Research Paper Volume 13, Issue 11 pp 15285—15306

Mesenchymal stem cells-derived extracellular vesicles ameliorate Alzheimer’s disease in rat models via the microRNA-29c-3p/BACE1 axis and the Wnt/β-catenin pathway

BM-MSC-EVs activate the Wnt/β-catenin pathway via the miR-29c-3p/BACE1 axis. (A, B) RT-qPCR and WB were used to detect the effects of the miR-29c-3p/BACE1 axis on the mRNA expression and protein level of the Wnt/β-catenin pathway-related factors (Wnt3a and β-catenin) during EVs treating AD. The experiment was repeated three times, and the data were expressed as mean ± standard deviation. Data were analyzed using one-way ANOVA followed by Tukey’s multiple comparisons test. **p p

Figure 7. BM-MSC-EVs activate the Wnt/β-catenin pathway via the miR-29c-3p/BACE1 axis. (A, B) RT-qPCR and WB were used to detect the effects of the miR-29c-3p/BACE1 axis on the mRNA expression and protein level of the Wnt/β-catenin pathway-related factors (Wnt3a and β-catenin) during EVs treating AD. The experiment was repeated three times, and the data were expressed as mean ± standard deviation. Data were analyzed using one-way ANOVA followed by Tukey’s multiple comparisons test. **p < 0.01; **p < 0.001.