
epidermal cell accumulation and skin thickening [28].
This exemplifies that perturbation signatures exhibit
stronger effects than cell type signatures. This is further
supported by clustering the cell types by their prediction

score for each perturbation (Figure 4C). Indeed, cells of
the same type show similar enrichment patterns for
perturbations, which highlights the validity of our
approach. Thus, we expect it to be generalized to cell
types in which no experiments have been conducted.

DISCUSSION

In this study, we propose REVIVE, the first
computational framework for predicting chemical and
genetic perturbations in human cells that restore a
youthful transcriptional state. Previously introduced
computational approaches that have been developed in
the context of drug repurposing for diseases relying on
genome-wide comparisons [29] often fail in predicting
the rejuvenating effects of perturbagens since they
are overshadowed by other, unrelated effects of
perturbations. For instance, rapamycin exerts its
rejuvenating effect through inhibition of mTORCI1, but
concomitantly induces changes in glucose and lipid
metabolism mediated by mTORC2 as well as in the
proliferation rate [30]. In order to circumvent this issue,
REVIVE solely focuses on age-related genes and uses a
transcriptional aging clock that is predictive of the age
of the samples. In addition, most of these previously
introduced tools rely on transcriptional perturbation
signatures that have been largely derived from cancer
cells, which are known to exhibit various alterations at
the signaling and transcriptional level [19]. In that
regard, REVIVE relies on a dataset of non-cancer cells
to identify transcriptional perturbation signatures.
Indeed, a recent approach supports the use of non-
cancer cells to improve drug repurpose based on the
expression of transcription factors [19]. However, the
expression of only a few transcription factors can be
associated with aging, rendering them unable to inform
about potential rejuvenation effects [31]. Indeed, of the
genes that REVIVE selected to be predictive of age,
only a few are transcription factors.

Despite known perturbations, REVIVE discovered 742
perturbations that were able to restore a youthful
transcriptional state. Interestingly, while some of these
perturbations exerted an effect on multiple cell types, the
majority only restored a youthful transcriptional state in
a single condition. Indeed, cell type specific effects have
been observed before, such as in the case of different
brain cell types [32]. In particular, cell type specificity is
also observed for perturbations that affect general
pathways, such as GDC-0068 that targets Akt/PI3k-
signaling. On a different note, we demonstrated that
REVIVE can be used to repurpose drugs for inducing
youthful transcriptional states in any cell type. Although
previous studies explored the possibility of employing
general purpose drug prediction tools in the context of
diseases, such as L1000CDS2 [29], the success of these
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Figure 4. Repurposing perturbations to revert aging phenotypes. (A) Number of differentially expressed genes between young (0 —
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rejuvenating perturbations in 45 cell types from different tissues. Higher scores (yellow) indicate a perturbation to revert a higher fraction of
age-related differentially expressed genes whereas negative scores (blue) indicate a reinforcement of the pro-aging changes.
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approaches has been limited. We hypothesize that the
effects of drugs on age-related transcriptional changes
are overshadowed by other drug effects. In contrast,
REVIVE specifically focuses on changes related to
genes associated with cellular age, which allowed us
to predict known as well as novel perturbagens for
restoring youthful transcriptional states.

One interesting aspect when using transcriptional
aging clocks as a surrogate for discovering rejuvenating
perturbations is that the r-squared of the aging clock does
not need to be high. Instead, a weaker condition is
sufficient to perform this task, namely that the ranks of
the age differences are concordant. This is evidenced by
the fact that different aging clocks lead to vastly different
age predictions but can recapitulate the effect of known
pro- or anti-aging interventions, which is sufficient
for the purpose of discovering novel rejuvenating
perturbations [12]. For instance, the epigenetic clock
introduced by Horvath [9] obtains higher r-squared
values on testing sets with respect to chronological age
predictions compared to our transcriptional clock (0.92
versus 0.73), however, it is still unable to capture the
effects of various interventions that are known to increase
the lifespan of cellular populations [33]. In contrast, the
transcriptional aging clock we employ in this study was
shown to capture various different interventions with
known rejuvenating or pro-aging effects. Moreover, it is
especially important when considering the application of
REVIVE to cell types that were not included in the
training data and provides a more robust method design
compared to the reliance on the actual ages.

Despite the demonstrated ability of REVIVE to discover
rejuvenating perturbations, it bears some limitations.
Namely, aging, and therefore rejuvenation, is reflected in
different molecular modalities, such as epigenetics,
metabolomics, transcriptomics and proteomics, at
varying degrees. Thus, it is likely that REVIVE cannot
detect all chemical and genetic perturbations, but only
those whose rejuvenation effect is mediated by
transcriptional changes. Similarly, REVIVE employs a
multi-tissue aging clock for assessing the restoration of
youthful transcriptional states by perturbations. Although
the genes it considers are reflective of age, specialized
processes of cells and tissues are neglected. For instance,
a recent study developed a fibroblast-specific aging
predictor based on eight cellular processes which vastly
different to the processes enriched in our multi-tissue
clock genes [11]. Taking together, this suggests that cell
type and tissue specific anti-aging effects cannot fully be
captured. However, due to the generality of our proposed
framework, we hypothesize that the incorporation of
tissue or cell type specific aging clocks would lead to the
discovery of additional perturbagens that are able to
restore a youthful transcriptional state.

In summary, REVIVE provides the first computational
framework for systematically identifying perturbagens
in human cells that restore youthful transcriptional
states based on transcriptomic profiles. Thus, it paves
the way for the evaluation of large-scale genetic and
chemical screens and is therefore expected to accelerate
the design of novel rejuvenation strategies.

MATERIALS AND METHODS
Preprocessing of transcriptomics data

The transcriptomics data collected for this study
was generated with ligation-mediated amplification
followed by capture of the amplification products on
fluorescently addressed microspheres (L1000), which
were initially preprocessed independently. In particular,
the latter technology was employed to create the LINCS
resource and relies on the measurement of 978
“landmark” genes that can be used to infer the remaining
transcriptome [20]. Although Subramanian et al. provides
a methodology for inferring the expression of 11350
genes, we employed a recently published methodology
to convert L1000 generated data to pseudo-RNA-seq
samples. Using a generative adversarial network
approach, this method allowed the inference of 23614
genes from the originally measured 978 [21]. Taking this
approach enables the deconvolution of age information
contained in the originally measured genes and thereby
increasing the predictive power. To confirm that
the approach produces reasonable pseudo-RNAseq
samples, we collected RNAseq samples for 22 cell
types contained in LINCS performed pairwise Pearson
correlation analysis. As a result, the median correlation
we observed was in all cases above 0.75 although some
cell types, such as A549, HEK293T or A375, showed a
considerable number of outliers (Supplementary Figure
2). In this regard, we employed the publicly available
workflow of the method with default parameters.

For training our transcriptional clock, we obtained the
data that was used for training MultiTIMER [12]. RNA-
seq reads were downloaded from the Sequence Read
Archive and aligned with kallisto v0.50.1 [38]. A
transcriptome index was built using the kallisto index
subprogram with default parameters on the FASTA
sequences from cDNA and non-coding RNA from
Ensembl 111. Transcript isoform expression was
estimated using the kallisto quant subprogram. In case
of single-strand data, the fragment length was set to 200
bp while strand-specificity of paired-end reads was
determined by randomly sampling 50000 reads and
aligning them to the transcriptome.

Due to the fact that the number of measured genes varies
between samples profiled with different technologies, we
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selected those that are in common. Training samples that
had less than 10 million counts were a priori excluded.

Predicting the effect of perturbations on sample age

To assess whether perturbations can restore a youthful
transcriptional state, we a transcriptomic clock. Since
we used a subset of the training data that was used for
MultiTIMER [12], we also obtained the corresponding
chronological age information for these samples from
the original publication. For pre-processing, raw counts
were log-transformed and surrogate variable analysis
(sva) was on the training data [34]. Automatic
estimation of the number of surrogate variables yielded
45 hidden covariates and removed them using the
frozen sva approach [14]. The training data was
subsequently subset to genes that are differentially
expressed between young (20-29) and old (60-69 or 70-
79) donors in at least one tissue from the Genotype-
Tissue Expression project [13]. Finally, a generalized
linear model was trained with lasso regression using the
h20 R package [35]. In particular, the IRLSM solver
was employed with automatic lambda estimation and
automated data standardization. Training weights
for individual samples were computed to balance
differences in cell type and age representations as the
inverse of the cell type or age frequencies. After
training, the final model was applied to all intervention
data. Next, we subtracted the average age of the
treatment samples from the age of the corresponding
control profile in order to obtain the average age
difference. Here, negative values correspond to a more
youthful transcriptional state while positive values
signify a pro-aging effect. A t-test has been employed to
assess significance and multiple testing correction
(Benjamini-Hochberg) has been applied to adjust the
resulting p-values. Conditions with an adjusted p-value
less than 0.01 were deemed to have a significant
rejuvenating (in case the age difference is negative) or
pro-aging (in case the age difference is positive) effect.

Determining changes in the hallmarks of aging after
perturbation

In order to determine whether perturbations not only
restore a younger age based on a transcriptional clock
but also revert the expression of genes related to known
dysregulated Dbiological processes, we obtained a
collection of 416 genes and their association to aging
hallmarks from the Aging Atlas [17]. Next, we
performed Gene Set Enrichment Analysis implemented
in the ‘fgsea’ R-package on the log-fold changes
between treatment and corresponding control sample.
Negative normalized enrichment scores correspond to
an alleviation of the hallmark whereas positive scores
signify a deterioration.

Predicting repurposable drugs for aging phenotypes

We pre-computed the average log fold change for all
interventions by computing the average expression
across all control and treatment samples, respectively,
and subtracted the log-transformed values in such a way
that positive values signify an increased expression in
treatment samples whereas negative values correspond
to a higher expression in control samples. Given a list of
differentially expressed genes, we create two sets
corresponding to up- and down- regulated genes,
respectively. Using the log2 fold changes of each
intervention that was predicted to restore a youthful
transcriptional state, gene set enrichment analysis is
performed against up- and down-regulated differentially
expressed genes using the fgsea R package with default
parameters [36]. Finally, a prediction score is computed
by subtracting the score for the upregulated from the
score for the downregulated gene set.
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Supplementary Figure 1. Bar chart of the predictive genes in the transcriptional clock with the highest importance.
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Supplementary Figure 2. Boxplots of pairwise Pearson correlation coefficients between RNAseq samples and pseudo-
RNAseq samples generated from untreated cell lines contained in the LINCS database.
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Please browse Full Text version to see the data of Supplementary Tables 1 — 9.

Supplementary Table 1. Samples used for training the transcriptional clock.
Supplementary Table 2. Genes with non-zero coefficients in the transcriptional clock.

Supplementary Table 3. Gene Ontology enrichment of genes with non-zero coefficients in the transcriptional
clock.

Supplementary Table 4. Sample information and predicted age differences in 80 datasets with biological
interventions with known pro- or anti-aging effects.

Supplementary Table 5. Genes associated with each of 12 aging hallmarks based on the Aging Atlas.
Supplementary Table 6. Identifiers of samples included in the perturbation screen.

Supplementary Table 7. Validation of the drug effect predicted by REVIVE with experimental evidence included
in DrugAge.

Supplementary Table 8. Statistics of the predicted age differences and corresponding t-statistics for each
perturbation included in the screen.

Supplementary Table 9. Enrichment of drug signatures in differentially expressed genes between young and old
donors.

www.aging-us.com 15 AGING



