Research Paper Volume 13, Issue 8 pp 11026—11042

Calycosin stimulates the proliferation of endothelial cells, but not breast cancer cells, via a feedback loop involving RP11-65M17.3, BRIP1 and ERα

Effects of calycosin on the proliferation of ECs and BCCs. (A–C) HUVECs, HMEC-1 cells, MCF-7 cells and T47D cells were treated with calycosin (1-60 μM) or E2 (10 nM) for 12, 24, or 48 h. Cell proliferation was determined using a CCK-8 assay. (D) HUVECs, HMEC-1 cells, MCF-7 cells and T47D cells were treated with calycosin (20 μM) or E2 (10 nM) for 12, 24, or 48 h. Cell proliferation was determined using the BrdU assay. (E) For the colony formation assays, after treatment with calycosin (20 μM) or E2 (10 nM) for 7, 14, and 21 days, the numbers of cell colonies were counted. The results are from three independent experiments performed in triplicate. *p

Figure 1. Effects of calycosin on the proliferation of ECs and BCCs. (AC) HUVECs, HMEC-1 cells, MCF-7 cells and T47D cells were treated with calycosin (1-60 μM) or E2 (10 nM) for 12, 24, or 48 h. Cell proliferation was determined using a CCK-8 assay. (D) HUVECs, HMEC-1 cells, MCF-7 cells and T47D cells were treated with calycosin (20 μM) or E2 (10 nM) for 12, 24, or 48 h. Cell proliferation was determined using the BrdU assay. (E) For the colony formation assays, after treatment with calycosin (20 μM) or E2 (10 nM) for 7, 14, and 21 days, the numbers of cell colonies were counted. The results are from three independent experiments performed in triplicate. *p < 0.05 vs. control (0 μM).