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INTRODUCTION 
 

Aging is a heterogeneous process that manifests in 

molecular and cellular aberrations leading to impaired 

tissue functioning. In this regard, the aging phenotype 

has been characterized by a set of hallmarks responsible 

for the functional decline, including cellular senescence, 

stem cell exhaustion and genomic instability [1, 2]. 

Although first evidence has been presented that the 

aging process is malleable almost a century ago, it has 

long been considered to be irreversible [3]. However, 

several intervention strategies have been discovered in 

recent years that can partially revert the hallmarks of 

aging, such as heterochronic parabiosis, rapamycin, 

senolytics and partial reprogramming [4]. In spite of the 

fact that these strategies have been shown to be effective 

in preclinical animal models, their translation to humans 

remains a challenge. For instance, heterochronic 

parabiosis, in which the blood streams of young and old 

individuals are connected, counteracts the aging 

phenotype across several tissues of an organism but is 

not translatable to the clinics. In addition, significant 

safety concerns have been raised in the context of 

senolytics and partial reprogramming. While the 

accumulation of senescent cells with age can induce 

inflammation, it can also exert beneficial effects on other 

cells such as the secretion of growth factors [5]. Thus, 

the complete and untargeted inhibition of senescent cells 

is considered to be detrimental. Moreover, partial 

reprogramming bears the risk of neoplasm formation due 

to the dedifferentiation of cells and their concomitant 

loss of cell identity [6]. Hence, there is a need for 
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ABSTRACT 
 

Great efforts have been devoted to discovering rejuvenation strategies that counteract age-related functional 
decline and improve cellular functions in humans. However, new discoveries are currently driven by expert 
knowledge and require large amounts of resources. Here, we present REVIVE (Rejuvenation Estimation Via 
Insightful Virtual Experiments), the first computational framework for systematically predicting chemical and 
genetic perturbations that can restore a youthful transcriptional state based on gene expression data. REVIVE 
leverages age predictions to detect significant rejuvenating effects and quantifies the impact of perturbations 
on the hallmarks of aging. When applied to a large-scale in silico screen of more than 10000 compounds and 
genetic perturbations, REVIVE recapitulates known interventions as well as 477 novel compounds that restore a 
more youthful transcriptional state improving multiple aging hallmarks. Finally, we demonstrate the utility of 
REVIVE for repurposing perturbations to revert aged transcriptional states. 
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alternative rejuvenation interventions that are safe, 

effective and translatable to the clinics. 

 

The discovery of rejuvenating interventions has 

traditionally been driven by experimental efforts that 

are laborious and require vast amounts of resources as 

well as prior knowledge about the cells and tissues to be 

targeted. Although computational methods have been 

developed in recent years, they aimed at characterizing 

the aging process and identifying novel biomarkers [7]. 

However, one notable exception is a computational 

method introduced by Janssens et al., which uses 

machine learning-based classifiers for distinguishing 

tissue samples from young and old individuals, which 

are subsequently applied to identify compounds that 

could rejuvenate cells [8]. Nevertheless, this approach 

establishes arbitrary thresholds to separate young and 

old samples and can only inform whether an 

intervention exceeds these thresholds. Moreover, the 

definition of young and old individuals influences the 

results and classifiers typically lose power around the 

group boundaries. An alternative to classification was 

introduced in a seminal study that built a machine 

learning-based method (aging clock) for measuring the 

age of human tissues and cell types from the 

methylation state of 353 CpG sites across the human 

genome [9]. Since then, the concept of measuring 

cellular age from molecular features has been 

generalized and led to the development of multiple 

predictors that exploit different modalities, such as 

chromatin accessibility, proteomics or transcriptomics 

[10]. Nevertheless, their utility was limited to serve as 

biomarkers of aging. However, a pioneering study 

demonstrated recently the use of a transcriptional aging 

clock as a readout of a genetic perturbation screen and 

identified SRSF1 as a novel rejuvenation strategy in 

human cells and animal models [11]. 

 

In this study, we generalize the concept of using a 

transcriptional aging clock for identifying novel 

rejuvenation intervention candidates and developed 

REVIVE, the first computational framework for 

predicting chemical and genetic perturbations able to 

restore a youthful transcriptional state in human cells. 

REVIVE relies on transcriptional profiles of treated and 

untreated cell types to determine significant changes of 

their age. To achieve that, we built on a previously 

introduced transcriptional multi-tissue clock that 

measures the age of cells and provides insights into the 

processes declining throughout aging [12]. Moreover, 

REVIVE ensures that cells revert the ageing hallmarks 

while maintaining their identity upon perturbation. To 

demonstrate the utility of our framework, we manually 
curated a dataset of more than 150,000 human 

transcriptional profiles of cells treated with more than 

10000 perturbagens across different cell types and 

performed an exploratory analysis to discover per-

turbations with rejuvenating effects. Indeed, we found 

that REVIVE recapitulates a significant amount of 

known perturbations with a lifespan extending  

effect. Importantly, REVIVE also identifies 477 novel 

candidate rejuvenating compounds that affect different 

aging hallmarks. Finally, we demonstrate the utility of 

our framework to repurpose perturbations that are able 

to restore youthful transcriptional states for reverting 

aging phenotypes of different cell types. In summary, 

we expect this computational framework for predicting 

chemical and genetic perturbations that can restore a 

youthful transcriptional state to facilitate the design of 

new rejuvenation strategies. In this regard, our study 

provides a novel set of candidates rejuvenating 

perturbations that prompts the validation in additional 

human cell types and preclinical animal models. 

 

RESULTS 
 

Development of a framework to assess the 

rejuvenating effect of perturbations 

 

In this work, we propose REVIVE, a computational 

framework for discovering chemical and genetic 

perturbations that have rejuvenating effects. REVIVE 

can be employed in two different ways, namely to 

detect rejuvenating effects of a given perturbation or to 

repurpose perturbations with known rejuvenating 

effects for reverting a transcriptional aging phenotype 

(Figure 1A, 1B). 

 

Specifically, in the first use-case, REVIVE relies on 

transcriptomic profiles of treated and untreated samples 

and employs a transcriptional aging clock to quantify  

the age of both samples. In brief, we built a 

transcriptional aging clock based on a Generalized Linear 

Modeling framework with lasso regularization similar to 

a previously published method [12]. As a training dataset, 

we employed a previously collected set of RNA-seq 

samples with available donor age information and 

restricted it to genes that have been found to be 

differentially expressed between young (20-29 years old) 

and old (60-79 years old) donors in at least one tissue  

in the Genotype-Tissue Expression cohort [12, 13]. 

Moreover, we removed samples from donors that are 

younger than 20 years and that have less than 10 million 

counts resulting in 1350 high-quality observations across 

41 different cell or tissue types from diverse organs such 

as the colon, brain and liver (Supplementary Table 1). 

The raw RNA-seq counts were subsequently log-

normalized and frozen surrogate variable analysis (FSVA) 

was applied to identify covariates that are not related to 

chronological age [14]. Automated detection revealed 45 

hidden sources of variation, which have been removed 

from the training dataset. Importantly, processing the data 
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with FSVA allows to overcome a widespread issue with 

aging clocks, namely the generalizability to new samples 

without re-training them. For instance, a previous study 

demonstrated that epigenetic clocks suffer from this issue 

and significantly benefit from joint normalization [15]. 

Similarly, transcriptional clocks have been observed to be 

affected as well, since batch effects produced the 

strongest signals in a large aging dataset such that their 

correction was deemed essential [16]. The processed  

data was then used to train the Generalized Linear 

Model and thereby select a subset of genes that are most 

informative about donor age. As a result, a total of 668 

genes were selected (Supplementary Table 2 and 

Supplementary Figure 1). These genes belong to various 

Gene Ontology terms including general and cell/tissue 

specific cellular processes (Supplementary Table 3). In 

particular, the process with the highest number of 

contributing genes is “Regulation of Cell Migration” 

followed by “Nervous System Development”, “Positive 

Regulation of Cell Population Proliferation” and 

“Negative Regulation of Apoptotic Process”, although 

no term is significantly enriched (Supplementary Table 

3). Interestingly, there is a strong correlation between 

the number of clock genes in each process and the sum 

of their importances (Pearson correlation: 0.899). Like 

for the original clock, we performed 10-fold cross 

validation on the training data and obtained an increased 

performance (r-squared: 0.73, range: 0.69 – 0.76) 

(Figure 2A). To verify our clock on completely 

independent datasets, we collected RNA-seq profiles of 

four different cell types with available donor age 

information and assessed the correlation with the 

predicted age. As a result, we obtained correlations of 

0.52 for hematopoietic stem cells, 0.53 for epithelial 

cells, 0.66 for neurons and 0.86 for hepatocytes (Figure 

2B). Due to the importance of the clock to detect age 

differences of pro- and anti-aging interventions, we 

applied our clock to a compiled gold-standard dataset of 

80 conditions with known effects. As a result, we found 

that the direction of the changes in the predicted ages 

was consistent in 64 out of 80 conditions (binomial test 

p-value: 5.871e-8), although it needs to be noted that 

the predicted age differences were small in many cases 

(Supplementary Table 4). 

 

Finally, REVIVE provides information about the aging 

hallmarks that are affected by the perturbation as well 

as a potential loss of cell identity. To achieve that, 

 

 
 

Figure 1. Workflow of REVIVE. REVIVE has two different modes: (A) Based on a set of transcriptomic samples from perturbation 

experiments and corresponding control samples, REVIVE estimates the change in the predicted age and the enrichment of aging hallmarks in 
both groups. Perturbations that show a significant decrease in the predicted age and that rescue at least one aging hallmark are considered 
to be able to restore a more youthful transcriptional state. (B) In order to repurpose perturbations to restore youthful transcriptional states, 
REVIVE requires a set of differentially expressed genes between a young and old cell type or tissue sample and ranks perturbations based on 
their potential to revert the expression of the observed differentially expressed genes. 
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we obtained sets of genes associated with each aging 

hallmark from Aging Atlas [17] (Supplementary Table 5) 

and performed gene set enrichment analysis [18]. 

 

To allow for the discovery of known perturbations 

that can revert a given aging phenotype, we 

generalized a recently developed approach that relies 

on differentially expressed transcription factors  

to identify repurposable drugs [19]. Importantly,  

due to the fact that aging-related molecular dys-

regulations do not only manifest in transcription 

factors, but we also consider the expression of all 

 

 
 

Figure 2. Transcriptional aging clock validation and characteristics of collected transcriptomic perturbation data. (A) Boxplot of 
the 10-fold cross-validation performed during training the transcriptional aging clock. The solid lines represent the median and whiskers 
extend to +/- 1.5*IQR (interquartile range) (B) Predicted versus chronological age of independent validation samples in four different cell 
types: Hematopoietic stem cells (HSC, orange), hepatocytes (purple), epithelial cells (blue) and neurons (yellow). Solid lines represent the 
regression lines across all points of the same cell type. (C) Bar chart depicting the number of cell annotations matching each homogenized cell 
or tissue type. These annotations subsume different cell lines as well as orthographic representations of the same cell/tissue type. We 
observed the highest number of annotations for Fibroblasts, Epithelial and Endothelial cells whereas bone marrow stem cells annotations 
were a priori unique. (D) Treemap of the number of perturbations performed in each cell or tissue type. More than 50% of the collected 
experiments have been performed in epithelial, followed by kidney, neural progenitor, adipose-derived stem and endothelial cells. In total, 
more than 80% of experiments have been performed in these 5 cell/tissue types. (E) Radar plot represents the number of experiments per 
perturbation type. Values are on a log10-scale. 
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genes across the genome. In particular, REVIVE 

employs a single-sample gene set enrichment analysis 

to quantify the similarity of the observed aging 

phenotype and the effect of known rejuvenating 

perturbations. 

 

Collection of transcriptional chemical and genetic 

perturbation datasets 

 

In order to apply REVIVE and validate its ability to 

predict the effect of perturbations to induce a youthful 

transcriptional state, we obtained publicly available 

datasets of treated and untreated human samples from 

LINCS [20]. Importantly, only experiments from non-

cancer cells and non-disease samples were considered. 

Since the experimental data has been derived from the 

L1000 platform (ligation mediated amplification and 

capture of its products on fluorescent microspheres), 

which measures only 978 landmark genes, we obtained 

pseudo-RNA-seq profiles of all samples from a 

previously developed generative adversarial network 

approach [21]. Moreover, we homogenized the sample 

annotation into 11 cell types and required the presence of 

appropriate control samples for each perturbation (Figure 

2C). As a result, we collected 158,046 transcriptional 

profiles of cells treated with 10,330 perturbagens. 

Aggregation of all samples by cell/tissue type, 

perturbagen, perturbation type, dosage and perturbation 

time into 34,923 unique groups (Figure 2D). On average, 

each group contained 4.5 treated (range: 3 – 1175) and 

1994.9 control samples (range: 6 – 4104) with the highest 

groups being epithelial cell control samples. Due to the 

possibility of multiplexing the experiments, the vast 

majority of collected perturbations are based on 

chemicals followed by shRNA-based perturbations  

and gene overexpression (Figure 2E). Ligand-based 

experiments, on the contrary, are highly underrepresented 

(Figure 2E). The complete set of considered samples can 

be found in Supplementary Table 6. 

 

Discovery of known and novel perturbations with 

rejuvenation effects 

 

Starting from the collected dataset of chemical and 

genetic perturbations, we applied REVIVE in an 

exploratory analysis to all individual transcriptomic 

profiles and computed the perturbations leading to a 

reduction of the predicted age (Figure 3A and 

Supplementary Table 8). The condition was deemed 

rejuvenating if a t-test resulted in a p-value below 0.01 

after multiple testing correction and the mean age 

difference was negative. As a result, we discovered 

1558 conditions that showed a substantial reduction of 
the predicted cellular age, which corresponds to 742 

different perturbations. Importantly, we deliberately 

distinguish between perturbations and conditions, the 

latter being defined by the cell type, the perturbation, 

the perturbation type, and the timepoint after treatment 

that was measured. Of these, 123 are shRNA-based 

perturbations, 69 are genetic overexpression, one is 

ligand-based and 524 are chemical compounds. In 

contrast, 1132 conditions, corresponding to 655 

perturbations, showed a substantially increased cellular 

age (Figure 3B). Nevertheless, no change was detected 

for the vast majority of conditions (32233). 

 

To demonstrate the utility of REVIVE, we sought to 

interrogate whether the effects of perturbations that are 

supported by experimental studies are correctly 

recapitulated. In this regard, we obtained experimental 

data from DrugAge [22] where we consider both 

counteracting the functional cellular decline as well  

as lifespan extension in at least one experiment  

as rejuvenating effects. Compounds for which 

transcriptional samples of treated and untreated cells are 

included in our perturbation dataset were retained for 

comparison. As a result, we found that 47 out of 525 

compounds predicted to rejuvenate by REVIVE were 

supported by DrugAge (Supplementary Table 7). 

Conversely, 12 out of 336 compounds predicted to be 

pro-aging showed lifespan-reducing effects in DrugAge 

(Supplementary Table 7). Although 27 compounds have 

been shown to possess opposing effects, the predictions 

are significantly associated with the experimental 

evidence provided by DrugAge (Fisher test p-value: 

0.005, Figure 3C). Thus, we expect REVIVE to produce 

reliable, testable hypotheses of perturbations that can 

rejuvenate the transcriptome of cells. 

 

Among these perturbations are well-known compounds, 

such as alpha-estradiol and resveratrol, which show a 

decrease of 8.7 and 6.1 years, respectively. Notably, 

aspirin and metformin did generally not show a 

significant change in the predicted cellular age upon 

perturbation. On the contrary, higher doses of aspirin 

(>10 uM) showed increasing transcriptional ages in 

epithelial cells in a dose-dependent manner. Moreover, 

although both drugs demonstrated lifespan extending 

effects in model organisms including mice, C. elegans 

and D. melanogaster, the rejuvenating effect on human 

cells and organs remains elusive [23]. 

 

Next, we assessed which conditions could improve the 

hallmarks of aging by performing gene set enrichment 

analysis of the log-fold-changes of each condition in 

curated gene sets for each hallmark [24]. As a result, we 

found that 329 of 1558 conditions predicted to rejuvenate 

improve at least one aging hallmark. The top 5 

interventions affecting each of the hallmarks are shown 
in Figure 3D. In this regard, it is important to note that 

“stem cell exhaustion” is a hallmark that only applies to 

stem and progenitor cells. Nevertheless, since 9160 out of 
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the more than 34000 perturbations have been conducted 

in stem/progenitor cells, we consider it important to 

include it in this assessment as well. For instance, 

dasatinib applied to HSCs shows significant negative 

enrichment in “Senescence-associated Secretory 

Phenotype” and “NF-kB Related Genes”, which is 

supported by previous studies due to the proven effect of 

dasatinib+quercitin as a senolytic [25]. Interestingly, of 

the 329 conditions that improve at least one aging 

hallmark, 115 alleviate the senescence-associated 

secretory phenotype while the remaining conditions show 

no or negative, pro-aging, effects. 

The compound that alleviates the most aging hallmarks 

(five) is BRD-K40224283, a chemical compound 

whose mode of action is unknown. In particular, the 

compound showed an age reduction of 7.3 years after  

6 hours of treatment in epithelial cells and its effect are 

enriched in “Senescence-associated Secretory 

Phenotype”, “Loss of Proteostasis”, “Epigenetic 

Alterations”, “Mitochondrial Dysfunction” as well as 

“Deregulated Nutrient Sensing”. Interestingly, the 

rejuvenating effect of BRD-K40224283 seems stable 

after 24h (-9.9 years) although no statistical 

significance was attained. 

 

 
 

Figure 3. Screening for perturbations that restore a youthful transcriptional state. (A) Scatter plot of age differences for more than 

39000 conditions. Positive values correspond to a pro-aging effect on the transcriptome while negative values signify a more youthful 
transcriptional state. Significant differences are colored yellow. Significance was determined based on an adjusted p-value of less than 0.01 
(t-test, Benjamini-Hochberg correction) (B) While most of the tested conditions did not show a significant change in their predicted age, more 
than 1000 conditions led to a more aged transcriptional state. In contrast, a more youthful transcriptional state could be restored in 1558 
conditions. Of these, the vast majority is based on chemical compounds (purple). (C) Comparison of compounds that are considered 
significant in DrugAge (i.e. increasing the lifespan of the treated model organism) with their counterparts in REVIVE. Compounds that showed 
an adjusted p-value less than 0.01 in any condition were considered significant. The comparison was restricted to compounds (i) that were 
included in DrugAge and (ii) for which transcriptional samples before and after treatment in any cell type were included in the assembled 
dataset. Each tile is annotated and colored with the number of cases falling into each category. (D) Process enrichment for 12 aging hallmark 
gene sets for the top 5 effectors of each process among the interventions that restore a more youthful transcriptional state. Negative values 
(blue) represent the rescuing of a hallmark while positive values (yellow) indicate a pro-aging effect. X- and Y-axis labels are color coded to 
visualize the processes that are most rejuvenated by each intervention. (E) Heatmap of predicted age differences across multiple timepoints 
for interventions predicted to rejuvenate cells. Higher values (yellow) represent a pro-aging effect whereas lower values (blue) indicate age 
reversal. 
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Finally, we set out to interrogate the time-dependent 

changes of the rejuvenating or pro-aging effects of 

perturbations for which multiple timepoints were 

measured. Although only nine interventions had 

multiple timepoints of which all showed significant age 

difference, we made an interesting observation (Figure 

3E). In particular, one perturbation, the overexpression 

of TP53 in Kidney cells, showed a consistent pro-aging 

effect. In contrast, five compounds resulted in a 

persisting rejuvenation effect including colforsin 

(forskolin), everolimus, SU-4312, bromocriptine and 

danazol. On the contrary, the rejuvenating effect of 

vorinostat (HDAC inhibitor), BRD-A19037878 

(trichostatin A; HDAC inhibitor) and PHA-793887 

(CDK inhibitor) on epithelial cells reverses into a pro-

aging effect in the second timepoint suggesting that a 

continuous supply of the drug is needed to sustain its 

effect. However, it remains elusive whether these 

observations are due to intrinsic cell type specific 

differences or are inherent to the mechanisms of action 

of the drugs. 

 

Repurposing chemical and genetic perturbations for 

reverting aging phenotypes 

 

In addition to predicting the effect of chemical and 

genetic perturbations, REVIVE allows for the repurpose 

of perturbagens to counteract aging phenotypes, i.e.  

the transcriptional differences of a cell type in old 

individuals compared to young ones. In this regard, 

REVIVE compares the differentially expressed genes 

between old and young cell types that are related to 

aging hallmarks with the phenotypes induced by 

perturbations that were predicted to induce a more 

youthful transcriptional state (Figure 1B, see methods 

for details). To support this approach, we obtained 

differentially expressed genes of 45 cell type and tissue 

samples between young (0-19 years of age) and old (60-

100 years of age) donors from AgeAnno [26] (Figure 

4A). After applying REVIVE to obtain the perturbations 

that resemble the age-related differences best, we 

observe several cases in which interventions with a 

demonstrated effect have been predicted (Figure 4B and 

Supplementary Table 9). For instance, among the top-

ranking interventions to induce a younger phenotypic 

state in immune cells is everolimus. Indeed, mTOR 

inhibitors, as is everolimus, have been shown to 

improve immunity in older human beings in clinical 

trials [27]. Another intervention that showed high 

enrichment scores in different skin cell types is 

colforsin (forskolin). Indeed, topical forskolin treatment 

of the skin has been shown to induce melanization, 

epidermal cell accumulation and skin thickening [28]. 

This exemplifies that perturbation signatures exhibit 

stronger effects than cell type signatures. This is further 

supported by clustering the cell types by their prediction 

score for each perturbation (Figure 4C). Indeed, cells of 

the same type show similar enrichment patterns for 

perturbations, which highlights the validity of our 

approach. Thus, we expect it to be generalized to cell 

types in which no experiments have been conducted. 

 

DISCUSSION 
 

In this study, we propose REVIVE, the first 

computational framework for predicting chemical and 

genetic perturbations in human cells that restore a 

youthful transcriptional state. Previously introduced 

computational approaches that have been developed in 

the context of drug repurposing for diseases relying on 

genome-wide comparisons [29] often fail in predicting 

the rejuvenating effects of perturbagens since they  

are overshadowed by other, unrelated effects of 

perturbations. For instance, rapamycin exerts its 

rejuvenating effect through inhibition of mTORC1, but 

concomitantly induces changes in glucose and lipid 

metabolism mediated by mTORC2 as well as in the 

proliferation rate [30]. In order to circumvent this issue, 

REVIVE solely focuses on age-related genes and uses a 

transcriptional aging clock that is predictive of the age 

of the samples. In addition, most of these previously 

introduced tools rely on transcriptional perturbation 

signatures that have been largely derived from cancer 

cells, which are known to exhibit various alterations at 

the signaling and transcriptional level [19]. In that 

regard, REVIVE relies on a dataset of non-cancer cells 

to identify transcriptional perturbation signatures. 

Indeed, a recent approach supports the use of non-

cancer cells to improve drug repurpose based on the 

expression of transcription factors [19]. However, the 

expression of only a few transcription factors can be 

associated with aging, rendering them unable to inform 

about potential rejuvenation effects [31]. Indeed, of the 

genes that REVIVE selected to be predictive of age, 

only a few are transcription factors. 
 

Despite known perturbations, REVIVE discovered 742 

perturbations that were able to restore a youthful 

transcriptional state. Interestingly, while some of these 

perturbations exerted an effect on multiple cell types, the 

majority only restored a youthful transcriptional state in 

a single condition. Indeed, cell type specific effects have 

been observed before, such as in the case of different 

brain cell types [32]. In particular, cell type specificity is 

also observed for perturbations that affect general 

pathways, such as GDC-0068 that targets Akt/PI3k-

signaling. On a different note, we demonstrated that 

REVIVE can be used to repurpose drugs for inducing 

youthful transcriptional states in any cell type. Although 
previous studies explored the possibility of employing 

general purpose drug prediction tools in the context of 

diseases, such as L1000CDS2 [29], the success of these 
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Figure 4. Repurposing perturbations to revert aging phenotypes. (A) Number of differentially expressed genes between young (0 – 

19 years) and old (60 – 100 years) individuals per cell type in each tissue as obtained from AgeAnno. Genes that are upregulated during aging 
(yellow) are distinguished from those that are downregulated (purple). (B) Heatmap of the two interventions having the highest perturbation 
score in each cell type. Perturbation enrichment is shown across all cell types including those in which the perturbation does not have 
beneficial effects. Higher scores (yellow) indicate a perturbation to revert a higher fraction of age-related differentially expressed genes 
whereas negative scores (blue) indicate a reinforcement of the pro-aging changes. (C) Heatmap of perturbations scores for all candidates 
rejuvenating perturbations in 45 cell types from different tissues. Higher scores (yellow) indicate a perturbation to revert a higher fraction of 
age-related differentially expressed genes whereas negative scores (blue) indicate a reinforcement of the pro-aging changes. 
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approaches has been limited. We hypothesize that the 

effects of drugs on age-related transcriptional changes 

are overshadowed by other drug effects. In contrast, 

REVIVE specifically focuses on changes related to 

genes associated with cellular age, which allowed us  

to predict known as well as novel perturbagens for 

restoring youthful transcriptional states. 

 

One interesting aspect when using transcriptional  

aging clocks as a surrogate for discovering rejuvenating 

perturbations is that the r-squared of the aging clock does 

not need to be high. Instead, a weaker condition is 

sufficient to perform this task, namely that the ranks of 

the age differences are concordant. This is evidenced by 

the fact that different aging clocks lead to vastly different 

age predictions but can recapitulate the effect of known 

pro- or anti-aging interventions, which is sufficient  

for the purpose of discovering novel rejuvenating 

perturbations [12]. For instance, the epigenetic clock 

introduced by Horvath [9] obtains higher r-squared 

values on testing sets with respect to chronological age 

predictions compared to our transcriptional clock (0.92 

versus 0.73), however, it is still unable to capture the 

effects of various interventions that are known to increase 

the lifespan of cellular populations [33]. In contrast, the 

transcriptional aging clock we employ in this study was 

shown to capture various different interventions with 

known rejuvenating or pro-aging effects. Moreover, it is 

especially important when considering the application of 

REVIVE to cell types that were not included in the 

training data and provides a more robust method design 

compared to the reliance on the actual ages. 

 

Despite the demonstrated ability of REVIVE to discover 

rejuvenating perturbations, it bears some limitations. 

Namely, aging, and therefore rejuvenation, is reflected in 

different molecular modalities, such as epigenetics, 

metabolomics, transcriptomics and proteomics, at 

varying degrees. Thus, it is likely that REVIVE cannot 

detect all chemical and genetic perturbations, but only 

those whose rejuvenation effect is mediated by 

transcriptional changes. Similarly, REVIVE employs a 

multi-tissue aging clock for assessing the restoration of 

youthful transcriptional states by perturbations. Although 

the genes it considers are reflective of age, specialized 

processes of cells and tissues are neglected. For instance, 

a recent study developed a fibroblast-specific aging 

predictor based on eight cellular processes which vastly 

different to the processes enriched in our multi-tissue 

clock genes [11]. Taking together, this suggests that cell 

type and tissue specific anti-aging effects cannot fully be 

captured. However, due to the generality of our proposed 

framework, we hypothesize that the incorporation of 

tissue or cell type specific aging clocks would lead to the 

discovery of additional perturbagens that are able to 

restore a youthful transcriptional state. 

In summary, REVIVE provides the first computational 

framework for systematically identifying perturbagens 

in human cells that restore youthful transcriptional 

states based on transcriptomic profiles. Thus, it paves 

the way for the evaluation of large-scale genetic and 

chemical screens and is therefore expected to accelerate 

the design of novel rejuvenation strategies. 

 

MATERIALS AND METHODS 
 

Preprocessing of transcriptomics data 

 

The transcriptomics data collected for this study  

was generated with ligation-mediated amplification 

followed by capture of the amplification products on 

fluorescently addressed microspheres (L1000), which 

were initially preprocessed independently. In particular, 

the latter technology was employed to create the LINCS 

resource and relies on the measurement of 978 

“landmark” genes that can be used to infer the remaining 

transcriptome [20]. Although Subramanian et al. provides 

a methodology for inferring the expression of 11350 

genes, we employed a recently published methodology 

to convert L1000 generated data to pseudo-RNA-seq 

samples. Using a generative adversarial network 

approach, this method allowed the inference of 23614 

genes from the originally measured 978 [21]. Taking this 

approach enables the deconvolution of age information 

contained in the originally measured genes and thereby 

increasing the predictive power. To confirm that  

the approach produces reasonable pseudo-RNAseq 

samples, we collected RNAseq samples for 22 cell  

types contained in LINCS performed pairwise Pearson 

correlation analysis. As a result, the median correlation 

we observed was in all cases above 0.75 although some 

cell types, such as A549, HEK293T or A375, showed a 

considerable number of outliers (Supplementary Figure 

2). In this regard, we employed the publicly available 

workflow of the method with default parameters. 

 

For training our transcriptional clock, we obtained the 

data that was used for training MultiTIMER [12]. RNA-

seq reads were downloaded from the Sequence Read 

Archive and aligned with kallisto v0.50.1 [38]. A 

transcriptome index was built using the kallisto index 

subprogram with default parameters on the FASTA 

sequences from cDNA and non-coding RNA from 

Ensembl 111. Transcript isoform expression was 

estimated using the kallisto quant subprogram. In case 

of single-strand data, the fragment length was set to 200 

bp while strand-specificity of paired-end reads was 

determined by randomly sampling 50000 reads and 

aligning them to the transcriptome. 

 

Due to the fact that the number of measured genes varies 

between samples profiled with different technologies, we 
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selected those that are in common. Training samples that 

had less than 10 million counts were a priori excluded. 

 

Predicting the effect of perturbations on sample age 

 

To assess whether perturbations can restore a youthful 

transcriptional state, we a transcriptomic clock. Since 

we used a subset of the training data that was used for 

MultiTIMER [12], we also obtained the corresponding 

chronological age information for these samples from 

the original publication. For pre-processing, raw counts 

were log-transformed and surrogate variable analysis 

(sva) was on the training data [34]. Automatic 

estimation of the number of surrogate variables yielded 

45 hidden covariates and removed them using the 

frozen sva approach [14]. The training data was 

subsequently subset to genes that are differentially 

expressed between young (20-29) and old (60-69 or 70-

79) donors in at least one tissue from the Genotype-

Tissue Expression project [13]. Finally, a generalized 

linear model was trained with lasso regression using the 

h2o R package [35]. In particular, the IRLSM solver 

was employed with automatic lambda estimation and 

automated data standardization. Training weights  

for individual samples were computed to balance 

differences in cell type and age representations as the 

inverse of the cell type or age frequencies. After 

training, the final model was applied to all intervention 

data. Next, we subtracted the average age of the 

treatment samples from the age of the corresponding 

control profile in order to obtain the average age 

difference. Here, negative values correspond to a more 

youthful transcriptional state while positive values 

signify a pro-aging effect. A t-test has been employed to 

assess significance and multiple testing correction 

(Benjamini-Hochberg) has been applied to adjust the 

resulting p-values. Conditions with an adjusted p-value 

less than 0.01 were deemed to have a significant 

rejuvenating (in case the age difference is negative) or 

pro-aging (in case the age difference is positive) effect. 

 

Determining changes in the hallmarks of aging after 

perturbation 

 

In order to determine whether perturbations not only 

restore a younger age based on a transcriptional clock 

but also revert the expression of genes related to known 

dysregulated biological processes, we obtained a 

collection of 416 genes and their association to aging 

hallmarks from the Aging Atlas [17]. Next, we 

performed Gene Set Enrichment Analysis implemented 

in the ‘fgsea’ R-package on the log-fold changes 

between treatment and corresponding control sample. 

Negative normalized enrichment scores correspond to 

an alleviation of the hallmark whereas positive scores 

signify a deterioration. 

Predicting repurposable drugs for aging phenotypes 
 

We pre-computed the average log fold change for all 

interventions by computing the average expression 

across all control and treatment samples, respectively, 

and subtracted the log-transformed values in such a way 

that positive values signify an increased expression in 

treatment samples whereas negative values correspond 

to a higher expression in control samples. Given a list of 

differentially expressed genes, we create two sets 

corresponding to up- and down- regulated genes, 

respectively. Using the log2 fold changes of each 

intervention that was predicted to restore a youthful 

transcriptional state, gene set enrichment analysis is 

performed against up- and down-regulated differentially 

expressed genes using the fgsea R package with default 

parameters [36]. Finally, a prediction score is computed 

by subtracting the score for the upregulated from the 

score for the downregulated gene set. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Bar chart of the predictive genes in the transcriptional clock with the highest importance. 
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Supplementary Figure 2. Boxplots of pairwise Pearson correlation coefficients between RNAseq samples and pseudo-
RNAseq samples generated from untreated cell lines contained in the LINCS database. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1 – 9. 

 

 

Supplementary Table 1. Samples used for training the transcriptional clock. 

Supplementary Table 2. Genes with non-zero coefficients in the transcriptional clock. 

Supplementary Table 3. Gene Ontology enrichment of genes with non-zero coefficients in the transcriptional 
clock. 

Supplementary Table 4. Sample information and predicted age differences in 80 datasets with biological 
interventions with known pro- or anti-aging effects. 

Supplementary Table 5. Genes associated with each of 12 aging hallmarks based on the Aging Atlas. 

Supplementary Table 6. Identifiers of samples included in the perturbation screen. 

Supplementary Table 7. Validation of the drug effect predicted by REVIVE with experimental evidence included 
in DrugAge. 

Supplementary Table 8. Statistics of the predicted age differences and corresponding t-statistics for each 
perturbation included in the screen. 

Supplementary Table 9. Enrichment of drug signatures in differentially expressed genes between young and old 
donors. 


