Research Paper Volume 13, Issue 3 pp 3428—3442

Reduced SULT2B1b expression alleviates ox-LDL-induced inflammation by upregulating miR-148-3P via inhibiting the IKKβ/NF-κB pathway in macrophages

Mechanisms mediating the role of SULT2B1b in modulating the miR-148a-3p/IKKβ/NF-κB axis in macrophage inflammation. Stimulation with ox-LDL in Raw264.7 cells can lead to IKKβ/NF-κB pathway activation, thus inducing upregulation of TNF-α and IL-6 expression. In contrast, reduced SULT2B1b expression can increase levels of miR-148a-3p, which can target the IKKβ mRNA 3'-UTR region, resulting in reduction of IKKβ expression and suppress binding of p65 and DNA in the nucleus, which alleviates cellular inflammation and proliferation.

Figure 6. Mechanisms mediating the role of SULT2B1b in modulating the miR-148a-3p/IKKβ/NF-κB axis in macrophage inflammation. Stimulation with ox-LDL in Raw264.7 cells can lead to IKKβ/NF-κB pathway activation, thus inducing upregulation of TNF-α and IL-6 expression. In contrast, reduced SULT2B1b expression can increase levels of miR-148a-3p, which can target the IKKβ mRNA 3'-UTR region, resulting in reduction of IKKβ expression and suppress binding of p65 and DNA in the nucleus, which alleviates cellular inflammation and proliferation.