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ABSTRACT

Biomarkers of aging offer insights into how diseases and interventions affect biological systems. However, most
current biomarkers are based on bulk cell measurements, making it difficult to distinguish between changes
driven by shifts in cell type composition (systemic effects) versus intrinsic changes within individual cells. To
address this, we used single-cell RNA sequencing to analyze aging-related changes at both the cellular and bulk
levels. We developed Tictock (T immune cell transcriptomic clock), a single-cell transcriptomic clock capable of
predicting age and cell type across six human T cell subsets. Applying Tictock, we found that acute COVID-19 is
associated with increased proportions of CD8+ cytotoxic T cells, whereas T cell composition remains stable in
people with HIV on antiretroviral therapy (HIV+ART). Both COVID-19 and HIV+ART are linked to an increase in
transcriptomic age, specifically within naive CD8+ T cells. Gene Ontology enrichment of 209 genes shared across
six clock models identified common pathways including the cytosolic small ribosomal subunit, TNF receptor
binding, and cytosolic ribosome components. A correlation was also observed between aging and mean
transcript length. These findings underscore the promise of single-cell transcriptomic biomarkers to disentangle
the systemic and cell-intrinsic components of immune aging and to measure immune aging.

INTRODUCTION interpretable tools that capture this complexity is critical
for the development of interventions to improve human
Aging is a complex, systemic process that involves healthspan and lifespan.
changes in cellular function, cell composition, tissue

organization, and intercellular communication networks Early efforts to design accurate aging biomarkers, often

[1-3]. Developing biomarkers capable of measuring
aging on each level of organization is critical for
understanding how molecular and physiological
changes occur across the human lifespan. Although
numerous tools have been designed to quantify aging,
most existing biomarkers rely on bulk analysis of cell
populations and therefore focus on a single level of
organization. This limitation hampers our ability to
distinguish the relative roles of cell population changes
and cell-intrinsic aging processes. Creating novel

referred to as “clocks,” focused on single molecular
measurements. The first clocks were identified by
Hannum and Horvath and colleagues based on changes
in DNA methylation in 2013 [4, 5]. These clocks
predicted biological age using CpG markers derived
from DNA methylation data. Over time, clocks were
developed based on bulk transcriptomics [6],
proteomics [7, 8], ATAC-Seq [9], and other molecular
measurements. These advancements have led to new
methods for understanding aging at different levels of
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resolution, each providing unique insights into the aging
process. However, the interpretation of these bio-
markers can be challenging due to their reliance on
measurements derived from a bulk collection of cells or
plasma.

To solve this challenge, clocks based on single-cell
measurements have been developed. In 2021, Trapp
etal. developed a clock based on single cell
methylation data [10]. In 2022, Buckley et al. used
single-cell transcriptomic profiling data to predict
chronological and biological age [11]. Using
transcriptomics instead of DNA methylation identifies
markers that are easier to link to changes in specific
proteins and pathways, thereby providing novel
insights into changes that occur with biological age [12,
13]. Furthermore, cell-type specific effects of aging and
rejuvenation can be measured. As an example, Yu et al.
(2023) used a technical innovation on single-cell
transcriptomic data to derive novel insights regarding
the effect of exercise on neuronal rejuvenation [14].
Similarly, single-cell chromatin measurements based
on imaging have recently been developed to quantify
age reversal by partial reprogramming [15]. This
development enables scientists to explore how
individual cells within an organism age differently,
contributing to our understanding of cellular hetero-
geneity in aging.

Concurrently, several groups developed biomarkers that
predict aging using unique clinical measurements. As an
example, Levine et al. (2018) used methylation data to
predict several key healthspan measurements. GrimAge
used a similar technique to predict time-to-death,
time-to-coronary heart disease, and time-to-cancer [16,
17]. More recently, clocks have been developed to
predict the aging of individual organs [18] and
physiological systems [19]. These measurements allow
for better understanding of systemic changes directly
relevant to human health.

Several studies have integrated aging at several levels of
resolution simultaneously, frequently by employing
multi-omics. In the context of human aging, these
measurements have led to improved clinical predictions
[20] and the discovery of age-associated chemokines
[21]. Other groups have combined multi-omics with
longitudinal data, enabling a deeper understanding of
the dynamics of human aging [2, 22]. Combining
measurements of systemic aging with advancements in
single-cell biomarkers has the potential for unlocking a
deeper understanding of the interplay between extrinsic
and intrinsic aging.

Simultaneous profiling of intrinsic and systemic aging
has particular importance in the context of the immune

system [23]. Due to both intrinsic (i.e., cell auto-
nomous) and extrinsic factors (e.g. thymic involution),
the naive CD8+ and CD4+ T cell compartments
decline over time [24], both in size and in quality. This
decline impairs the ability of the organism to mount
immune responses during aging and to fight novel
infections [25]. Thymic involution leads to changes in
cell-type composition via a decline in naive CD4 and
CD8 T cells and a concomitant increase in memory
and effector T cells [23, 26-28]. This complex
interplay of cellular and systemic aging is important,
but our ability to assess how each of these
independently contributes to aging-associated pathology
is presently limited.

Here, we use a previously published single-cell
transcriptomic dataset [23] to generate predictors of T
cell composition and individual cellular aging. We
demonstrate that our cell type predictor can identify and
quantify six canonical T cell subsets (naive CDSs,
central memory CDSs, effector memory CDS8s, naive
CD4s, central memory CD4s, and regulatory T cells)
and their changes in relative abundance during aging.
Using this cell type predictor, we generated six
individual age predictors for each predicted T cell
subtype. We then applied our joint cell type and age
prediction models, collectively known as Tictock (T
immune cell transcriptomic clock), to two datasets —
one of acute COVID and another of HIV-infected
individuals with long-term ART treatment. Similar to
what we have shown previously using epigenetic data
[29], we find that acute COVID is associated with
changes in cell type composition. We further show that
both diseases are associated with intrinsic accelerated
aging in naive CD8 T cells. Lastly, we investigate the
mechanistic drivers of our age predictors and identify
associations with ribosomal gene expression and mean
cell transcript length.

To provide a unified framework for both systemic and
cell-intrinsic immune aging, we integrated two
complementary predictive models within Tictock. The
first model performs automated cell type classification
of peripheral T cells into six canonical subsets (naive
CDS8, central memory CDS, effector memory CDS,
naive CD4, central memory CD4, and regulatory T
cells) using multinomial logistic regression trained on
marker gene expression profiles. The second model
comprises six independent age-prediction models, each
optimized for one of the identified cell types through
elastic net regression on age-correlated genes.
Together, these models allow joint inference of cell
identity and transcriptomic age from any single-cell
dataset. This dual-layer design enables us to
disentangle compositional (systemic) changes from
intrinsic transcriptional aging within immune cell
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subsets and to apply the integrated model to disease
contexts such as COVID-19 and HIV. Because each
age model is trained and applied within a single T cell
lineage, predicted ages should not be interpreted as
global PBMC-level chronological age estimates.
Instead, Tictock is intended to quantify relative, cell-
intrinsic aging states within defined T cell subsets,
enabling comparisons across conditions and disease
contexts.

RESULTS

Automated prediction of cell type recapitulates
known changes in T cell composition with age

To simultaneously profile changes in blood cell type
composition and intrinsic age-associated changes, we
have developed separate models to build Tictock: a cell
type prediction model and six age prediction models for
each cell type (naive CDS8s, central memory CDSs,
effector memory CDSs, naive CD4s, central memory
CD4s, and regulatory T cells). Automating cell type
prediction allows for less bias during cellular age
prediction. As the basis for our model, we use a
previously published scRNA-Seq dataset of two million
peripheral blood mononuclear cells (PBMCs) from 166
individuals [23]. As noise can significantly affect
accurate cell type or age prediction, we filter our
analysis to include only genes showing at least a weak
correlation with age (|R| >0.01). This step reduces
technical noise and standardizes the gene set across
models while retaining highly expressed canonical T-
cell markers such as CD4, CD8A, CCR7, GZMB,
GNLY, and FOXP3. However, we acknowledge that
this approach may exclude genes whose expression
changes non-linearly with age, as reported in recent
studies [2] (Figure 1A).

The dataset is next split on a per-donor basis into a
training subset (80%) used for building the model and a
test subset (20%) for determining its accuracy and
precision. We use an additional external dataset [30]
to measure the ability of Tictock to make accurate
predictions in other cohorts. To determine cell
prediction accuracy and generate initial labels, we use
K-means clustering to split the cells into biologically
relevant groups and then label these groups based on the
expression levels of six cell surface markers (CD4,
CD8A, CCR7, GZMB, GNLY, and FOXP3). Cell
subsets are identified based on the following positive
markers: naive CD4 helper T cells (CD4, CCR7),
central memory CD4 helper T cells (CD4), CDS8 naive
cytotoxic T cells (CD8A, CCR7), CDS8 effector
cytotoxic T cells (CD8A, GZMB, GNLY), CDS§
memory cytotoxic T cells (CD8A), and regulatory T
cells (FOXP3, CD4).

We validate our model by first identifying whether
previously reported aging-associated trends could be
recapitulated. In agreement with previously identified
and reported changes [28], we identify an increase in
the CD4/CDS8 ratio with age (p = .0003) (Figure 1B).
Within the six cell types we measured, we observe a
significant decrease (p < .0001) in the proportion of
CD8 naive cytotoxic cells (Figure 1C) with age, which
is also in accordance with previous literature [31].

We further test our cell type prediction model by
comparing predicted cell types to those we manually
annotated. In both the training (Figure 1D) (97%
accuracy; .98 F1 score) and test (Figure 1E) (97%
accuracy; .97 F1 score) datasets, the predicted cell types
closely match the manually annotated clusters.
Furthermore, there is accordance with cell types as
identified by canonical cell markers CD8A, CD4,
CCR7, GZMB, GNLY, and FOXP3. To further assess
generalizability, we test our cell type prediction model
using an external dataset of CD4+ T cells [30]. We
identify strong accordance (83% accuracy; .80 F1 score)
between the manual annotation and assumed clusters
based on canonical cell markers (Figure 1F).

Cell type-dependent models predict age across a
variety of cell types

After validating our cell type prediction model, we next
developed six independent age prediction models—one
for each of the six predicted cell types (naive CDSs,
central memory CDSs, effector memory CDS8s, naive
CD4s, central memory CD4s, and regulatory T cells).
We employ elastic net regression as our modeling
approach, which enables us to focus on the most
informative features while keeping our models both
straightforward and robust. We tune the parameters
through cross-validation to ensure that the models could
capture the subtle signals of aging. Each model provides
a predicted age for individual cells, which we compare
to the donors’ chronological ages at both the single-cell
level and as an average per donor. This comprehensive
approach not only validates our predictions but also
enhances our understanding of how these immune cell
types mirror the aging process, ultimately linking
cellular signatures to overall donor age.

For the training set, we observe a strong correlation
between the predicted age of a cell and chronological
age (R = .56, mean absolute error (MAE) = 11.9, p < 1
x 1071%), particularly when the average age of all cells
per donor is calculated (R = .84, MAE =114, p <1 x
1071%) (Figure 2A). As expected for a lineage-restricted
aging clock, donor-level averaged predictions occupy a
narrower age range than chronological age, reflecting
shared transcriptional constraints within each T cell
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lineage rather than a limitation of model performance. increases when we compute the average age of all cells

Similarly, we observe a moderate correlation in the test per donor (R = .8, MAE = 11.5, p < 1 x 107'?) (Figure
set (R = .49, MAE = 13.5, p < 1 x 1071%), which also 2B). We apply Tictock to the Yasumizu et al. (2024)
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Figure 1. Cell type predictions recapitulate known effects of aging on the immune system. (A) Overview of the study design,
including the development of cell type prediction and age prediction models using single-cell transcriptomics. The workflow highlights data
preprocessing, clustering, annotation, and model training. (B) Cell type proportion changes in individuals from different age groups. (C)
CD4/CDS ratio increases with age, normalized to individuals aged 18-35. (D) Comparison of predicted versus manually annotated cell types
in the training dataset. Cell annotations were based on canonical markers: CD4, CD8A, CCR7, GZMB, GNLY, and FOXP3. Predicted clusters
align closely with ground truth annotations, demonstrating the accuracy of the model. (E) Validation of the model in the test dataset,
showing high concordance between predicted and manually annotated clusters with quantitative accuracy metrics (97% accuracy; F1 score
=0.97). (F) External validation using the Yasumizu et al. (2024) dataset demonstrates robustness across datasets (83% accuracy; F1 score =
0.80). Statistical significance is indicated: *** Bonferroni-corrected p-value less than or equal to .001, * Bonferroni-corrected P-value less
than or equal to .05, # Bonferroni-corrected P-value less than or equal to .1.
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dataset and observe a weaker but still significant
correlation on a cell level (R= .38, MAE=15.2,p<1 x
1071%), and when cells are averaged per each donor (R =
.78, MAE = 6.5, p = .001) (Figure 2C). Because Tictock
consists of six cell-type—specific clocks trained within
individual T cell subsets, the donor-level predicted
ages occupy a narrower absolute range than the full
chronological span of the cohort. This reflects the
restricted transcriptional variation that is available
within a single immune lineage and is expected for
lineage-specific single-cell models [28, 32]. In this
context, the primary output of interest is the relationship
between predicted and chronological age, particularly
after averaging predictions at the donor level, rather
than the absolute magnitude of the predicted values
[11]. Consistent with this, age-differential calculations
showed donor-level ranges of approximately —25 to +23
years in the Terekhova et al. training cohort, —28 to +19
years in the Terekhova et al. test cohort, —10 to +29

years in the Yasumizu et al. dataset, —21 to +37 years in
Ren et al. (COVID-19), and —15 to +21 years in Wang
et al. (HIV+ART).

We also note that predictions at the single-cell level
exhibit a wide dispersion. This reflects the sparsity and
stochastic variability inherent to sScRNA-seq data, where
each cell captures only a fraction of its true trans-
criptome [33, 34]. Such dispersion is a well-recognized
feature of single-cell predictive modeling. As in other
single-cell applications, averaging predictions at the
donor level substantially reduces this variability and
yields stable and biologically meaningful associations
with chronological age.

To determine whether each of these age predictors is
identifying unique cell type-specific aging patterns, we
test whether they are correlated with each other. In
general, the individual age predictors have moderate

A Training Set B Test Set
80 80! 0
5 3 »
S0 S0 °
> < [ ] 0. ° st ¢ °
B 40 B40 i 0
2 2
=] b=}
g 2
[ -
0 0 p<1x107 0 0
p<1x107 R: .56 p~1x10" p<1x107
R: .56 MAE: 11.9 R:.79 R: .49
MAE: 11.9 MAE: 11.5 MAE: 13.5
40 60 80 40 60 80 40 60 80 40 60 80
Age Age Age Age
C Vvalidation Set D
Regulatory (5] @ [ ] D
Correlation (R)
e Jtotoxic ® 04
80 80 Memory Cytotoxic . D @ ® . &) . 06
@ os
Effector Cytotoxic [ J ® ® @
8 o 1 @ o
é 40 /'/// 40 //'//// Naive Cytotoxic| @ e O ® ® Error
Bl
-12.
-03 Naive Helper . . . [ ] [ ) ® -1 gg
A -17.5
-20.0
a 3 Memory Helper . ‘ [ (] <] .
p=.01 p<1x107 Y & o ) o
R: .66 R:.38 Q\,yf & & & & \)\o‘*
MAE: 12.1 MAE: 15.6 o) & C\ C‘\ (ﬁ‘ Q-""e?
— & <® R & &
40 60 80 40 60 80 W < & &
Age Age &

Figure 2. Cell-type-specific age prediction models predict chronological age with high accuracy and reveal unique aging
signatures. (A) Training dataset results (n = 116 donors) show strong correlations between predicted and chronological age at the donor
level (left; R = 0.84, MAE = 11.4 years, p < 1 x 10716) and at the cell level (right; R = 0.56, MAE = 11.9 years, p < 1 x 10716). (B) Test dataset
results (n = 50 donors) show strong correlations at the donor level (left; R = 0.79, MAE = 11.5 years, p < 1 x 10712) and moderate correlations
at the cell level (right; R = 0.49, MAE = 13.5 years, p < 1 x 107%). (C) External validation using the Yasumizu et al. (2024) dataset (n = 13
donors) reveals strong correlations at the donor level (R =0.78, MAE = 6.5 years, p = 0.001) and moderate-to-low correlations at the cell level
(R =0.38, MAE = 15.2 years, p < 1 x 10716). (D) Pairwise correlations between age predictors for each T cell subset highlight both shared and
cell-type-specific aging signatures, with relative errors shown for each subset clock compared to donor chronological age on the test dataset.
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(R ~ .5) age prediction correlations with one another,
suggesting they measure both a shared and cell-type
dependent aging signature (Figure 2D).

COVID-19 impacts immune aging through both cell
composition and intrinsic aging mechanisms

Aging and diseases such as COVID-19 have proven to
have significant impacts on T cell composition and
immune function [35]. To test whether acute COVID-19
impacts cell type composition, cellular aging, or both,
we use an external COVID-19 dataset made up of 171
COVID-19 infected and 25 healthy individuals [35],
filtering on individuals who had COVID-19 within 60

days of sample collection. To ensure biological
interpretability, we restricted the COVID-19 cohort to
donors sampled within 60 days of symptom onset,
which captures acute and early convalescent immune
perturbations while avoiding later post-infectious time
points that show substantial heterogeneity in immune
recovery.

Applying our cell type prediction model to this dataset
(Figure 3A), we find identification of distinct T cell
subsets to be in accordance with cell markers (Figure
3B). Next, using the age prediction models, we evaluate
the predicted ages of individual cells and the predicted
ages of donors. We find that Tictock achieved moderate
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Figure 3. Acute COVID-19 impacts T cell composition, cellular aging, and gene expression through both systemic and
intrinsic mechanisms. (A) Predicted cell types using the cell type prediction model (n = 15 controls; n = 48 donors with COVID-19). (B)
Heatmap of canonical marker expression across predicted subsets validates the cell type predictions. Markers include CD8A, CD4, CCR7,
GZMB, GNLY, and FOXP3. (C) Predicted age of individual T cells versus chronological age of donors shows a low correlation (R = 0.26, MAE =
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accuracy on individual cells (R = .26, MAE = 16, p < 1
x 1071%) (Figure 3C) and cell ages averaged per donor
(R = 0.66, MAE = 14, p < 1 x 10719 (Figure 3D).

To determine whether acute COVID-19 infection
affects cell type composition, we analyze predicted
proportions across T-cell subsets. We observe sig-
nificant decreases in predicted proportions of naive
CDS (Figure 3E; p = .03) and naive CD4 cells (Figure
3H; p =.03). We observe weaker changes in cell type
proportions for other cell types, including CD8 central
memory cells (Figure 3F, p = .21), CD8 effector cells
(Figure 3G, p = .3), CD4 central memory cells (Figure
31, p = .83), and regulatory T cells (Figure 3J, p = .08).
As naive cells make up approximately 30% of cells in
the patient samples, lowering their relative proportion is
a significant immunological impact.

Next, we test whether predicted cellular ages are
affected by COVID-19. Because COVID-19 donors
were older than controls (Supplementary Figure 1), all
disease-associated effects were evaluated using age
residuals, which remove chronological age from the
predicted transcriptomic age. We observe significant
age acceleration in naive CD8 (Figure 3K, p = le %) and
CD4 memory (Figure 30, p = .02) cells. Naive CD8 T
cells showed substantial age acceleration in COVID-19
(mean age residual difference = 3.6 years, 95% CI (2.1,
5.1), Cohen’s d = 1.15), while memory CD4 T cells
displayed a more moderate shift (mean difference =~ 2.8
years, 95% CI (0.17, 5.41), Cohen’s d = 0.63). In
contrast, naive CD4 helper cells do not show evidence
of intrinsic age acceleration (Figure 3N, p = le”’) as
their mean residual is slightly negative in COVID-19
donors. We did not see a significant shift in predicted
age for CD8 memory (Figure 3L, p = .2), CD8 effector
(Figure 3M, p = .98), or regulatory (Figure 3P, p = .07)
T cells. Finally, we examine whether aging and
COVID-19 share a transcriptional signature between
aging and COVID-19 in naive CDS8 and effector CDS§
cells. There is only a slight negative (Figure 3Q, R =
—.05, p=.002) and a slight positive (Figure 3R, R = .16,
p <1x1071%) correlation between COVID-19 and aging
in naive CD8 and effector CD8 cells, respectively.

Long-lasting ART treatment and HIV impacts aging
through cell-intrinsic mechanisms

HIV has been previously reported to accelerate aging
[36-38]. We were interested in testing whether this
accelerated aging is due to cell-intrinsic or systemic
effects. After validation of Tictock on the Ren et al.
(2021) COVID-19 dataset and exploring the effects of T
cell changes with age and disease, we used another
external dataset comprised of patients infected with
human immunodeficiency virus (HIV) on antiretroviral

therapy and healthy controls [39]. Of these donors, 7
had HIV and were on antiretroviral therapy (ART), 1
had HIV but was off ART for the first visit, and 6
donors were healthy.

We apply our cell type prediction model to this dataset,
successfully identifying and clustering the six distinct T
cell types (Figure 4A) and finding the clusters to be in
accordance with known cell markers (Figure 4B). Next,
we use the age prediction models on this HIV dataset to
predict the age of individual cells (Figure 4C) and
donors (Figure 4D). We observe a low accuracy for age
prediction comparing predicted cell age to donor age (R
=.14, MAE = 13.6, p < 1 x 107'®) but a strong accuracy
when cell age predictions are averaged per donor and
compared to chronological age (R = 0.66, MAE = 12.6,
p = .002). Age differential calculations showed that
donor-level predicted ages are compressed relative to
chronological age. Therefore, all disease comparisons
use age residuals to correct this bias. Unlike the COVID-
19 dataset, we do not observe significant changes in cell
type proportions after adjusting for multiple comparisons
(Figure 4E-4J). To assess differences in predicted age
between HIV + ART donors compared to healthy
controls, we perform an analysis of the age residuals for
each cell type. We identify significantly accelerated ages
in HIV+ patients in the naive CD8 population (Figure
4K, p = .01), while all other T cell subsets show no
significant age changes (Figure 4L—4P). In HIV+ART
donors, naive CD8 T cells also exhibited increased
transcriptomic age (mean age residual difference =~ 5.4
years, 95% CI (0.95, 9.85), Cohen’s d = 1.48).

Similarly to the COVID dataset, we examine
transcriptional signatures of HIV+ART relative to aging.
In naive CD8 cells (Figure 4Q), we observe a strikingly
strong correspondence between genes that have a partial
correlation with aging and those that have a partial
correlation with HIV+FART (R = .7, p < 1 x 10719),
Interestingly, many of the genes most strongly correlated
with both HIV+ART and aging have been previously
characterized to be a signature of HIV, such as CD69
[40]. We also find a weaker negative correlation
between genes associated with aging and HIV in CD8
effector cells (Figure 4R, R =—.29, p <1 x 107'9),

Biological insights into aging using the six T cell
type-dependent model coefficients

One of the distinct advantages of using scRNA-Seq data
or transcriptomics in comparison to other measurements
of aging is the proximity to readily identifiable changes
in biological function. In other clocks, such as those
built using DNA methylation data, the interpretability of
the clocks to gain information about the biology of
aging is often limited [41].

www.aging-us.com

AGING



We focus on the subset of genes used by each age
prediction model to conduct a broad exploratory analysis
(Supplementary Figure 2). Accordingly, we perform a
GO enrichment of the 209 shared genes across all six T
cell age prediction models, revealing significant
enrichment in ribosomal pathways, cell-substrate
junction, focal adhesion, and cytosolic processes (Figure
5A). Mapping these shared predictive genes to their
genomic locations revealed non-random clustering, with
particularly dense regions on chromosomes 1 and 14
(Supplementary Figure 3). Next, we perform a deeper
GO enrichment analysis of the individual T cell models.
This is based on the total gene set specific to that
individual model, weighting genes by their relative

contribution (Figure 5B). This allows us to determine the
functional significance of genes within each model
(Supplementary Figure 4), highlighting that both naive
cytotoxic T cells and naive helper T cells show
particularly high involvement of ribosomal pathways.

Building on our earlier analyses, we delve deeper into
the functional associations underlying our enriched GO
terms. We present a bar plot that ranks the top four GO
terms by adjusted p-values and highlights their top four
contributing genes, revealing both shared and distinct
functional signatures among the gene sets (Figure 5C).
Recognizing the critical role of ribosomal genes, we
further examine their expression dynamics with age
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cell types using the cell type prediction model (n = 6 controls; n = 8 donors with HIV). (B) Heatmap of canonical marker expression across
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across different cell types (Figure 5D and
Supplementary Figure 5). While most ribosomal genes
exhibit a consistent age-associated pattern across all six
cell types, exceptions like RPS2 suggest the presence of
unique regulatory mechanisms.

Due to increasing evidence that defective transcription
of longer transcripts is associated with aging [42, 43],
we sought to identify whether such defects could be
identified in the immune system during human aging
using our single-cell transcriptional biomarker. We find
that older individuals had, on average, shorter transcript
lengths in every T cell subset except for naive CD4 T
cells and memory CDS8 T cells (Figure 6A—6F). To test
whether shorter transcript lengths are associated with an
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accelerated predicted age, we estimate transcript lengths
in cells in the top and bottom deciles of predicted age
relative to their chronological age. Interestingly, in
memory helper cells and regulatory T cells, we find that
donors with longer mean cellular transcript lengths are
predicted to have a younger age relative to their
chronological age (Figure 6G—6L). This is in agreement
with previous reports linking mean cellular transcript
length with aging [42, 43].

DISCUSSION
The immune system ages at many distinct levels

including molecular, cellular, compartmental, and
systemic [44]. At a molecular level, for example, aging
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Figure 5. Gene ontology and chromosomal mapping highlight ribosomal pathways as key drivers of transcriptomic aging
predictions. (A) GO term enrichment analysis of genes shared across all six T cell age prediction models reveals significant enrichment in
ribosomal pathways, cell-substrate junction, focal adhesion, and cytosolic processes. The dashed line marks the significance threshold
(-log10(p) = 1.3). (B) A dotplot for the GO enrichment analysis of the genes used in every model (using the relative weights of those genes in
relation to the rest of the genes used in the model). (C) A bar plot displaying the top four most enriched GO terms ranked by adjusted p-
value. For each GO term, the top four contributing genes were identified and compared across all enrichment terms, highlighting shared
and unique functional associations among the gene sets. (D) Heatmap showing correlations of individual ribosomal gene expression with
aging across T cell subsets, highlighting conserved and subset-specific trends.
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CDS8 T cells lose chromatin accessibility at select gene
promoters, leading to reduced capacity for oxidative
phosphorylation [32, 45]. At a cellular level, T cells
progressively accumulate dysfunctional mitochondria
[46] and see receptor signaling pathways become
dysregulated [47]. At a compartment level, thymic

involution leads to a gradual reduction in naive T cell
number and diversity [48]. At a systemic level, senescent
cells in the immune system secrete senescence-
associated secretory phenotype (SASP) [49] with toxic
bystander effects and clonal expansion of unique
immune cell clones increases the risk of leukemia [50].
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Tictock is not intended to function as a global PBMC-
level chronological age predictor, but rather as a
lineage-restricted, cell-type—specific aging clock that
captures relative intrinsic aging states within defined T
cell populations. Accordingly, compressed donor-level
age ranges and broad single-cell distributions reflect
biological constraints and heterogeneity within T cell
lineages rather than reduced predictive validity.

Due to this complexity, it is critical to study how aging
affects multiple levels of immune organization. It is
equally important to study how specific diseases may
affect immune aging and the normal functioning of the
immune system. Both acute COVID-19 infection [51]
and HIV [37] have been reported to accelerate
epigenetic aging in immune cells, and antiretroviral
therapy may slow it [38]. However, without a precise
understanding of how each disease influences specific
aspects of immune aging, it is difficult to develop
targeted restorative therapies. Deciphering the interplay
between different levels of immune aging is also
important for a full understanding of age-associated T
cell dysfunction.

By developing age prediction models for each of six
distinct T cell subsets, we can predict the cell type and
age of individual T cells using single-cell transcriptomic
data. We opted to automate cell type prediction in
addition to age prediction to increase the robustness and
reproducibility of our findings. Our results indicate that
acute COVID-19 is both a cell-intrinsic and systemic
immune aging phenomenon, while long-term HIV
infection treated with ART shows an accelerated
intrinsic aging signature in naive CD8 T cells. Although
our study evaluates COVID-19 as a unified clinical
category, severity-stratified analyses may be informa-
tive in larger datasets [12], and we identify this as an
avenue for future work. We further find that shorter
mean transcript length is a feature of aging lymphocytes
and is tracked by our transcriptomic clock.

Because Tictock generates six independent age models
trained within individual T cell subsets, predicted
donor-level ages naturally exhibit a compressed
dynamic range relative to chronological age. This
reflects limited within-lineage transcriptional variation
and the inherent sparsity of single-cell transcriptomes,
rather than a loss of biological signal. Accordingly,
Tictock is optimized for resolving cell-type—specific
intrinsic aging and separating intrinsic from com-
positional effects.

To construct robust age prediction models for distinct T
cell subsets, we first filtered genes to retain only those
with a correlation with age greater than 0.01 or less
than —0.01, yielding 2,947 candidate genes. These

genes were then used to train models for six different T
cell types. Notably, 209 genes were common across all
models, yet each cell type exhibited a unique genetic
signature—ranging from 1,124 unique genes in the
regulatory T cell model and 2,188 in the memory
helper T cell model (Supplementary Figure 6). This
gene overlaps not only points to shared molecular
mechanisms of aging, but also suggests that cell type-
specific processes contribute uniquely to immune
aging. This may reflect a core aging signature
conserved between T cell subsets, though we are
limited in our interpretation due to the sparseness of
single-cell transcriptomics data.

It is also somewhat surprising that the T cell type most
associated with accelerated aging in both acute COVID-
19 and long-term HIV infection is naive CD8s. Our
findings are in accordance with previous literature
showing a short-term loss of naive CD8s in acute
COVID-19 [52], but the current knowledge on cell-
intrinsic dysfunction of naive CDS8s in either disease
context is limited. Lastly, we found that several
ribosomal genes that are upregulated during aging are
downregulated in the context of HIV + ART. This is in
agreement with the fact that several genes down-
regulated during HIV infection are involved in
ribosomal biogenesis [53].

Mechanistically, naive CD8 T cells appear particularly
vulnerable to aging-associated decline due to a con-
vergence of developmental, antigenic, and epigenetic
factors. With advancing age, thymic involution sharply
reduces thymic output, constricting the naive CD8 pool
and skewing the T-cell compartment toward memory
and effector phenotypes [48]. Meanwhile, cumulative
antigenic stimulation across life drives compensatory
homeostatic proliferation of existing naive clones,
resulting in reduced T-cell receptor diversity and the
emergence of senescent, oligoclonal populations [31,
32]. At the molecular level, naive CD8 T cells exhibit
age-related epigenetic remodeling, including altered
DNA methylation and histone modifications that restrict
chromatin accessibility and transcriptional flexibility
[24, 45]. These combined processes erode the capacity
of naive CD8 T cells to preserve a quiescent but
responsive state, rendering them especially sensitive to
both intrinsic transcriptional aging and systemic
inflammatory stressors such as infection or metabolic
imbalance.

Though Tictock shows significant promise, there are
some limitations. Due to the sparse and noisy nature of
single-cell RNA sequencing data, predicting age with an
accuracy similar to that of epigenetic clocks is
challenging. Techniques such as Buckley et al.’s (2023)
bootstrapping method reduce transcriptional variation
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and enhance cell prediction accuracy, though at the cost
of losing single-cell resolution. Importantly, Tictock
was validated using two specific external datasets from
COVID-19 and HIV patients.

While the observations reported here do provide
unique biological insights, both COVID and HIV
represent viral infections and may not capture disease
states in a broader context. Accordingly, the current
validation scope is limited to viral conditions. Future
studies will be needed to test whether Tictock
generalizes to non-viral contexts such as autoimmune
disorders, cancers, and metabolic or inflammatory
diseases, which often involve distinct immune
remodeling processes. Extending the model to these
settings will be essential to establish its robustness and
to assess whether intrinsic and systemic immune aging
signatures behave similarly across diverse pathological
conditions.

Lastly, although we identify and characterize cellular
ribosomal signatures of aging using our novel bio-
marker, we are cognizant of the fact that this family of
genes is expressed at a high level and that, given the
relatively low sensitivity of single-cell sequencing, we
have missed less abundant genes that play a significant
role in immune aging.

During preparation of this manuscript, multiple reports
were released complementing findings described here.
Another group developed a single-cell transcriptomic
clock for human PBMCs, but in contrast to our findings,
found that COVID infection had a rejuvenative effect
on T cells [54]. Another study similarly identified an
opposite aging effect based on single-cell vs. bulk
transcriptomic readouts [55], reinforcing the importance
of understanding the effect of cell type composition on
aging measurements.

Beyond its research applications, Tictock could be
developed into a clinical tool for assessing immune
system health and therapy responsiveness. By
quantifying both cell-intrinsic and compositional aspects
of immune aging, Tictock may help enable immune risk
stratification in older adults or patients with chronic
inflammatory and infectious diseases. Longitudinal
tracking of transcriptomic age at the single-cell
level could also be used to detect therapy-induced
rejuvenation  following interventions such as
vaccination, hematopoietic stem cell transplantation, or
senolytic and metabolic treatments. Ultimately,
integrating single-cell transcriptomic clocks into clinical
monitoring pipelines may provide a powerful means to
evaluate how therapeutic or lifestyle interventions
modulate immune aging trajectories in individual
patients.

In summary, our study provides a novel framework for
understanding immune aging by integrating single-cell
transcriptomic data with automated T cell type and age
prediction. By highlighting both cell-intrinsic and
systemic aspects of immune aging, our approach offers
novel insights into how diseases such as COVID-19 and
HIV differentially impact the immune system at the
cellular level. These findings highlight the potential of
single-cell aging biomarkers to improve the specificity
of aging diagnostics and to inform therapeutic strategies
aimed at mitigating age-related immune decline. Future
research should focus on expanding Tictock to other
cell types and disease conditions to build a more
comprehensive map of aging across the immune system,
and to explore how therapeutic interventions could
potentially reverse or modulate these aging signatures.

METHODS
Human cohorts

The Terekhova et al. (2023) dataset was used to train
the cell type prediction and age prediction models. This
dataset comprised roughly 2 million peripheral blood
mononuclear cells from 317 samples from 166
individuals aged 25-85 years old. All participants were
healthy Caucasian non-obese non-smokers. Blood was
collected between 2018 and 2021 after an overnight
fast. The Chromium Single Cell 5° v2 Reagent Kit from
10x Genomics was used to generate single-cell
transcripts. The Yasumizu et al. (2024) dataset was used
to validate the accuracy of our cell type prediction and
age prediction models and contained 1.8 million CD4+
T cells generated using the Chromium Next GEM
Single Cell 5’ Kit v2.

The Ren et al. (2021) dataset made up of 284 samples
from 171 COVID-19 patients and 25 healthy
individuals served as an external validation dataset for
our model. The samples from COVID-19 patients were
categorized into moderate convalescence (n = 89),
moderate progression (n = 33), severe convalescence (n
= 51) and severe progression (n = 83) according to
severity and stage. They then generated a
transcriptomic dataset of 1.46 million immune cells
using Chromium Single Cell 3° v2 Reagent, Chromium
Single Cell 3* v3 Reagent, Chromium Single Cell 5* v2
Reagent, and Chromium Single Cell V(D)J Reagent
kits from 10x Genomics. For our analysis, we included
only cells derived from patients who had COVID-19
within 60 days of sample collection. This window was
chosen to focus on acute and earlier convalescent
immune responses, while excluding later time points in
which long-term immune remodeling, recovery
heterogeneity, and treatment effects introduce sub-
stantial confounding. Furthermore, we limited our
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analysis to cells processed with the Chromium Single
Cell 5” V2 kit.

The Wang et al. (2024) dataset included fourteen
donors, eight of whom had HIV. Of the eight
individuals with HIV, seven are actively treated with
ART. The dataset contained 262,818 PBMCs from
these donors generated using the Chromium 5’ Single
Cell Gene Expression system from 10X Genomics.

Data processing

All datasets were filtered to remove cells with high
mitochondrial reads and low transcript counts (<2000
reads). The original Terekhova et al. (2023) pre-
processing pipeline also removed doublets and
multiplets based on total UMI distributions and
Scrublet-derived scores; therefore, we did not apply an
additional doublet-calling step in our downstream
analyses. Datasets were then processed using the Seurat
[56] pipeline, which included NormalizeData, ScaleData,
FindVariableFeatures, RunPCA, FindNeighbors,
FindClusters, and RunUMAP functions to identify cell
types. For the Terekhova et al. (2023) dataset, donor-
level batch correction was performed using Harmony-
based integration in Seurat prior to training/testing split,
ensuring that cell-type clustering was not driven by
batch effects. For datasets including other peripheral
blood mononuclear cell subpopulations, only T cells were
retained. The original Terekhova et al. (2023) dataset
used for model training was filtered to 2,947 genes that
showed at least a weak correlation with age (|JR| >0.01).
This filtering was applied to minimize technical noise
and ensure consistent input features for both cell-type
and age-prediction models. Canonical lineage-defining
markers were retained above this threshold.

Cell type annotation

Cell type annotation was conducted using the ‘Seurat’
package (v5.1.0) in R. Gene expression matrices were
loaded and aligned with the metadata. T cell subsets
were re-annotated for more specificity and clustered
into six T cell subsets. Cell clustering was performed
with the ‘FindNeighbors’ and ‘FindClusters’ functions
from Seurat (34) followed by visualization using
UMAP. Clusters were manually annotated and renamed
based on marker gene (CD8A, CD4, CCR7, GZMB,
GNLY, FOXP3) expression. The re-labeled T cell
subsets were incorporated into the metadata and used
for training the cell type prediction model.

Cell type and age prediction models

The dataset was split into training and test sets based on
donor ID, with 80% of the donor IDs assigned to the

training dataset and 20% assigned to the test dataset.
For cell type prediction, we trained a multinomial
logistic regression model using the ‘glmnet’ package in
R (cv.glmnet, family = “multinomial”). The model was
fit on the full set of 2,947 age-correlated genes (|R|
>0.01) plus a binary sex covariate, with all predictors
internally standardized by glmnet and A selected by
cross-validation.

For age prediction, we built six independent models—
one for each T cell subset (naive CD4, memory CD4,
naive CD8, effector CD8, memory CDS, and regulatory
T cells)—using the Terekhova et al. (2023) data. For
each subset, we used ‘cv.glmnet’ with an elastic net
penalty (o= 0.5) to predict donor age from the expression
of the same 2,947 genes. From this initial model, we
extracted all non-zero coefficients and then refitted a
second ‘cv.glmnet’” model using only these selected
features. The resulting refit models were saved and
applied to all external datasets for age prediction [57].

To control for differences in donor chronological age
and cell type composition when comparing disease
conditions, we computed age residuals by regressing
predicted transcriptomic age on chronological age and
predicted cell type. All disease-associated aging
analyses in the manuscript use these residuals, which
represent cell-intrinsic transcriptional aging independent
of donor age. Accuracy was defined using the mean
absolute error (MAE), with MAE <12 years considered
strong, 1215 years moderate, and >15 years weak. For
correlation, we classify R >0.70 as strong, 0.40-0.70 as
moderate, and <0.40 as weak.

Enrichment analyses

Gene ontology (GO) term enrichment analysis was
performed on shared genes using the ‘enrichGO’
function from the ‘clusterProfiler’ package in R [58]. A
chromosome visualization plot was created using the
‘karyoploteR’ package in R where the gene locations
were plotted on a karyoplot [59]. Genes included were
those used as coefficients across all six T cell models.

Transcript length estimation

Gene-level transcript lengths were obtained from Ensembl
(GRCh38) using the R package biomaRt. For each gene,
we defined a representative transcript length as the
maximum annotated length across all isoforms. For each
cell, raw counts were scaled to a fixed library size (10,000
counts per cell; CPM-like normalization), and the
expression-weighted mean transcript length was
calculated as the column-sum of (scaled expression x
gene length). These per-cell means were then summarized
per donor and cell type for downstream analyses.
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Statistics

To determine the statistical significance of the
differences in residuals between conditions, pairwise ¢-
tests were performed with Bonferroni correction to
adjust for number of cell types analyzed. ANCOVA
tests were conducted to measure the differences in cell
proportions while accounting for the confounding effect
of age by adjusting for age-related variability. The ‘aov’
function was used from the ‘stats’ package in R.
Additionally, the ‘emmeans’ package provided adjusted
mean estimates and p-values to compare between
conditions [60]. The ‘ggplot2’ package was utilized for
graphing.

For gene expression, residual, and cell proportion
analyses, cells were sampled to maintain the same
number of cells per donor. ANCOVA was used to
compare proportions between conditions (Control vs.
HIV) while adjusting for age. Statistical analysis was
performed using ‘emmeans’ [60] for pairwise
comparisons and car for variance inflation factor (VIF)
calculations. Partial correlations were calculated to
control for confounding factors (donor age or condition)
for gene expression analysis using the ‘ppcor’ package.

Data availability

The Terekhova et al. (2023) data were available through
the Synapse platform (syn49637038). The Ren et al.
(2021) data were obtained on the Gene Expression
Omnibus (GSE158055). The Wang et al. (2024) dataset
was accessed from the Gene Expression Omnibus
(GSE243905).

Code availability

The code used to build the model and perform all
analyses will be publicly available on GitHub prior to
publication. The primary programming languages used
were R and Python with freely available software
packages. All computational work was performed on
Amazon Web Services (AWS) Elastic Compute Cloud
(EC2) instances.
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SUPPLEMENTARY MATERIALS

Supplementary Figures
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Supplementary Figure 1. Chronological age distributions of COVID-19 and control donors. A donor-level comparison of
chronological ages for patients with COVID-19 and healthy controls from the Ren et al. dataset after applying quality filters. Each point
represents one donor, with boxplots summarizing the age distribution within each group. COVID-19 donors were significantly older than
controls (p = 6.44 x 10~° ***), confirming that chronological age differs between groups.
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Supplementary Figure 2. Gene contributions across T cell type-specific age prediction models. (A—F) Donut plots illustrating the
top ten most influential gene coefficients for each T cell type—specific age prediction model: (A) naive cytotoxic, (B) naive helper, (C)
memory cytotoxic, (D) memory helper, (E) effector cytotoxic, and (F) regulatory. Upregulated genes are shown in green and downregulated
genes in blue. Gene size reflects the relative magnitude of the model coefficient, highlighting the primary drivers of age prediction within
each T cell subset.
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Supplementary Figure 3. Predictive genes localized to regions of the genome. Karyoplot mapping chromosomal locations of shared
predictive genes identifies dense regions on chromosomes 1 and 14.
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Supplementary Figure 4. Distribution of model weights across genes. (A—F) Cumulative distribution functions showing how age
prediction model weights are distributed across all genes for each T cell subset: (A) naive cytotoxic, (B) memory cytotoxic, (C) effector
cytotoxic, (D) naive helper, (E) memory helper, and (F) regulatory. Each curve represents the cumulative proportion of total model weight
explained as genes are ranked by absolute coefficient magnitude, illustrating differences in weight concentration across T cell-specific

aging models.
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Supplementary Figure 5. Ribosomal gene coefficients across T cell subsets. Heatmap depicting the age prediction coefficients
assigned to ribosomal genes for each T cell subset in the Terekhova et al. (2023) dataset. The heatmap reveals patterns of ribosomal gene
contributions to age prediction across different T cell types.
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Supplementary Figure 6. Quantified genes for T cell age prediction models. The number of genes unique to each of the six T cell
subset age prediction models after training.

Www.aging-us.com 24 AGING



