Research Paper Volume 13, Issue 10 pp 14482—14498

Sirt1 improves heart failure through modulating the NF-κB p65/microRNA-155/BNDF signaling cascade

Effects of miR-155 and BDNF on cardiomyocyte apoptosis. (A) Binding relationship between miR-155 and BDNF predicted by online tools; (B) Binding relationship between miR-155 and BDNF determined by dual luciferase reporter gene assay; (C) BDNF mRNA expression in heart tissues; (D) BDNF protein expression in heart tissues; (E) miR-155 and BDNF mRNA expression in cardiomyocytes. (F) BDNF protein expression in cardiomyocytes; (G) Cell viability determined by MTT assay; (H) Cell apoptosis determined by flow cytometry; (I) Protein expression of apoptosis-related factors; *p p

Figure 5. Effects of miR-155 and BDNF on cardiomyocyte apoptosis. (A) Binding relationship between miR-155 and BDNF predicted by online tools; (B) Binding relationship between miR-155 and BDNF determined by dual luciferase reporter gene assay; (C) BDNF mRNA expression in heart tissues; (D) BDNF protein expression in heart tissues; (E) miR-155 and BDNF mRNA expression in cardiomyocytes. (F) BDNF protein expression in cardiomyocytes; (G) Cell viability determined by MTT assay; (H) Cell apoptosis determined by flow cytometry; (I) Protein expression of apoptosis-related factors; *p < 0.05 vs. control, model + inhibitor NC, model + mimic NC, or model + miR-155 mimic + oe-NC groups; #p < 0.05 vs. sham group. Data were expressed as a mean ± standard deviation. A comparison of data from 2 groups was performed by an unpaired t test, while 3 or more groups by one-way analysis of variance (ANOVA) and Tukey's post hoc test. Data comparison between different time points was performed by repeated measures ANOVA and Bonferroni post hoc test. N= 12. The cell experiment was repeated three times.