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INTRODUCTION 
 

Aging is a complex, systemic process that involves 

changes in cellular function, cell composition, tissue 

organization, and intercellular communication networks 

[1–3]. Developing biomarkers capable of measuring 

aging on each level of organization is critical for 

understanding how molecular and physiological 

changes occur across the human lifespan. Although 

numerous tools have been designed to quantify aging, 

most existing biomarkers rely on bulk analysis of cell 

populations and therefore focus on a single level of 

organization. This limitation hampers our ability to 

distinguish the relative roles of cell population changes 

and cell-intrinsic aging processes. Creating novel 

interpretable tools that capture this complexity is critical 

for the development of interventions to improve human 

healthspan and lifespan. 

 

Early efforts to design accurate aging biomarkers, often 

referred to as “clocks,” focused on single molecular 

measurements. The first clocks were identified by 

Hannum and Horvath and colleagues based on changes 

in DNA methylation in 2013 [4, 5]. These clocks 

predicted biological age using CpG markers derived 

from DNA methylation data. Over time, clocks were 

developed based on bulk transcriptomics [6], 

proteomics [7, 8], ATAC-Seq [9], and other molecular 

measurements. These advancements have led to new 

methods for understanding aging at different levels of 
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ABSTRACT 
 

Biomarkers of aging offer insights into how diseases and interventions affect biological systems. However, most 
current biomarkers are based on bulk cell measurements, making it difficult to distinguish between changes 
driven by shifts in cell type composition (systemic effects) versus intrinsic changes within individual cells. To 
address this, we used single-cell RNA sequencing to analyze aging-related changes at both the cellular and bulk 
levels. We developed Tictock (T immune cell transcriptomic clock), a single-cell transcriptomic clock capable of 
predicting age and cell type across six human T cell subsets. Applying Tictock, we found that acute COVID-19 is 
associated with increased proportions of CD8+ cytotoxic T cells, whereas T cell composition remains stable in 
people with HIV on antiretroviral therapy (HIV+ART). Both COVID-19 and HIV+ART are linked to an increase in 
transcriptomic age, specifically within naïve CD8+ T cells. Gene Ontology enrichment of 209 genes shared across 
six clock models identified common pathways including the cytosolic small ribosomal subunit, TNF receptor 
binding, and cytosolic ribosome components. A correlation was also observed between aging and mean 
transcript length. These findings underscore the promise of single-cell transcriptomic biomarkers to disentangle 
the systemic and cell-intrinsic components of immune aging and to measure immune aging. 
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resolution, each providing unique insights into the aging 

process. However, the interpretation of these bio-

markers can be challenging due to their reliance on 

measurements derived from a bulk collection of cells or 

plasma. 

 

To solve this challenge, clocks based on single-cell 

measurements have been developed. In 2021, Trapp 

et al. developed a clock based on single cell 

methylation data [10]. In 2022, Buckley et al. used 

single-cell transcriptomic profiling data to predict 

chronological and biological age [11]. Using 

transcriptomics instead of DNA methylation identifies 

markers that are easier to link to changes in specific 

proteins and pathways, thereby providing novel 

insights into changes that occur with biological age [12, 

13]. Furthermore, cell-type specific effects of aging and 

rejuvenation can be measured. As an example, Yu et al. 

(2023) used a technical innovation on single-cell 

transcriptomic data to derive novel insights regarding 

the effect of exercise on neuronal rejuvenation [14]. 

Similarly, single-cell chromatin measurements based 

on imaging have recently been developed to quantify 

age reversal by partial reprogramming [15]. This 

development enables scientists to explore how 

individual cells within an organism age differently, 

contributing to our understanding of cellular hetero-

geneity in aging. 

 

Concurrently, several groups developed biomarkers that 

predict aging using unique clinical measurements. As an 

example, Levine et al. (2018) used methylation data to 

predict several key healthspan measurements. GrimAge 

used a similar technique to predict time‐to‐death, 

time‐to‐coronary heart disease, and time‐to‐cancer [16, 

17]. More recently, clocks have been developed to 

predict the aging of individual organs [18] and 

physiological systems [19]. These measurements allow 

for better understanding of systemic changes directly 

relevant to human health. 

 

Several studies have integrated aging at several levels of 

resolution simultaneously, frequently by employing 

multi-omics. In the context of human aging, these 

measurements have led to improved clinical predictions 

[20] and the discovery of age-associated chemokines 

[21]. Other groups have combined multi-omics with 

longitudinal data, enabling a deeper understanding of 

the dynamics of human aging [2, 22]. Combining 

measurements of systemic aging with advancements in 

single-cell biomarkers has the potential for unlocking a 

deeper understanding of the interplay between extrinsic 

and intrinsic aging. 
 

Simultaneous profiling of intrinsic and systemic aging 

has particular importance in the context of the immune 

system [23]. Due to both intrinsic (i.e., cell auto-

nomous) and extrinsic factors (e.g. thymic involution), 

the naïve CD8+ and CD4+ T cell compartments 

decline over time [24], both in size and in quality. This 

decline impairs the ability of the organism to mount 

immune responses during aging and to fight novel 

infections [25]. Thymic involution leads to changes in 

cell-type composition via a decline in naïve CD4 and 

CD8 T cells and a concomitant increase in memory 

and effector T cells [23, 26–28]. This complex 

interplay of cellular and systemic aging is important, 

but our ability to assess how each of these 

independently contributes to aging-associated pathology 

is presently limited. 

 

Here, we use a previously published single-cell 

transcriptomic dataset [23] to generate predictors of T 

cell composition and individual cellular aging. We 

demonstrate that our cell type predictor can identify and 

quantify six canonical T cell subsets (naïve CD8s, 

central memory CD8s, effector memory CD8s, naïve 

CD4s, central memory CD4s, and regulatory T cells) 

and their changes in relative abundance during aging. 

Using this cell type predictor, we generated six 

individual age predictors for each predicted T cell 

subtype. We then applied our joint cell type and age 

prediction models, collectively known as Tictock (T 

immune cell transcriptomic clock), to two datasets – 

one of acute COVID and another of HIV-infected 

individuals with long-term ART treatment. Similar to 

what we have shown previously using epigenetic data 

[29], we find that acute COVID is associated with 

changes in cell type composition. We further show that 

both diseases are associated with intrinsic accelerated 

aging in naïve CD8 T cells. Lastly, we investigate the 

mechanistic drivers of our age predictors and identify 

associations with ribosomal gene expression and mean 

cell transcript length. 

 

To provide a unified framework for both systemic and 

cell-intrinsic immune aging, we integrated two 

complementary predictive models within Tictock. The 

first model performs automated cell type classification 

of peripheral T cells into six canonical subsets (naïve 

CD8, central memory CD8, effector memory CD8, 

naïve CD4, central memory CD4, and regulatory T 

cells) using multinomial logistic regression trained on 

marker gene expression profiles. The second model 

comprises six independent age-prediction models, each 

optimized for one of the identified cell types through 

elastic net regression on age-correlated genes. 

Together, these models allow joint inference of cell 

identity and transcriptomic age from any single-cell 
dataset. This dual-layer design enables us to 

disentangle compositional (systemic) changes from 

intrinsic transcriptional aging within immune cell 
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subsets and to apply the integrated model to disease 

contexts such as COVID-19 and HIV. Because each 

age model is trained and applied within a single T cell 

lineage, predicted ages should not be interpreted as 

global PBMC-level chronological age estimates. 

Instead, Tictock is intended to quantify relative, cell-

intrinsic aging states within defined T cell subsets, 

enabling comparisons across conditions and disease 

contexts. 

 

RESULTS 
 

Automated prediction of cell type recapitulates 

known changes in T cell composition with age 

 

To simultaneously profile changes in blood cell type 

composition and intrinsic age-associated changes, we 

have developed separate models to build Tictock: a cell 

type prediction model and six age prediction models for 

each cell type (naïve CD8s, central memory CD8s, 

effector memory CD8s, naïve CD4s, central memory 

CD4s, and regulatory T cells). Automating cell type 

prediction allows for less bias during cellular age 

prediction. As the basis for our model, we use a 

previously published scRNA-Seq dataset of two million 

peripheral blood mononuclear cells (PBMCs) from 166 

individuals [23]. As noise can significantly affect 

accurate cell type or age prediction, we filter our 

analysis to include only genes showing at least a weak 

correlation with age (|R| >0.01). This step reduces 

technical noise and standardizes the gene set across 

models while retaining highly expressed canonical T-

cell markers such as CD4, CD8A, CCR7, GZMB, 

GNLY, and FOXP3. However, we acknowledge that 

this approach may exclude genes whose expression 

changes non-linearly with age, as reported in recent 

studies [2] (Figure 1A). 

 

The dataset is next split on a per-donor basis into a 

training subset (80%) used for building the model and a 

test subset (20%) for determining its accuracy and 

precision. We use an additional external dataset [30]  

to measure the ability of Tictock to make accurate 

predictions in other cohorts. To determine cell 

prediction accuracy and generate initial labels, we use 

K-means clustering to split the cells into biologically 

relevant groups and then label these groups based on the 

expression levels of six cell surface markers (CD4, 

CD8A, CCR7, GZMB, GNLY, and FOXP3). Cell 

subsets are identified based on the following positive 

markers: naïve CD4 helper T cells (CD4, CCR7), 

central memory CD4 helper T cells (CD4), CD8 naïve 

cytotoxic T cells (CD8A, CCR7), CD8 effector 

cytotoxic T cells (CD8A, GZMB, GNLY), CD8 

memory cytotoxic T cells (CD8A), and regulatory T 

cells (FOXP3, CD4). 

We validate our model by first identifying whether 

previously reported aging-associated trends could be 

recapitulated. In agreement with previously identified 

and reported changes [28], we identify an increase in 

the CD4/CD8 ratio with age (p = .0003) (Figure 1B). 

Within the six cell types we measured, we observe a 

significant decrease (p < .0001) in the proportion of 

CD8 naïve cytotoxic cells (Figure 1C) with age, which 

is also in accordance with previous literature [31]. 

 

We further test our cell type prediction model by 

comparing predicted cell types to those we manually 

annotated. In both the training (Figure 1D) (97% 

accuracy; .98 F1 score) and test (Figure 1E) (97% 

accuracy; .97 F1 score) datasets, the predicted cell types 

closely match the manually annotated clusters. 

Furthermore, there is accordance with cell types as 

identified by canonical cell markers CD8A, CD4, 

CCR7, GZMB, GNLY, and FOXP3. To further assess 

generalizability, we test our cell type prediction model 

using an external dataset of CD4+ T cells [30]. We 

identify strong accordance (83% accuracy; .80 F1 score) 

between the manual annotation and assumed clusters 

based on canonical cell markers (Figure 1F). 

 

Cell type-dependent models predict age across a 

variety of cell types 

 

After validating our cell type prediction model, we next 

developed six independent age prediction models—one 

for each of the six predicted cell types (naïve CD8s, 

central memory CD8s, effector memory CD8s, naïve 

CD4s, central memory CD4s, and regulatory T cells). 

We employ elastic net regression as our modeling 

approach, which enables us to focus on the most 

informative features while keeping our models both 

straightforward and robust. We tune the parameters 

through cross-validation to ensure that the models could 

capture the subtle signals of aging. Each model provides 

a predicted age for individual cells, which we compare 

to the donors’ chronological ages at both the single-cell 

level and as an average per donor. This comprehensive 

approach not only validates our predictions but also 

enhances our understanding of how these immune cell 

types mirror the aging process, ultimately linking 

cellular signatures to overall donor age. 

 

For the training set, we observe a strong correlation 

between the predicted age of a cell and chronological 

age (R = .56, mean absolute error (MAE) = 11.9, p < 1 

× 10−16), particularly when the average age of all cells 

per donor is calculated (R = .84, MAE = 11.4, p < 1 × 

10−16) (Figure 2A). As expected for a lineage-restricted 
aging clock, donor-level averaged predictions occupy a 

narrower age range than chronological age, reflecting 

shared transcriptional constraints within each T cell 
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lineage rather than a limitation of model performance. 

Similarly, we observe a moderate correlation in the test 

set (R = .49, MAE = 13.5, p < 1 × 10−16), which also 

increases when we compute the average age of all cells 

per donor (R = .8, MAE = 11.5, p < 1 × 10−12) (Figure 

2B). We apply Tictock to the Yasumizu et al. (2024) 

 

 
 

Figure 1. Cell type predictions recapitulate known effects of aging on the immune system. (A) Overview of the study design, 

including the development of cell type prediction and age prediction models using single-cell transcriptomics. The workflow highlights data 
preprocessing, clustering, annotation, and model training. (B) Cell type proportion changes in individuals from different age groups. (C) 
CD4/CD8 ratio increases with age, normalized to individuals aged 18–35. (D) Comparison of predicted versus manually annotated cell types 
in the training dataset. Cell annotations were based on canonical markers: CD4, CD8A, CCR7, GZMB, GNLY, and FOXP3. Predicted clusters 
align closely with ground truth annotations, demonstrating the accuracy of the model. (E) Validation of the model in the test dataset, 
showing high concordance between predicted and manually annotated clusters with quantitative accuracy metrics (97% accuracy; F1 score 
= 0.97). (F) External validation using the Yasumizu et al. (2024) dataset demonstrates robustness across datasets (83% accuracy; F1 score = 
0.80). Statistical significance is indicated: *** Bonferroni-corrected p-value less than or equal to .001, * Bonferroni-corrected P-value less 
than or equal to .05, # Bonferroni-corrected P-value less than or equal to .1. 
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dataset and observe a weaker but still significant 

correlation on a cell level (R= .38, MAE = 15.2, p < 1 × 

10−16), and when cells are averaged per each donor (R = 

.78, MAE = 6.5, p = .001) (Figure 2C). Because Tictock 

consists of six cell-type–specific clocks trained within 

individual T cell subsets, the donor-level predicted  

ages occupy a narrower absolute range than the full 

chronological span of the cohort. This reflects the 

restricted transcriptional variation that is available 

within a single immune lineage and is expected for 

lineage-specific single-cell models [28, 32]. In this 

context, the primary output of interest is the relationship 

between predicted and chronological age, particularly 

after averaging predictions at the donor level, rather 

than the absolute magnitude of the predicted values 

[11]. Consistent with this, age-differential calculations 

showed donor-level ranges of approximately −25 to +23 

years in the Terekhova et al. training cohort, −28 to +19 

years in the Terekhova et al. test cohort, −10 to +29 

years in the Yasumizu et al. dataset, −21 to +37 years in 

Ren et al. (COVID-19), and −15 to +21 years in Wang 

et al. (HIV+ART). 

 

We also note that predictions at the single-cell level 

exhibit a wide dispersion. This reflects the sparsity and 

stochastic variability inherent to scRNA-seq data, where 

each cell captures only a fraction of its true trans-

criptome [33, 34]. Such dispersion is a well-recognized 

feature of single-cell predictive modeling. As in other 

single-cell applications, averaging predictions at the 

donor level substantially reduces this variability and 

yields stable and biologically meaningful associations 

with chronological age. 

 

To determine whether each of these age predictors is 

identifying unique cell type-specific aging patterns, we 

test whether they are correlated with each other. In 

general, the individual age predictors have moderate 

 

 
 

Figure 2. Cell-type-specific age prediction models predict chronological age with high accuracy and reveal unique aging 
signatures. (A) Training dataset results (n = 116 donors) show strong correlations between predicted and chronological age at the donor 
level (left; R = 0.84, MAE = 11.4 years, p < 1 × 10−16) and at the cell level (right; R = 0.56, MAE = 11.9 years, p < 1 × 10−16). (B) Test dataset 
results (n = 50 donors) show strong correlations at the donor level (left; R = 0.79, MAE = 11.5 years, p < 1 × 10−12) and moderate correlations 
at the cell level (right; R = 0.49, MAE = 13.5 years, p < 1 × 10−16). (C) External validation using the Yasumizu et al. (2024) dataset (n = 13 
donors) reveals strong correlations at the donor level (R = 0.78, MAE = 6.5 years, p = 0.001) and moderate-to-low correlations at the cell level 
(R = 0.38, MAE = 15.2 years, p < 1 × 10−16). (D) Pairwise correlations between age predictors for each T cell subset highlight both shared and 
cell-type-specific aging signatures, with relative errors shown for each subset clock compared to donor chronological age on the test dataset. 
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(R ~ .5) age prediction correlations with one another, 

suggesting they measure both a shared and cell-type 

dependent aging signature (Figure 2D). 

 

COVID-19 impacts immune aging through both cell 

composition and intrinsic aging mechanisms 

 

Aging and diseases such as COVID-19 have proven to 

have significant impacts on T cell composition and 

immune function [35]. To test whether acute COVID-19 

impacts cell type composition, cellular aging, or both, 

we use an external COVID-19 dataset made up of 171 

COVID-19 infected and 25 healthy individuals [35], 

filtering on individuals who had COVID-19 within 60 

days of sample collection. To ensure biological 

interpretability, we restricted the COVID-19 cohort to 

donors sampled within 60 days of symptom onset, 

which captures acute and early convalescent immune 

perturbations while avoiding later post-infectious time 

points that show substantial heterogeneity in immune 

recovery. 

 

Applying our cell type prediction model to this dataset 

(Figure 3A), we find identification of distinct T cell 

subsets to be in accordance with cell markers (Figure 

3B). Next, using the age prediction models, we evaluate 

the predicted ages of individual cells and the predicted 

ages of donors. We find that Tictock achieved moderate 

 

 
 

Figure 3. Acute COVID-19 impacts T cell composition, cellular aging, and gene expression through both systemic and 
intrinsic mechanisms. (A) Predicted cell types using the cell type prediction model (n = 15 controls; n = 48 donors with COVID-19). (B) 
Heatmap of canonical marker expression across predicted subsets validates the cell type predictions. Markers include CD8A, CD4, CCR7, 
GZMB, GNLY, and FOXP3. (C) Predicted age of individual T cells versus chronological age of donors shows a low correlation (R = 0.26, MAE = 
16 years, p < 1 × 10−16). (D) Averaged predicted donor ages versus chronological age shows a moderate-to-strong correlation (R = 0.66, MAE 
= 14 years, p < 1 × 10−10). (E–J) Proportional changes in each T cell subset due to COVID-19. (K–P) Residual age prediction by condition for 
each cell type due to COVID-19. (Q, R) Gene-level analysis of shared transcriptional signatures between COVID-19 and aging in naïve and 
effector CD8 T cells. Correlations are shown with regression lines (orange) and statistical significance marked in blue. Statistical significance 
is indicated: *** Bonferroni-corrected p-value less than or equal to .001, * Bonferroni-corrected P-value less than or equal to .05, # 
Bonferroni-corrected P-value less than or equal to .1. 



www.aging-us.com 7 AGING 

accuracy on individual cells (R = .26, MAE = 16, p < 1 

× 10−16) (Figure 3C) and cell ages averaged per donor 

(R = 0.66, MAE = 14, p < 1 × 10−10) (Figure 3D). 

 

To determine whether acute COVID-19 infection 

affects cell type composition, we analyze predicted 

proportions across T-cell subsets. We observe sig-

nificant decreases in predicted proportions of naïve 

CD8 (Figure 3E; p = .03) and naïve CD4 cells (Figure 

3H; p =.03). We observe weaker changes in cell type 

proportions for other cell types, including CD8 central 

memory cells (Figure 3F, p = .21), CD8 effector cells 

(Figure 3G, p = .3), CD4 central memory cells (Figure 

3I, p = .83), and regulatory T cells (Figure 3J, p = .08). 

As naïve cells make up approximately 30% of cells in 

the patient samples, lowering their relative proportion is 

a significant immunological impact. 

 

Next, we test whether predicted cellular ages are 

affected by COVID-19. Because COVID-19 donors 

were older than controls (Supplementary Figure 1), all 

disease-associated effects were evaluated using age 

residuals, which remove chronological age from the 

predicted transcriptomic age. We observe significant 

age acceleration in naïve CD8 (Figure 3K, p = 1e−6) and 

CD4 memory (Figure 3O, p = .02) cells. Naïve CD8 T 

cells showed substantial age acceleration in COVID-19 

(mean age residual difference ≈ 3.6 years, 95% CI (2.1, 

5.1), Cohen’s d ≈ 1.15), while memory CD4 T cells 

displayed a more moderate shift (mean difference ≈ 2.8 

years, 95% CI (0.17, 5.41), Cohen’s d ≈ 0.63). In 

contrast, naïve CD4 helper cells do not show evidence 

of intrinsic age acceleration (Figure 3N, p = 1e−7) as 

their mean residual is slightly negative in COVID-19 

donors. We did not see a significant shift in predicted 

age for CD8 memory (Figure 3L, p = .2), CD8 effector 

(Figure 3M, p = .98), or regulatory (Figure 3P, p = .07) 

T cells. Finally, we examine whether aging and 

COVID-19 share a transcriptional signature between 

aging and COVID-19 in naïve CD8 and effector CD8 

cells. There is only a slight negative (Figure 3Q, R = 

−.05, p = .002) and a slight positive (Figure 3R, R = .16, 

p < 1 × 10−16) correlation between COVID-19 and aging 

in naïve CD8 and effector CD8 cells, respectively. 

 

Long-lasting ART treatment and HIV impacts aging 

through cell-intrinsic mechanisms 

 

HIV has been previously reported to accelerate aging 

[36–38]. We were interested in testing whether this 

accelerated aging is due to cell-intrinsic or systemic 

effects. After validation of Tictock on the Ren et al. 

(2021) COVID-19 dataset and exploring the effects of T 
cell changes with age and disease, we used another 

external dataset comprised of patients infected with 

human immunodeficiency virus (HIV) on antiretroviral 

therapy and healthy controls [39]. Of these donors, 7 

had HIV and were on antiretroviral therapy (ART), 1 

had HIV but was off ART for the first visit, and 6 

donors were healthy. 

 

We apply our cell type prediction model to this dataset, 

successfully identifying and clustering the six distinct T 

cell types (Figure 4A) and finding the clusters to be in 

accordance with known cell markers (Figure 4B). Next, 

we use the age prediction models on this HIV dataset to 

predict the age of individual cells (Figure 4C) and 

donors (Figure 4D). We observe a low accuracy for age 

prediction comparing predicted cell age to donor age (R 

= .14, MAE = 13.6, p < 1 × 10−16) but a strong accuracy 

when cell age predictions are averaged per donor and 

compared to chronological age (R = 0.66, MAE = 12.6, 

p = .002). Age differential calculations showed that 

donor-level predicted ages are compressed relative to 

chronological age. Therefore, all disease comparisons 

use age residuals to correct this bias. Unlike the COVID-

19 dataset, we do not observe significant changes in cell 

type proportions after adjusting for multiple comparisons 

(Figure 4E–4J). To assess differences in predicted age 

between HIV + ART donors compared to healthy 

controls, we perform an analysis of the age residuals for 

each cell type. We identify significantly accelerated ages 

in HIV+ patients in the naïve CD8 population (Figure 

4K, p = .01), while all other T cell subsets show no 

significant age changes (Figure 4L–4P). In HIV+ART 

donors, naïve CD8 T cells also exhibited increased 

transcriptomic age (mean age residual difference ≈ 5.4 

years, 95% CI (0.95, 9.85), Cohen’s d ≈ 1.48). 

 

Similarly to the COVID dataset, we examine 

transcriptional signatures of HIV+ART relative to aging. 

In naïve CD8 cells (Figure 4Q), we observe a strikingly 

strong correspondence between genes that have a partial 

correlation with aging and those that have a partial 

correlation with HIV+ART (R = .7, p < 1 × 10−16). 

Interestingly, many of the genes most strongly correlated 

with both HIV+ART and aging have been previously 

characterized to be a signature of HIV, such as CD69 

[40]. We also find a weaker negative correlation 

between genes associated with aging and HIV in CD8 

effector cells (Figure 4R, R = −.29, p < 1 × 10−16). 

 

Biological insights into aging using the six T cell 

type-dependent model coefficients 

 

One of the distinct advantages of using scRNA-Seq data 

or transcriptomics in comparison to other measurements 

of aging is the proximity to readily identifiable changes 

in biological function. In other clocks, such as those 
built using DNA methylation data, the interpretability of 

the clocks to gain information about the biology of 

aging is often limited [41]. 
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We focus on the subset of genes used by each age 

prediction model to conduct a broad exploratory analysis 

(Supplementary Figure 2). Accordingly, we perform a 

GO enrichment of the 209 shared genes across all six T 

cell age prediction models, revealing significant 

enrichment in ribosomal pathways, cell-substrate 

junction, focal adhesion, and cytosolic processes (Figure 

5A). Mapping these shared predictive genes to their 

genomic locations revealed non-random clustering, with 

particularly dense regions on chromosomes 1 and 14 

(Supplementary Figure 3). Next, we perform a deeper 

GO enrichment analysis of the individual T cell models. 

This is based on the total gene set specific to that 

individual model, weighting genes by their relative 

contribution (Figure 5B). This allows us to determine the 

functional significance of genes within each model 

(Supplementary Figure 4), highlighting that both naïve 

cytotoxic T cells and naïve helper T cells show 

particularly high involvement of ribosomal pathways. 

 

Building on our earlier analyses, we delve deeper into 

the functional associations underlying our enriched GO 

terms. We present a bar plot that ranks the top four GO 

terms by adjusted p-values and highlights their top four 

contributing genes, revealing both shared and distinct 

functional signatures among the gene sets (Figure 5C). 

Recognizing the critical role of ribosomal genes, we 

further examine their expression dynamics with age 

 

 
 

Figure 4. HIV+ART accelerates intrinsic aging in naïve CD8 T cells while maintaining stable cell type proportions. (A) Predicted 

cell types using the cell type prediction model (n = 6 controls; n = 8 donors with HIV). (B) Heatmap of canonical marker expression across 
predicted subsets validates the cell type predictions. Markers include CD8A, CD4, CCR7, GZMB, GNLY, and FOXP3. (C) Predicted age of 
individual T cells versus chronological age of donors shows a low correlation (R = 0.14, MAE = 13.6 years, p < 1 × 10−16). (D) Averaged 
predicted donor ages versus chronological age shows a strong correlation (R = 0.66, MAE = 12.6 years, p =.002). (E–J) Proportional changes 
in each T cell subset due to HIV + ART. (K–P) Residual age prediction by condition for each cell type due to HIV + ART. (Q, R) Gene-level 
analysis of shared transcriptional signatures between HIV + ART and aging in naïve and effector CD8 T cells. Correlations are shown with 
regression lines (orange) and statistical significance marked in blue. Statistical significance is indicated: *** Bonferroni-corrected p-value less 
than or equal to .001, * Bonferroni-corrected P-value less than or equal to .05, # Bonferroni-corrected P-value less than or equal to .1. 
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across different cell types (Figure 5D and 

Supplementary Figure 5). While most ribosomal genes 

exhibit a consistent age-associated pattern across all six 

cell types, exceptions like RPS2 suggest the presence of 

unique regulatory mechanisms. 

 

Due to increasing evidence that defective transcription 

of longer transcripts is associated with aging [42, 43], 

we sought to identify whether such defects could be 

identified in the immune system during human aging 

using our single-cell transcriptional biomarker. We find 

that older individuals had, on average, shorter transcript 

lengths in every T cell subset except for naïve CD4 T 

cells and memory CD8 T cells (Figure 6A–6F). To test 

whether shorter transcript lengths are associated with an 

accelerated predicted age, we estimate transcript lengths 

in cells in the top and bottom deciles of predicted age 

relative to their chronological age. Interestingly, in 

memory helper cells and regulatory T cells, we find that 

donors with longer mean cellular transcript lengths are 

predicted to have a younger age relative to their 

chronological age (Figure 6G–6L). This is in agreement 

with previous reports linking mean cellular transcript 

length with aging [42, 43]. 
 

DISCUSSION 
 

The immune system ages at many distinct levels 

including molecular, cellular, compartmental, and 

systemic [44]. At a molecular level, for example, aging 

 

 
 

Figure 5. Gene ontology and chromosomal mapping highlight ribosomal pathways as key drivers of transcriptomic aging 
predictions. (A) GO term enrichment analysis of genes shared across all six T cell age prediction models reveals significant enrichment in 

ribosomal pathways, cell-substrate junction, focal adhesion, and cytosolic processes. The dashed line marks the significance threshold  
(-log10(p) = 1.3). (B) A dotplot for the GO enrichment analysis of the genes used in every model (using the relative weights of those genes in 
relation to the rest of the genes used in the model). (C) A bar plot displaying the top four most enriched GO terms ranked by adjusted p-
value. For each GO term, the top four contributing genes were identified and compared across all enrichment terms, highlighting shared 
and unique functional associations among the gene sets. (D) Heatmap showing correlations of individual ribosomal gene expression with 
aging across T cell subsets, highlighting conserved and subset-specific trends. 
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CD8 T cells lose chromatin accessibility at select gene 

promoters, leading to reduced capacity for oxidative 

phosphorylation [32, 45]. At a cellular level, T cells 

progressively accumulate dysfunctional mitochondria 

[46] and see receptor signaling pathways become 

dysregulated [47]. At a compartment level, thymic 

involution leads to a gradual reduction in naïve T cell 

number and diversity [48]. At a systemic level, senescent 

cells in the immune system secrete senescence-

associated secretory phenotype (SASP) [49] with toxic 

bystander effects and clonal expansion of unique 

immune cell clones increases the risk of leukemia [50]. 

 

 
 

Figure 6. Transcript length is associated with cellular aging and predicts accelerated aging in specific T cell subsets. (A–F) 

Mean transcript length per cell type and age group for naïve CD8, memory CD8, effector CD8, naïve CD4, memory CD4, and regulatory T cells. 
Shorter transcript lengths are associated with increased age for most subsets, except naïve CD4 and memory CD8 T cells. (G–L) Transcript 
length comparisons in cells from the top and bottom 10% deciles of predicted age acceleration relative to chronological age. Longer mean 
transcript lengths are associated with younger predicted ages in regulatory T cells and memory CD4 cells. Statistical significance is indicated: 
*** Bonferroni-corrected p-value less than or equal to .001, * Bonferroni-corrected P-value less than or equal to .05, # Bonferroni-corrected P-
value less than or equal to .1. 
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Tictock is not intended to function as a global PBMC-

level chronological age predictor, but rather as a 

lineage-restricted, cell-type–specific aging clock that 

captures relative intrinsic aging states within defined T 

cell populations. Accordingly, compressed donor-level 

age ranges and broad single-cell distributions reflect 

biological constraints and heterogeneity within T cell 

lineages rather than reduced predictive validity. 

 

Due to this complexity, it is critical to study how aging 

affects multiple levels of immune organization. It is 

equally important to study how specific diseases may 

affect immune aging and the normal functioning of the 

immune system. Both acute COVID-19 infection [51] 

and HIV [37] have been reported to accelerate 

epigenetic aging in immune cells, and antiretroviral 

therapy may slow it [38]. However, without a precise 

understanding of how each disease influences specific 

aspects of immune aging, it is difficult to develop 

targeted restorative therapies. Deciphering the interplay 

between different levels of immune aging is also 

important for a full understanding of age-associated T 

cell dysfunction. 

 

By developing age prediction models for each of six 

distinct T cell subsets, we can predict the cell type and 

age of individual T cells using single-cell transcriptomic 

data. We opted to automate cell type prediction in 

addition to age prediction to increase the robustness and 

reproducibility of our findings. Our results indicate that 

acute COVID-19 is both a cell-intrinsic and systemic 

immune aging phenomenon, while long-term HIV 

infection treated with ART shows an accelerated 

intrinsic aging signature in naïve CD8 T cells. Although 

our study evaluates COVID-19 as a unified clinical 

category, severity-stratified analyses may be informa-

tive in larger datasets [12], and we identify this as an 

avenue for future work. We further find that shorter 

mean transcript length is a feature of aging lymphocytes 

and is tracked by our transcriptomic clock. 

 

Because Tictock generates six independent age models 

trained within individual T cell subsets, predicted 

donor-level ages naturally exhibit a compressed 

dynamic range relative to chronological age. This 

reflects limited within-lineage transcriptional variation 

and the inherent sparsity of single-cell transcriptomes, 

rather than a loss of biological signal. Accordingly, 

Tictock is optimized for resolving cell-type–specific 

intrinsic aging and separating intrinsic from com-

positional effects. 

 

To construct robust age prediction models for distinct T 
cell subsets, we first filtered genes to retain only those 

with a correlation with age greater than 0.01 or less 

than −0.01, yielding 2,947 candidate genes. These 

genes were then used to train models for six different T 

cell types. Notably, 209 genes were common across all 

models, yet each cell type exhibited a unique genetic 

signature—ranging from 1,124 unique genes in the 

regulatory T cell model and 2,188 in the memory 

helper T cell model (Supplementary Figure 6). This 

gene overlaps not only points to shared molecular 

mechanisms of aging, but also suggests that cell type-

specific processes contribute uniquely to immune 

aging. This may reflect a core aging signature 

conserved between T cell subsets, though we are 

limited in our interpretation due to the sparseness of 

single-cell transcriptomics data. 

 

It is also somewhat surprising that the T cell type most 

associated with accelerated aging in both acute COVID-

19 and long-term HIV infection is naïve CD8s. Our 

findings are in accordance with previous literature 

showing a short-term loss of naïve CD8s in acute 

COVID-19 [52], but the current knowledge on cell-

intrinsic dysfunction of naïve CD8s in either disease 

context is limited. Lastly, we found that several 

ribosomal genes that are upregulated during aging are 

downregulated in the context of HIV + ART. This is in 

agreement with the fact that several genes down-

regulated during HIV infection are involved in 

ribosomal biogenesis [53]. 

 

Mechanistically, naïve CD8 T cells appear particularly 

vulnerable to aging-associated decline due to a con-

vergence of developmental, antigenic, and epigenetic 

factors. With advancing age, thymic involution sharply 

reduces thymic output, constricting the naïve CD8 pool 

and skewing the T-cell compartment toward memory 

and effector phenotypes [48]. Meanwhile, cumulative 

antigenic stimulation across life drives compensatory 

homeostatic proliferation of existing naïve clones, 

resulting in reduced T-cell receptor diversity and the 

emergence of senescent, oligoclonal populations [31, 

32]. At the molecular level, naïve CD8 T cells exhibit 

age-related epigenetic remodeling, including altered 

DNA methylation and histone modifications that restrict 

chromatin accessibility and transcriptional flexibility 

[24, 45]. These combined processes erode the capacity 

of naïve CD8 T cells to preserve a quiescent but 

responsive state, rendering them especially sensitive to 

both intrinsic transcriptional aging and systemic 

inflammatory stressors such as infection or metabolic 

imbalance. 

 

Though Tictock shows significant promise, there are 

some limitations. Due to the sparse and noisy nature of 

single-cell RNA sequencing data, predicting age with an 
accuracy similar to that of epigenetic clocks is 

challenging. Techniques such as Buckley et al.’s (2023) 

bootstrapping method reduce transcriptional variation 



www.aging-us.com 12 AGING 

and enhance cell prediction accuracy, though at the cost 

of losing single-cell resolution. Importantly, Tictock 

was validated using two specific external datasets from 

COVID-19 and HIV patients. 

 

While the observations reported here do provide 

unique biological insights, both COVID and HIV 

represent viral infections and may not capture disease 

states in a broader context. Accordingly, the current 

validation scope is limited to viral conditions. Future 

studies will be needed to test whether Tictock 

generalizes to non-viral contexts such as autoimmune 

disorders, cancers, and metabolic or inflammatory 

diseases, which often involve distinct immune 

remodeling processes. Extending the model to these 

settings will be essential to establish its robustness and 

to assess whether intrinsic and systemic immune aging 

signatures behave similarly across diverse pathological 

conditions. 

 

Lastly, although we identify and characterize cellular 

ribosomal signatures of aging using our novel bio-

marker, we are cognizant of the fact that this family of 

genes is expressed at a high level and that, given the 

relatively low sensitivity of single-cell sequencing, we 

have missed less abundant genes that play a significant 

role in immune aging. 

 

During preparation of this manuscript, multiple reports 

were released complementing findings described here. 

Another group developed a single-cell transcriptomic 

clock for human PBMCs, but in contrast to our findings, 

found that COVID infection had a rejuvenative effect 

on T cells [54]. Another study similarly identified an 

opposite aging effect based on single-cell vs. bulk 

transcriptomic readouts [55], reinforcing the importance 

of understanding the effect of cell type composition on 

aging measurements. 

 

Beyond its research applications, Tictock could be 

developed into a clinical tool for assessing immune 

system health and therapy responsiveness. By 

quantifying both cell-intrinsic and compositional aspects 

of immune aging, Tictock may help enable immune risk 

stratification in older adults or patients with chronic 

inflammatory and infectious diseases. Longitudinal 

tracking of transcriptomic age at the single-cell  

level could also be used to detect therapy-induced 

rejuvenation following interventions such as 

vaccination, hematopoietic stem cell transplantation, or 

senolytic and metabolic treatments. Ultimately, 

integrating single-cell transcriptomic clocks into clinical 

monitoring pipelines may provide a powerful means to 

evaluate how therapeutic or lifestyle interventions 

modulate immune aging trajectories in individual 

patients. 

In summary, our study provides a novel framework for 

understanding immune aging by integrating single-cell 

transcriptomic data with automated T cell type and age 

prediction. By highlighting both cell-intrinsic and 

systemic aspects of immune aging, our approach offers 

novel insights into how diseases such as COVID-19 and 

HIV differentially impact the immune system at the 

cellular level. These findings highlight the potential of 

single-cell aging biomarkers to improve the specificity 

of aging diagnostics and to inform therapeutic strategies 

aimed at mitigating age-related immune decline. Future 

research should focus on expanding Tictock to other  

cell types and disease conditions to build a more 

comprehensive map of aging across the immune system, 

and to explore how therapeutic interventions could 

potentially reverse or modulate these aging signatures. 

 

METHODS 
 

Human cohorts 

 

The Terekhova et al. (2023) dataset was used to train 

the cell type prediction and age prediction models. This 

dataset comprised roughly 2 million peripheral blood 

mononuclear cells from 317 samples from 166 

individuals aged 25–85 years old. All participants were 

healthy Caucasian non-obese non-smokers. Blood was 

collected between 2018 and 2021 after an overnight 

fast. The Chromium Single Cell 5’ v2 Reagent Kit from 

10x Genomics was used to generate single-cell 

transcripts. The Yasumizu et al. (2024) dataset was used 

to validate the accuracy of our cell type prediction and 

age prediction models and contained 1.8 million CD4+ 

T cells generated using the Chromium Next GEM 

Single Cell 5′ Kit v2. 

 

The Ren et al. (2021) dataset made up of 284 samples 

from 171 COVID-19 patients and 25 healthy 

individuals served as an external validation dataset for 

our model. The samples from COVID-19 patients were 

categorized into moderate convalescence (n = 89), 

moderate progression (n = 33), severe convalescence (n 

= 51) and severe progression (n = 83) according to 

severity and stage. They then generated a 

transcriptomic dataset of 1.46 million immune cells 

using Chromium Single Cell 3’ v2 Reagent, Chromium 

Single Cell 3’ v3 Reagent, Chromium Single Cell 5’ v2 

Reagent, and Chromium Single Cell V(D)J Reagent 

kits from 10x Genomics. For our analysis, we included 

only cells derived from patients who had COVID-19 

within 60 days of sample collection. This window was 

chosen to focus on acute and earlier convalescent 

immune responses, while excluding later time points in 

which long-term immune remodeling, recovery 

heterogeneity, and treatment effects introduce sub-

stantial confounding. Furthermore, we limited our 
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analysis to cells processed with the Chromium Single 

Cell 5’ V2 kit. 

 

The Wang et al. (2024) dataset included fourteen 

donors, eight of whom had HIV. Of the eight 

individuals with HIV, seven are actively treated with 

ART. The dataset contained 262,818 PBMCs from 

these donors generated using the Chromium 5′ Single 

Cell Gene Expression system from 10X Genomics. 

 

Data processing 

 

All datasets were filtered to remove cells with high 

mitochondrial reads and low transcript counts (<2000 

reads). The original Terekhova et al. (2023) pre-

processing pipeline also removed doublets and 

multiplets based on total UMI distributions and 

Scrublet-derived scores; therefore, we did not apply an 

additional doublet-calling step in our downstream 

analyses. Datasets were then processed using the Seurat 

[56] pipeline, which included NormalizeData, ScaleData, 

FindVariableFeatures, RunPCA, FindNeighbors, 

FindClusters, and RunUMAP functions to identify cell 

types. For the Terekhova et al. (2023) dataset, donor-

level batch correction was performed using Harmony-

based integration in Seurat prior to training/testing split, 

ensuring that cell-type clustering was not driven by 

batch effects. For datasets including other peripheral 

blood mononuclear cell subpopulations, only T cells were 

retained. The original Terekhova et al. (2023) dataset 

used for model training was filtered to 2,947 genes that 

showed at least a weak correlation with age (|R| >0.01). 

This filtering was applied to minimize technical noise 

and ensure consistent input features for both cell-type  

and age-prediction models. Canonical lineage-defining 

markers were retained above this threshold. 

 

Cell type annotation 

 

Cell type annotation was conducted using the ‘Seurat’ 

package (v5.1.0) in R. Gene expression matrices were 

loaded and aligned with the metadata. T cell subsets 

were re-annotated for more specificity and clustered 

into six T cell subsets. Cell clustering was performed 

with the ‘FindNeighbors’ and ‘FindClusters’ functions 

from Seurat (34) followed by visualization using 

UMAP. Clusters were manually annotated and renamed 

based on marker gene (CD8A, CD4, CCR7, GZMB, 

GNLY, FOXP3) expression. The re-labeled T cell 

subsets were incorporated into the metadata and used 

for training the cell type prediction model. 

 

Cell type and age prediction models 

 

The dataset was split into training and test sets based on 

donor ID, with 80% of the donor IDs assigned to the 

training dataset and 20% assigned to the test dataset. 

For cell type prediction, we trained a multinomial 

logistic regression model using the ‘glmnet’ package in 

R (cv.glmnet, family = “multinomial”). The model was 

fit on the full set of 2,947 age-correlated genes (|R| 

>0.01) plus a binary sex covariate, with all predictors 

internally standardized by glmnet and λ selected by 

cross-validation. 

 

For age prediction, we built six independent models—

one for each T cell subset (naïve CD4, memory CD4, 

naïve CD8, effector CD8, memory CD8, and regulatory 

T cells)—using the Terekhova et al. (2023) data. For 

each subset, we used ‘cv.glmnet’ with an elastic net 

penalty (α = 0.5) to predict donor age from the expression 

of the same 2,947 genes. From this initial model, we 

extracted all non-zero coefficients and then refitted a 

second ‘cv.glmnet’ model using only these selected 

features. The resulting refit models were saved and 

applied to all external datasets for age prediction [57]. 

 

To control for differences in donor chronological age 

and cell type composition when comparing disease 

conditions, we computed age residuals by regressing 

predicted transcriptomic age on chronological age and 

predicted cell type. All disease-associated aging 

analyses in the manuscript use these residuals, which 

represent cell-intrinsic transcriptional aging independent 

of donor age. Accuracy was defined using the mean 

absolute error (MAE), with MAE ≤12 years considered 

strong, 12–15 years moderate, and >15 years weak. For 

correlation, we classify R ≥0.70 as strong, 0.40–0.70 as 

moderate, and <0.40 as weak. 

 

Enrichment analyses 

 

Gene ontology (GO) term enrichment analysis was 

performed on shared genes using the ‘enrichGO’ 

function from the ‘clusterProfiler’ package in R [58]. A 

chromosome visualization plot was created using the 

‘karyoploteR’ package in R where the gene locations 

were plotted on a karyoplot [59]. Genes included were 

those used as coefficients across all six T cell models. 

 

Transcript length estimation 

 

Gene-level transcript lengths were obtained from Ensembl 

(GRCh38) using the R package biomaRt. For each gene, 

we defined a representative transcript length as the 

maximum annotated length across all isoforms. For each 

cell, raw counts were scaled to a fixed library size (10,000 

counts per cell; CPM-like normalization), and the 

expression-weighted mean transcript length was 
calculated as the column-sum of (scaled expression × 

gene length). These per-cell means were then summarized 

per donor and cell type for downstream analyses. 



www.aging-us.com 14 AGING 

Statistics 

 

To determine the statistical significance of the 

differences in residuals between conditions, pairwise t-

tests were performed with Bonferroni correction to 

adjust for number of cell types analyzed. ANCOVA 

tests were conducted to measure the differences in cell 

proportions while accounting for the confounding effect 

of age by adjusting for age-related variability. The ‘aov’ 

function was used from the ‘stats’ package in R. 

Additionally, the ‘emmeans’ package provided adjusted 

mean estimates and p-values to compare between 

conditions [60]. The ‘ggplot2’ package was utilized for 

graphing. 

 

For gene expression, residual, and cell proportion 

analyses, cells were sampled to maintain the same 

number of cells per donor. ANCOVA was used to 

compare proportions between conditions (Control vs. 

HIV) while adjusting for age. Statistical analysis was 

performed using ‘emmeans’ [60] for pairwise 

comparisons and car for variance inflation factor (VIF) 

calculations. Partial correlations were calculated to 

control for confounding factors (donor age or condition) 

for gene expression analysis using the ‘ppcor’ package. 

 

Data availability 

 

The Terekhova et al. (2023) data were available through 

the Synapse platform (syn49637038). The Ren et al. 

(2021) data were obtained on the Gene Expression 

Omnibus (GSE158055). The Wang et al. (2024) dataset 

was accessed from the Gene Expression Omnibus 

(GSE243905). 

 

Code availability 

 

The code used to build the model and perform all 

analyses will be publicly available on GitHub prior to 

publication. The primary programming languages used 

were R and Python with freely available software 

packages. All computational work was performed on 

Amazon Web Services (AWS) Elastic Compute Cloud 

(EC2) instances. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Chronological age distributions of COVID-19 and control donors. A donor-level comparison of 

chronological ages for patients with COVID-19 and healthy controls from the Ren et al. dataset after applying quality filters. Each point 
represents one donor, with boxplots summarizing the age distribution within each group. COVID-19 donors were significantly older than 
controls (p = 6.44 × 10−⁵ ***), confirming that chronological age differs between groups. 
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Supplementary Figure 2. Gene contributions across T cell type-specific age prediction models. (A–F) Donut plots illustrating the 
top ten most influential gene coefficients for each T cell type–specific age prediction model: (A) naïve cytotoxic, (B) naïve helper, (C) 
memory cytotoxic, (D) memory helper, (E) effector cytotoxic, and (F) regulatory. Upregulated genes are shown in green and downregulated 
genes in blue. Gene size reflects the relative magnitude of the model coefficient, highlighting the primary drivers of age prediction within 
each T cell subset. 
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Supplementary Figure 3. Predictive genes localized to regions of the genome. Karyoplot mapping chromosomal locations of shared 

predictive genes identifies dense regions on chromosomes 1 and 14. 
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Supplementary Figure 4. Distribution of model weights across genes. (A–F) Cumulative distribution functions showing how age 

prediction model weights are distributed across all genes for each T cell subset: (A) naïve cytotoxic, (B) memory cytotoxic, (C) effector 
cytotoxic, (D) naïve helper, (E) memory helper, and (F) regulatory. Each curve represents the cumulative proportion of total model weight 
explained as genes are ranked by absolute coefficient magnitude, illustrating differences in weight concentration across T cell–specific 
aging models. 
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Supplementary Figure 5. Ribosomal gene coefficients across T cell subsets. Heatmap depicting the age prediction coefficients 

assigned to ribosomal genes for each T cell subset in the Terekhova et al. (2023) dataset. The heatmap reveals patterns of ribosomal gene 
contributions to age prediction across different T cell types. 
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Supplementary Figure 6. Quantified genes for T cell age prediction models. The number of genes unique to each of the six T cell 

subset age prediction models after training. 

 

 


